A customer can make a payment either by Card or by Wallet or by Cash or by Net banking.
Q1. Draw a Use Case Diagram.

Ans:

Q2. Derive Boundary Classes, Controller classes, Entity Classes.
Ans:
1. Entity Classes: Represent real-world objects or data that need to be stored (e.g., payment details, user info). (e.g., "Card," "Wallet," "Cash," "Net Banking").
Classes:
1. Payment (Parent class)
· Attributes: payment Id, amount, timestamp, status
2. CardPayment (Child of Payment)
· Attributes: card Number, expiry Date, CVV
3. Wallet Payment (Child of Payment)
· Attributes: wallet Id, wallet Provider (e.g., PayPal, PhonePe)
4. Cash Payment (Child of Payment)
· Attributes: cash Received change Returned
5. Net Banking Payment (Child of Payment)
· Attributes: bank Name, account Number
2. Boundary Classes: Handle interactions between the system and external actors (e.g., UI, APIs). (e.g., payment screens).
Classes:
1. Payment UI
· Methods: show Payment Options, collect Payment Details
2. Card Payment UI
· Methods: enter Card Details (), validate Card ()
3. Wallet Payment UI
· Methods: select Wallet Provider (), authorize Wallet ()
4. Cash Payment UI
· Methods: confirm Cash Received ()
5. Net Banking UI
· Methods: select Bank (), redirect To Bank Portal ()
3. Controller Classes: Act as middlemen between Boundary and Entity classes. Handle business logic. (e.g., "process," "validate," "authorize").
Classes:
1. Payment Controller Methods:
· Process Payment (payment Type)
· Validate Payment ()
· Update Payment Status ()
2. Card Payment Controller Methods:
· verify Card (),
· charge Card ()
3. Wallet Payment Controller Methods:
· authenticate Wallet (,
· deduct Walle t Balance ()
4. Cash Payment Controller Methods:
· calculate Change ()
5. Net Banking Controller Methods:
· redirect To Bank ()
· verify Transaction ()

Q3. Place these classes on a three tier Architecture.
Ans:
Three-Tier Architecture Overview
The three layers are:
1. Presentation Layer (UI) - Boundary Classes: Handles user interaction (e.g., screens, forms).
2. Business Logic Layer - Controller Classes: Processes rules (e.g., payment validation, calculations).
3. Data Access Layer - Entity Classes: Manages data storage/retrieval (e.g., databases).

Map Classes to Layers
1. Presentation Layer (Boundary Classes): Display options and collect input from the user.
Classes:
· Payment UI
· Card Payment UI
· Wallet Payment UI
· Cash Payment UI
· NetBankingUI
 Flow:
· Payment UI shows buttons for payment methods → User selects "Card" Card Payment UI opens to collect card details.
2. Business Logic Layer (Controller Classes): Validate, process, and coordinate payments.
Classes:
· Payment Controller
· Card Payment Controller
· Wallet Payment Controller
· Cash Payment Controller
· Net Banking Controller
Flow:
· Card Payment Controller checks if the card is valid → If yes, it asks Payment (Entity) to save the transaction.
3. Data Access Layer (Entity Classes): Store and retrieve payment data.
Classes:
· Payment (Parent class)
· CardPayment
· Wallet Payment
· Cash Payment
· Net Banking Payment
 Flow:
· After payment is approved, CardPayment saves details like card Number, amount to the database.

Q4. Explain Domain Model for Customer making payment through Net Banking
Ans:
Domain Model is a visual representation of the key business objects, their attributes, and relationships involved in a process. Here, we’ll model how a customer pays via Net Banking.
· Identify Key Domain Objects
1. Customer (who initiates the payment).
2. Net Banking Payment (the transaction).
3. Bank (the financial institution).
4. Account (customer’s bank account).
5. Payment Gateway (processes the transaction).

