CAPSTONE PREP – 3

1. A customer can make a payment either by Card or by Wallet or by Cash or by Net banking.
Draw a Use Case Diagram

[image: ]

2. Derive Boundary Classes, Controller classes, Entity Classes.
Boundary Classes (UI/Interface Layer)
Boundary classes handle user interactions and act as interfaces between the external world and the system.
· Payment - Handles customer interactions related to payments.
· CardPayment - Handles card-specific interactions (like entering card details).
· Wallet Payment - Handles wallet-related transactions.
· Cash Payment - Handles cash payments.
· Net Banking Payment - Manages net banking payment interactions.

Controller Classes (Business Logic layer)
Controller classes process user requests, coordinate business logic, and interact with entity classes.
· Payment - Controls the payment flow.
· Card Payment - Handles payment logic for cards.
· Wallet Payment - Manages wallet payments.
· Cash Payment - Validates and confirms cash payments.
· Net Banking - Manages net banking transactions.

Entity Classes (Data Layer)
Entity classes represent the core business objects that store data.
· Payment - Stores common payment details (amount, status, method).
· Card Payment - Extends Payment, includes card number, expiry, CVV.
· Wallet Payment - Extends Payment, includes wallet ID, balance.
· Cash Payment - Extends Payment, includes cash receipt details.
· Net Banking - Extends Payment, includes bank details and transaction ID.
· Customer - Represents the user making the payment.
· Transaction - Logs payment transactions.

3. Place these classes on a three tier Architecture.
	Layer
	Class Type
	Class Name
	Description

	Database layer
	Entity Class
	Payment
	Represents payment entity in database

	
	Entity Class
	Card Payment
	Represents payments made via Card.

	
	Entity Class
	Wallet Payment
		



	Represents payments made via Wallet.




	
	Entity Class
	CashPayment
	Represents payments made via Cash.

	
	Entity Class
	NetBankingPayment
	Represents payments made via Net Banking.

	Application Layer
	Boundary Class
	PaymentService
	Provides services for processing payments.

	
	Boundary Class
	PaymentRepository
	Handles database operations for payments.

	Business Logic Layer
	Controller Class
	PaymentController
	Handles API requests related to payments.

	
	Controller Class
	CardPayment
	Handles Card Payment processing.

	
	Controller Class
	WalletPayment
		



	Handles Wallet Payment processing.




	
	Controller Class
	CashPayment
	Handles Cash Payment processing.

	
	Controller Class
	NetBankingPayment
	Handles Net Banking Payment processing.




4. Explain Domain Model for Customer making payment through Net Banking
A domain model is a conceptual representation that defines the structure, relationships and behaviours of entities within a specific problem domain
Entities & Attributes
a. Customer
· CustomerID
· Name
· Email
· PhoneNumber
· Address

b. Payment
· PaymentID
· CustomerID
· Amount
· Currency
· PaymentStatus
· Timestamp

c. PaymentMethod
· MethodID (Unique Identifier)
· MethodType
· PaymentID

d. Bank Account
· BankAccountID
· CustomerID
· BankName
· AccountNumber
e. NetBankingTransaction
· TransactionID
· BankAccountID
· PaymentID
· TransactionStatus

Relationships
· A Customer can make multiple Payments.
· Each Payment is associated with one Payment Method.
· Net Banking Payment Method requires a Bank Account.
· A Bank Account belongs to a Customer.
· A Net Banking Transaction links a Bank Account to a Payment.
[image: ]

5. Draw a sequence diagram for payment done by Customer Net Banking
[image: ]

6. Explain Conceptual Model for this Case
A conceptual model represents the high-level structure of the system, focusing on key entities and their relationships without delving into implementation details.

Entities and Relationships
· Customer
· A customer initiates a payment.
· Can have multiple payment options available.

· Payment
· Represents a transaction initiated by the customer.
· Linked to exactly one payment method.

· Payment Method
· A payment can be made using one of the following methods:
 Card (Credit/Debit)
Wallet (Digital wallets like Paytm, Google Pay, etc.)
Cash
Net Banking
Each payment method has unique attributes (e.g., card number for Card, wallet provider for Wallet).

Example Conceptual Schema
· Customer (CustomerID, Name, Email, Phone)
· Payment (PaymentID, CustomerID, Amount, Date, Status, Payment MethodID)
· PaymentMethod (Payment MethodID, Type)
· Card (Payment MethodID, Card Number, Expiry Date, CVV, Card Holder Name)
· Wallet (Payment MethodID, Wallet Provider, Wallet ID)
· Cash (Payment MethodID)
· Net Banking (Payment MethodID, BankName, AccountNumber)

· A Customer makes a Payment.
· A Payment is processed using one Payment Method.
· The Payment Method is a generalization that includes Card, Wallet, Cash, or Net Banking.
· Each payment method has specific attributes relevant to its type.

7. What is MVC architecture? Explain MVC rules to derive classes from use case diagram and guidelines to place classes in 3-tier architecture

MVC (Model-View-Controller) is a software design pattern used to separate concerns in an application, making it more maintainable and scalable. It divides the application into three main components:

· Model: Represents the data and business logic.
· View: Handles the user interface and presentation.
· Controller: Manages user input, interacts with the model, and updates the view.