· Define Attributes for Each Object
	Object
	Attributes

	Customer
	Customer Id, name, email, phone

	Net Banking Payment
	Payment Id, amount, status, timestamp

	Bank
	Bank Id, bank Name, IFSC Code

	Account
	Account Number, account Type, balance

	Payment Gateway
	Gateway Id, transaction Id, fee

· Establish Relationships
1. A Customer has an Account in a Bank.
2. A Customer initiates a Net Banking Payment.
3. A Net Banking Payment uses a Payment Gateway for processing.
4. A Bank validates the Account before approving payment.

· How It Works
1. Customer selects Net Banking at checkout.
2. System creates a Net Banking Payment record with amount and status=PENDING.
3. Payment Gateway (e.g., Razorpay, Paytm) connects to the Bank.
4. Bank checks if the Account has sufficient balance.
5. If yes: Bank deducts amount from Account. Payment Gateway confirms
status=SUCCESS.
6. If no: Payment Gateway sets status=FAILED.
Domain Model Diagram Making Payment Through Net Banking

[image:]

Q5. Draw a sequence diagram for payment done by Customer Net Banking.
Ans:

Q6. Explain Conceptual Model for this Case
Ans:
A Conceptual Model is a high-level design that shows the main entities (objects or actors), their attributes, and the relationships between them in a system. It helps business analysts and stakeholders understand the system without technical complexity.
· Components of the Conceptual Model
1.Primary Main objects involved
	Entity
	Description

	Customer
	A user who initiates a purchase and chooses Net Banking to pay.

	Product
	The item or service being purchased.

	Order
	The transaction initiated by the customer for purchasing products.

	E-Commerce Website
	Platform where the customer places an order.

	Payment Gateway
	Third-party service that handles online payment processing.

	Bank (Net Banking System)
	Customer's bank which authorizes and processes the payment.

	Merchant
	The business selling the product and receiving the payment.

2. Attributes (Key Details of Each Entity)
	Entity
	Attributes

	Customer
	Customer ID, Name, Email, Phone Number

	Product
	Product ID, Name, Price, Quantity

	Order
	Order ID, Order Date, Order Amount, Order Status

	Payment Gateway
	Gateway ID, Transaction ID, Payment Status

	Bank
	Bank ID, Account Number, IFSC Code, Authorization Status

	Merchant
	Merchant ID, Business Name, Bank Account Details

3. Relationships Between Entities
	Relationship
	Description

	Customer places Order
	One customer can place many orders

	Order contains Product(s)
	One order can include multiple products

	Order uses Payment Gateway
	Each order is routed through a payment gateway

	Payment Gateway connects to Bank
	Gateway interacts with the customer’s bank for authentication

	Bank transfers money to Merchant
	Upon successful payment, funds are transferred to the merchant

	Merchant sells Products
	Merchant owns and sells the products listed on the site

4.Flow Based on the Conceptual Model
1. A Customer visits the E-Commerce Website and selects a Product.
2. Customer places an Order and selects Net Banking as the payment method.
3. The Payment Gateway routes the request to the Bank for authorization.
4. If the payment is successful, the Bank debits the customer's account and transfers funds to the Merchant’s account.
5. The Order Status is updated to “Paid,” and confirmation is sent to the Customer.
Q7. What is MVC architecture? Explain MVC rules to derive classes from use case diagram and guidelines to place classes in 3-tier architecture.
Ans:
MVC (Model-View-Controller) is a design pattern that splits an application into 3 parts:
	Component
	 Role

	Model (Data)
	Manages data, business logic, and rules of the application.

	View (UI)
	Deals with user interface (UI) – what the user sees and interacts with.

	Controller (Brain)
	Handles user input, communicates with the Model, and updates the View accordingly.

How to Derive MVC Classes from a Use Case Diagram?
Identify Use Cases
From the "Customer makes payment via Net Banking" use case:
· Actor: Customer
· Actions: Select Bank, Enter Credentials, Confirm Payment.
Map to MVC Components
	Use Case Action
	MVC Class
	Responsibility

	"Select Bank" (UI)
	NetBankingUI (View)
	Shows bank list, collects user input.

	"Validate Payment" (Logic)
	Net Banking Controller
	Checks bank server, updates payment.

	"Save Transaction" (Data)
	Net Banking Payment (Model)
	Stores payment details in DB.

Rules to Derive Classes:
1. View (V)
· All UI screens (e.g., Payment UI, NetBankingUI).
· Only displays data; zero logic.
2. Controller (C)
· All "process" or "validate" actions (e.g., Payment Controller).
· Talks to Model and View.
3. Model (M)
· All data + business rules (e.g., Payment, Bank).
· No direct interaction with View.
The 3-Tier Architecture corresponds to the MVC pattern.
	Tier
	MVC Layer
	Description
	Examples of Classes

	Presentation Layer (UI)
	View
	UI screens and user interaction
	Log in Form, Product Page, Order View

	Business Logic Layer
	Controller
	Processing user inputs, coordinating logic
	Login Controller, Order Controller

	Data Access Layer
	Model
	Data access, business rules
	Customer, Product, Order, Payment

Q8. Explain BA contributions in project (Waterfall Model – all Stages).
Ans:
The Waterfall Model is a linear and sequential software development process. Each phase must be completed before the next begins.
There are 6 key stages:
1. Requirement Gathering and Analysis
2. System Design
3. Implementation (Coding)
4. Testing
5. Deployment
6. Maintenance
· Role of Business Analyst (BA) at Each Stage
1. Requirement Gathering and Analysis
This is the most critical stage for a Business Analyst.
 BA Responsibilities:
· Identify stakeholders (customers, users, sponsors, developers).
· Conduct interviews, surveys, or workshops to gather requirements.
· Document business needs clearly and completely.
· Create BRD (Business Requirement Document) and FRD (Functional Requirement Document).
· Define use cases, user stories, process flows.
· Handle requirement sign-off from stakeholders.
 Deliver:
· BRD, FRD
· Use Case Diagram, Process Flow Diagram
· Stakeholder List, Requirement Traceability Matrix (RTM)
2. System Design
Although the technical team leads this phase, the BA still plays an important supporting role.
BA Responsibilities:
· Clarify functional and non-functional requirements to the design team.
· Participate in design meetings to ensure business needs are being interpreted correctly.
· Help prepare data models, mock-ups, and wireframes.
· Ensure all designs align with business goals.
Deliver:
· Support in ER Diagram, Data Flow Diagram
· Validation of wireframes and prototypes
3. Implementation (Coding)
This stage is mostly handled by developers. However, the BA ensures that development aligns with requirements.
BA Responsibilities:
· Assist developers by clarifying business rules.
· Respond to functional doubts or clarifications.
· Ensure developed features match documented requirements.
Deliver:
· Clarification logs
· Functional review reports
4. Testing
BA helps verify and validate that the software meets business needs.
BA Responsibilities:
· Create or review test cases and test scenarios.
· Perform functional or UAT testing.
· Validate results and ensure all features meet business expectations.
· Log and track defects raised during testing.
Deliver:
· Test Cases
· UAT Test Plan and Results
· Defect Logs and Sign-Off Reports
5. Deployment
This is the go-live phase when the system is made available to users.
BA Responsibilities:
· Coordinate with stakeholders and teams to prepare for go-live.
· Train end-users (if needed) or prepare user manuals.
· Ensure all business objectives are met before deployment.
Deliver:
· Go-live checklist
· User training material
· Deployment Sign-off
 6. Maintenance
After deployment, issues may arise or new enhancements may be required.
 BA Responsibilities:
· Gather feedback from users.
· Document change requests or enhancement needs.
· Conduct impact analysis for any proposed changes.
· Update RTM and help with next phases if changes are made.
Deliver:
· Change Request Document
· Feedback Reports
· Updated BRD or FRD
Why BA is Critical in Waterfall?
· Prevents Costly Changes: Since Waterfall is not iterative, BAs ensure requirements are 100% clear upfront.
· Bridge Between Business & IT: Ensures developers build what the business actually needs.
· Reduces Risks: Proper documentation = fewer surprises in UAT.