MVC Rules to Derive Classes from a Use Case Diagram
To derive classes from a use case diagram, follow these rules:
· Identify the Actors and Use Cases
· Actors represent external entities (e.g., Customer, Payment System).
· Use cases represent functionalities (e.g., Make Payment).
· Extract the Key Entities
· Identify nouns from the use case description (e.g., Payment, Customer, Wallet, Card, Cash, Net Banking).
· These entities become model classes.



· Determine the Controller Classes
· Identify verbs that represent actions (e.g., process payment, validate transaction).
· These actions become methods in controller classes.
· Define View Components
· Identify screens/UI elements required for user interaction (e.g., Payment Page, Confirmation Page).

Guidelines to Place Classes in a 3-Tier Architecture
A 3-tier architecture consists of:
· Presentation Layer (UI Layer)
· Contains views that interact with the user (e.g., HTML pages, Mobile UI).
· Example: Payment Page, Transaction Confirmation Page.

· Business Logic Layer (Service Layer)
· Contains business rules, validations, and service classes.
· Example: Payment Service (handles processing logic), Transaction Validator.
· Data Access Layer (Persistence Layer)
· Manages database operations.
· Example: Payment DAO, Transaction Repository.

8. Explain BA contributions in project (Waterfall Model – all Stages)

	Stage
	Activities
	Artifact and Resources

	Pre-Project
	- Identify business need for payment options
- Conduct feasibility study
- Prepare business case
	- Business Case Document
- Feasibility Study Report
- Stakeholder Identification

	Planning
	- Define project scope, objectives, and deliverables
- Identify stakeholders and dependencies
- Create high-level project plan
	- Project Charter
- Stakeholder Register
- High-Level Project Plan

	Project Initiation
	- Conduct stakeholder meetings to gather initial expectations
- Define roles and responsibilities of team 
	- Project Scope Statement
- RACI Matrix
- Initial Risk Assessment

	Requirement Gathering
	- Conduct workshops, interviews, and surveys to gather payment requirements
- Define functional and non-functional requirements
- Identify regulatory compliance requirements
	- Business Requirement Document (BRD)
- Stakeholder Requirements Document (SRD)
- Meeting Notes

	Requirement Analysis
	- Analyze payment options (Card, Wallet, Cash, Net Banking)
- Prioritize requirements based on business needs and feasibility
- Identify integration needs with banking/payment gateways
	- Requirement Traceability Matrix (RTM)
- Process Flow Diagrams
- Gap Analysis Report

	Design
	- Collaborate with technical teams to design payment system architecture
- Define user workflows for each payment method
- Document UI/UX wireframes and API specifications
	- Functional Specification Document (FSD)
- System Design Document (SDD)
- Wireframes & Prototypes

	Development
	- Clarify business logic and handle requirement changes
- Assist developers in understanding payment flows
- Ensure compliance requirements are implemented
	- Updated RTM
- Change Request Document (if any)
- Payment Processing Logic

	Testing
	- Validate test cases for payment transactions
- Support SIT (System Integration Testing) and verify compliance
- Perform defect analysis and requirement validation
	- Test Cases & Test Scenarios
- Defect Logs
- Test Execution Reports

	UAT
	- Conduct UAT sessions with business users
- Ensure all payment methods function as expected
	- UAT Test Cases & Results
- UAT Sign-off Document
- User Feedback Report


9. What is conflict management? Explain using Thomas – Kilmann technique
Conflict management is the process of identifying, addressing, and resolving conflicts in a constructive manner to maintain a healthy work or personal environment. It involves strategies that help minimize the negative impact of conflicts while fostering collaboration and understanding.

The Thomas-Kilmann technique is a widely used framework for conflict resolution, developed by Kenneth Thomas and Ralph Kilmann. It categorizes conflict-handling behavior based on two dimensions:
Assertiveness - The extent to which a person tries to satisfy their own concerns.
Cooperativeness - The extent to which a person tries to satisfy the concerns of others.

Based on these dimensions, the model identifies five conflict-handling styles:
· Identify the Conflict
· Observe the situation and recognize the signs of conflict.
· Understand the emotions and concerns involved.
· Identify the people affected by the issue.

· Discuss the details
· Allow both parties to express their viewpoints.
· Encourage open communication and active listening.
· Avoid blame and focus on facts.

· Agree on the root problem
· Analyze the underlying cause of the conflict.
· Ensure both parties agree on what the real issue is.
· Differentiate between personal issues and professional disagreements.

· Check for every possible solution
· Brainstorm multiple resolutions.
· Evaluate the pros and cons of each option.
· Consider compromises or new alternatives.

· Negotiate the solution to avoid Future conflicts
· Agree on a mutually beneficial solution.
· Set clear guidelines for future similar issues.
· Document the decision to prevent recurrence.