Q9. What is conflict management? Explain using Thomas – Kilmann technique.
Ans:
Conflict happens when two or more people disagree due to differences in opinions, goals, or approaches.
· Identifying conflict.
· Understanding its nature.
· Taking suitable steps to resolve or manage it in a positive way.
[bookmark: _Hlk199510302]The Thomas-Kilmann Conflict Mode Instrument (TKI) helps identify 5 strategies based on two dimensions to handle conflicts effectively.
	Dimension
	Meaning

	Assertiveness
	How much you try to satisfy your own needs

	Cooperativeness
	How much you try to satisfy the other person's needs

The Five Conflict Management Thomas-Kilmann Conflict Mode Instrument
1. Competing (High Assertiveness, Low Cooperativeness)
· You push your own views without considering others.
· Useful when quick, decisive action is needed.
· Risk: May damage relationships.
Example: A project manager insists on following the original deadline despite team objections.
2. Avoiding (Low Assertiveness, Low Cooperativeness)
· You ignore or withdraw from the conflict.
· Useful when the issue is minor or when emotions are high.
· Risk: Problems can become worse over time.
Example: A team member stays silent during a heated debate to avoid confrontation.
3. Collaborating (High Assertiveness, High Cooperativeness)
· You work with others to find a win-win solution.
· Takes time but builds strong relationships.
· Best for long-term and complex problems.
Example: A BA and developer discuss both technical and business needs to find the best solution for a feature.
4. Accommodating (Low Assertiveness, High Cooperativeness)
· You let the other person have their way.
· Useful when preserving harmony is more important than the issue itself.
· Risk: Your own needs may be ignored.
Example: A junior analyst agrees with a senior manager’s approach despite having a better idea.
5. Compromising (Moderate Assertiveness, Moderate Cooperativeness)
· You find a middle ground, with both sides giving up something.
· Useful when time is limited and both sides have equal power.
· Faster than collaboration, but may not be ideal.
Example: Two stakeholders disagree on a budget, so they agree to split the difference.

Q10. List down the reasons for project failure.
Ans:
Project fails when it does not meet its objectives, exceeds the budget or timeline, or fails to deliver expected value to stakeholders.
Reasons for project failure.
1). Unclear or Incomplete Requirements
· Requirements are poorly gathered or misunderstood.
· Missing use cases, unclear business needs, or vague expectations.
Example: A software is built without understanding what the end user really needs.

2). Lack of Stakeholder Involvement
· Stakeholders are not involved in planning, review, or decision-making.
· Their feedback comes too late, causing major rework.
Example: A product is developed and then rejected by management because it does not meet their vision.
3). Poor Planning
· Project plan lacks detail or is unrealistic.
· No proper time, cost, or resource estimation.
Example: Project deadlines are missed because initial timelines were too tight.

4). Scope Creep (Uncontrolled Changes)
· New features or changes are added without proper approval or planning.
· Increases workload, delays delivery, and causes confusion.
Example: The client keeps asking for more features during development without changing the deadline.

5). Lack of Clear Roles and Responsibilities
· Team members are confused about their tasks.
· Leads to miscommunication, delays, or duplicated efforts.
Example: No one takes ownership of testing, so bugs are found late.

6). Ineffective Communication
· Team members and stakeholders are not kept informed.
· Status updates, risks, and issues are not clearly shared.
Example: A developer works on outdated requirements because they didn’t receive the latest version.

7). Weak Project Leadership or Management
· Project manager lacks skills in planning, decision-making, or conflict handling.
· No guidance to the team during critical phases.
Example: Project manager avoids conflict, leading to unresolved team issues.

8). Lack of Risk Management
· No identification or planning for possible risks.
· When issues arise, the team is unprepared.
Example: Key developer quits mid-project and there's no backup resource.

9). Inadequate Testing
· Not enough time or resources for proper testing.
· Software goes live with bugs and errors.
Example: App crashes after release because only unit testing was done, no UAT.

10). Poor Change Management
· No process to handle change requests effectively.
· Causes confusion and version control issues.
Example: Client asks for UI changes, but the old version is delivered.