10. List down the reasons for project failure

· Poor Planning and Requirements Management
· Unclear project scope (scope creep)
· Vague or incomplete requirements
· Lack of proper project documentation

· Inadequate Leadership and Stakeholder Engagement
· Weak project management
· Lack of executive support
· Poor communication among stakeholders

· Poor Resource Management
· Insufficient budget allocation
· Inadequate human resources or skill gaps
· Poor time management and unrealistic deadlines

· Ineffective Risk Management
· Failure to identify potential risks
· No contingency plans
· Ignoring early warning signs

· Technical Challenges
· Use of outdated or incompatible technology
· Poor system integration
· Insufficient testing and quality assurance

· Unrealistic Expectations
· Overpromising results to stakeholders
· Underestimating complexity and effort required
· Lack of alignment between business goals and project objectives

· Lack of User or Customer Involvement
· Not gathering feedback from end-users
· Delivering a solution that does not meet business needs
· Ignoring user experience (UX) considerations

11. List the Challenges faced in projects for BA

· Requirement-Related Challenges
· Unclear or Changing Requirements: Stakeholders often struggle to define their needs, leading to scope creep.
· Conflicting Stakeholder Expectations: Different departments may have opposing priorities.
· Incomplete Requirements Gathering: Missing critical details can cause issues later.

·  Stakeholder Management Challenges
· Unavailability of Stakeholders: Key stakeholders may not be accessible for input.
· Resistance to Change: Users may resist new processes or technologies.
· Miscommunication: Business and technical teams often have different terminologies.

· Technical and Process Challenges
· Lack of Technical Knowledge: A BA may struggle to bridge the gap between business and IT.
· Poor Documentation Standards: Unclear documentation can lead to misunderstandings.
· Integration with Legacy Systems: Compatibility issues can arise with old software.

· Project Management Challenges
· Tight Deadlines & Resource Constraints: Limited time and budget can impact quality.
· Scope Creep: Constantly changing requirements can affect timelines and costs.
· Poor Risk Management: Lack of anticipation for risks can lead to project failure.

· Communication and Collaboration Issues
· Lack of Stakeholder Engagement: Some stakeholders may not actively participate.
· Difficulty in Translating Business Needs to Technical Teams: Ensuring alignment is challenging.
· Cultural and Geographical Barriers: Distributed teams may face collaboration challenges.

12. Write about Document Naming Standards
Document Naming Standards are a set of guidelines that help organizations maintain consistency, clarity, and efficiency in naming files and documents. A well-defined naming convention ensures that documents are easy to locate, understand, and manage, reducing confusion and errors in collaborative environments.

Example:
Project ID: PRJ123
Document Type: REQ
Version: v1.0
Date: 13-02-2025

Document Identifier:  PRJ123-REQ-v1.0-20250210
This format ensures that all stakeholders can quickly identify the document's purpose, version, and relevance.

13. What are the Do’s and Don’ts of a Business analyst
Do’s for a Business Analyst:
· Understand Business Needs Clearly
· Conduct thorough stakeholder interviews.
· Analyze business processes to identify pain points and areas for improvement.

· Communicate Effectively
· Use clear, concise, and structured communication.
· Actively listen to stakeholders and clarify requirements.

· Document Everything
· Maintain detailed documentation (BRD, FRD, Use Cases, User Stories, etc.).
· Ensure all requirements are traceable and well-organized.

· Collaborate with Stakeholder
· Engage with business users, developers, testers, and project managers.
· Facilitate workshops and brainstorming sessions.

· Think Critically and Analytically
· Break down complex problems into smaller, manageable parts.
· Use data-driven decision-making.

Don’ts for a Business Analyst
· Don’t Assume Requirements Without Validation
· Don’t Neglect End Users
· Don’t Overcomplicate Solutions
· Don’t Ignore Documentation
· Don’t Work in Isolation
· Don’t Delay Stakeholder Engagement
· Don’t Disregard Risks
· Don’t Ignore Feedback

14. Write the difference between packages and sub-systems
	Aspect
	Package
	Subsystem

	Definition
		



	A logical grouping of related classes, interfaces, and sub-packages within a software system.



	A larger, self-contained module within a system that provides a distinct functionality, often comprising multiple packages.

	Scope
	Typically smaller in scope, used to organize code efficiently within a system.
	Broader in scope, representing a major functional component of a system.

	Encapsulation
	Helps in organizing classes to avoid name conflicts and improve code maintainability.
	Encapsulates a set of related functionalities, services, or components.

	Implementation
	Found in programming languages like Java
	Implemented as a part of system architecture, often involving multiple packages

	Example
	A networking package in a software application.
	A "Payment Processing" sub-system in an e-commerce application




image1.png
Customer

Payment System

End2

-End3

Payment Initiation «

View Payment
Options





image2.png
Customer

+String name
+String email

+makePayment(payment: Payment)

“makes”

v

Payment

+Double amount
+String paymentDate
Paymentiethod method

“processPayment() :

f

NetBanking

+String bankName
+String accountNumber
+String ifscCode.

+processPayment()  : Boolean





image3.png
Customer Merchant PaymentGateway Bank

Initiates Payment via Net Banking

Sends Payment Request
—_—

Requests Payment Authorization
_

Approves Payment

Confirms Payment

Payment Successful

Customer Merchant PaymentGateway Bank