11). Unrealistic Budget or Timeline
· Project is underfunded or rushed.
· Results in cutting corners and quality loss.
Example: No budget for security testing, leading to a major security flaw post-launch.
12. Technology Limitations
· Wrong or outdated technology stack is used.
· Leads to performance issues or inability to scale.
 Example: A web application is built on a platform that can’t handle high traffic.

Q11. List the Challenges faced in projects for BA.
Ans:
Business Analyst (BA) plays a key role in bridging the gap between stakeholders and the technical team.
· Challenges faced in projects for BA
1). Unclear or Changing Requirements
· Problem: Requirements are vague, incomplete, or keep changing.
· Impact: Difficult to create proper documentation or develop accurate solutions.
Example: The client says, “I want an easy-to-use app,” but doesn't explain what "easy" means.

2). Stakeholder Conflicts
· Problem: Different stakeholders have conflicting opinions or goals.
· Impact: BA struggles to finalize requirements or satisfy everyone.
Example: Marketing wants flashy design; finance wants low cost; operations want simple UI.

3). Lack of Stakeholder Involvement
· Problem: Stakeholders are not available or do not respond on time.
· Impact: Delays in gathering and confirming requirements.
Example: A manager is too busy to approve the wireframes, so the project stalls.

4). Communication Gaps
· Problem: Misunderstanding between business and technical teams.
· Impact: Incorrect implementation of features.
Example: Developer builds a feature based on assumption, but the business wanted something else.

5). Time Pressure and Tight Deadlines
· Problem: Not enough time for requirement analysis, documentation, or review.
· Impact: Incomplete or poor-quality work.
Example: BA is asked to write user stories in 1 day without proper stakeholder discussion.

6). Lack of Domain Knowledge
· Problem: BA is new to the industry and doesn’t understand the business terms or processes.
· Impact: Misinterpretation of stakeholder needs.
Example: BA working in healthcare without knowing terms like ICD or EHR.

7). Scope Creep
· Problem: Stakeholders keep asking for new features during development.
· Impact: Project delays, rework, and increased cost.
Example: After finalizing requirements, the client wants to add a chatbot and payment integration.

8). Tool and Technology Challenges
· Problem: BA is asked to use unfamiliar tools like JIRA, Figma, or SQL.
· Impact: Slower work and errors in documentation or reporting.
Example: BA needs to design wireframes but doesn’t know how to use Figma.

9). Lack of Support from Management
· Problem: Senior leaders do not support or value BA work.
· Impact: Requirements gathering or approvals become difficult.
Example: BA is not invited to key meetings where project direction is discussed.

10). Poorly Defined Roles and Responsibilities
· Problem: Confusion between BA, PM, QA, and developers about who does what.
· Impact: Work gets missed or duplicated.
Example: BA assumes PM will gather requirements; PM assumes BA will do it.

11). Difficulty in Validating Requirements
· Problem: BA finds it hard to confirm if the requirement really solves the business problem.
· Impact: Product may meet technical specs but fail to deliver business value.
Example: A feature is built exactly as per the document but users find it useless.

Q12. Write about Document Naming Standards.
Ans:
Document Naming Standards are rules used to create clear, consistent, and meaningful names for project documents. They help everyone easily identify, search, organize, and manage documents.

· Key Components of a Document Naming Standard.
	Component
	Description
	Example

	Project Name
	Short name of the project
	"AgriStore"

	Document Type
	Type of document
	"BRD", "RTM", "UML", "TestCases"

	Module/Feature
	Specific module or section
	"Login", "Cart", "Payment"

	Date
	Creation or last update date (format: YYYYMMDD)
	"20250530"

	Version
	Version of the document
	"v1.0", "v2.1"

Document Naming Standards Are Important.
· Makes it easy to understand the content of a file without opening it.
· Helps in version control.
· Avoids confusion due to duplicate or random file names.
· Useful for team collaboration, audits, and future reference.

Q13. What are the Do’s and Don’ts of a Business analyst.
Ans:
Business Analyst (BA) plays an important role in understanding business needs and ensuring the right solutions are delivered. To succeed, a BA must follow some best practices (Do’s) and avoid common mistakes (Don’ts).

· Do’s of a Business Analyst
	Do
	Explanation
	Example

	1. Listen Actively
	Focus on what stakeholders are saying, without interrupting.
	Understand user pain points in a requirement meeting.

	2.Ask The Right Questions
	Use open-ended and probing questions to gather complete information.
	"What do you expect from this new feature?"

	3.Document Clearly and Completely
	Write BRDs, SRS, RTMs in simple and clear language.
	Use templates and checklists for consistency.

	4.Validate Requirements
	Confirm requirements with stakeholders before moving to development.
	Arrange sign-off meetings.

	5.Collaborate with All Teams
	Work closely with developers, testers, project managers, and clients.
	Attend daily standups, sprint planning.

	6.Understand the Business Domain
	Learn the industry terms and workflows.
	Study banking terms if working on a finance app.

	7.Maintain Confidentiality
	Keep client and business data private and secure.
	Don't share internal emails or strategies.

	8. Stay Organized
	Manage documents, emails, and meeting notes properly.
	Use folders and proper file naming conventions.

	9. Be Adaptable
	Be open to feedback and changes in requirements.
	Accept scope changes with proper change request flow.

· Don’ts of a Business Analyst.
	Don’t
	Explanation
	Example

	1. Don’t Assume Requirements
	Never guess what the client wants. Always confirm.
	Assuming "quick checkout" means one-click payment.

	2.Don’tIgnore Stakeholders
	Every stakeholder has valuable input.
	Ignoring input from operations team.

	3.Don’t delay Documentation
	Write down requirements and updates promptly.
	Forgetting to update RTM after a scope change.

	4. Don’t Use Technical Jargon with Clients
	Use simple business language.
	Instead of “API failure”, say “system is unable to fetch data”.

	5. Don’t Be Rigid
	Be flexible with changes in process or requirements.
	Refusing a change request in an Agile project.

	6. Don’t Skip Reviews or Sign-Offs
	Always get confirmation before development begins.
	Starting development without BRD approval.

	7. Don’t Work Alone
	A BA must be a team player.
	Not sharing documents with QA and Dev team.

	8. Don’t Overpromise
	Always check feasibility with tech team before committing to client.
	Saying “yes” to a feature without checking system limitations.

	9. Don’t Forget Non-Functional Requirements
	Include performance, security, usability in requirements.
	Missing login timeout settings in the BRD.

	10. Don’t Avoid Feedback
	Always accept criticism positively.
	Ignoring tester feedback about missing scenarios.

Q14. Write the difference between packages and sub-systems.
Ans:
Package: A Package is a logical container used to group related elements (like classes, use cases, diagrams). It helps in organizing large systems into manageable parts Think of it like a folder on your computer that holds similar files together.
Sub-system: A Sub-system is a self-contained functional unit of the entire system It performs specific functions and often interacts with other sub-systems. Sub-systems can contain packages, classes, components, interfaces, etc, Think of it like a mini-system within a bigger system
· Differences Between Package and Sub-system.
	Feature
	Package
	Sub-system

	Definition
	Logical grouping of related elements
	A functional module that performs specific tasks

	Purpose
	Organize the model to reduce complexity
	Represent a functional part of the system

	Used In
	UML diagrams (class, use case) for organizing
	UML component diagrams, system architecture

	Contains
	Classes, use cases, components, other packages
	Packages, components, interfaces, classes

	Execution
	Not independently executable
	Can be independently developed, tested, and deployed

	Example
	A package named Reports containing report classes
	A sub-system called Inventory System handling stock management

	Symbol
	Folder icon in UML
	Rectangle with <<subsystem>> label

	Focus
	Mainly about organization
	Mainly about functionality and modularization

Q15. What is camel-casing and explain where it will be used.
Ans:
Camel casing is a simple and effective way to name things (like variables, functions, and fields) by combining words and capitalizing the first letter of each word (except the first one). It's widely used in programming and BA documentation to maintain clarity and standardization.
· Variable Names (in programming)
· Function or Method Names
· Object or Property Names
· Database Column Names
· Naming Fields in UML or BA Documents In class diagrams or BRD:
Attribute: User Email
Operation: Get User Details ()

Q16. Illustrate Development server and what are the accesses does business analyst has?
Ans:
A Development Server is a working environment used by software developers to build, test, and integrate new features before they are moved to testing (UAT) or production (live system).
· Purpose of Development Server
1. Safe Environment – Test features without affecting live data
2. Collaboration – Developers, testers, and BAs can work together
3. Pre-UAT Check – Ensures features are ready before user testing
4. Bug Fixing – Initial place to check and fix any issues
· Access Given to a Business Analyst (BA) on Development Server.
	Access Type
	Description
	Example

	Read-Only Access
	BA can view the application to check features and flows
	Open the developed screen to match BRD

	Test Access
	BA can perform basic test scenarios
	Check if “Add to Cart” works as described

	Bug Reporting Access
	BA can log issues in tools like JIRA
	Raise a bug like "Price mismatch on invoice"

	Requirement Validation
	BA verifies whether features meet the documented requirements
	Compare SRS/BRD to actual development

	Demo Access
	BA can access to conduct demos for stakeholders
	Show how the new login page works

	Limited DB Access
	Sometimes BA is given view-only DB access to verify data
	View customer table entries (Read-only)

Q17. What is Data Mapping.
Ans:
Data Mapping is the process of matching and linking data from one source to another so that the information stays correct, meaningful, and usable during transfer, integration, or transformation.
Why is Data Mapping Important.
	Reason
	Description

	Data Migration
	When shifting data from an old system to a new one

	Data Integration
	When combining data from different systems (e.g., ERP + CRM)

	Data Transformation
	When converting data into another format (e.g., for reporting)

	Avoiding Errors
	Ensures correct data goes to the right field

 Types of Data Mapping.
	Type
	Description
	Example

	One-to-One
	One source field map to one target field
	Name – CustomerName

	One-to-Many
	One field map to multiple fields
	FullName-FirstName, LastName

	Many-to-One
	Multiple fields combined into one
	Area, City- Location

	Derived Mapping
	Data is calculated
	Price Quantity- TotalAmount

Q18. What is API. Explain how you would use API integration in the case of your application Date format is dd-mm-yyyy and it is accepting some data from Other Application from US whose Date Format is mm-dd-yyyy.
Ans:
API stands for Application Programming Interface; it acts like a messenger between two systems. For example, when your app needs customer data from another app, it sends a request via API, and the other app sends back the response.
· Types of API Methods.
	Method
	Meaning
	Example

	GET
	To fetch data
	Get customer details

	POST
	To send new data
	Add a new order

	PUT
	To update data
	Change customer phone number

	DELETE
	To remove data
	Delete a product

image1.emf
Payment Gateway

Select Payment

Method

Debitt/Credit Card

Wallets/UPI

Cash

Net Banking

Payment Request

Server

Customer

*

*

*

*

*

*

*

*

oleObject1.bin
System

Payment Gateway

Select Payment
Method

Debitt/Credit Card

Wallets/UPI

Cash

Net Banking

Payment Request

Server

Customer

*

*

*

*

*

*

*

*

image2.png
Custorner Bank
Customer ID Bank Name
Narme Branch Code
|Address Location
|Account Detail's

Payment Account
Payment ID [Account Nurmber
[Amount \Account Type
Date Holder Narme

et Barking

Sonice Authertication

[Fund Transfer
Authertication
Transaction History

Username.
Password/OTP

Transaction

Transaction ID
|Amount
Timestarmp
Recipient

image3.emf
Customer Payment gateway

Online Store

Bank

Request for Payment

Redirect to Payment Gateway

Bnak Login

Authentication

Payment Confirmation

Confirm Payment()

Deduct Amount

oleObject2.bin
Customer

Online Store

Payment gateway

Bank

Request for Payment

Redirect to Payment Gateway

Bnak Login

Authentication

Payment Confirmation

Confirm Payment()

Deduct Amount

