CAPSTONE PROJECT 3
PART 2


Q1. What is the difference between Brainstorming and JAD Sessions?
ANSWER
	Aspect
	Brainstorming
	JAD Sessions

	Purpose / Goal
	To generate many ideas, explore possibilities, creative thinking.
	To gather precise requirements, reach consensus, clarify scope, align stakeholders

	Structure
	Less structured; free flowing. Rules to encourage idea flow (no criticism, encourage wild ideas etc.).
	Highly structured: agenda, roles (facilitator, scribe etc.), planned activities, possibly models/prototypes

	Participants
	Anyone with relevant insight or creativity. Could be small or larger groups; may not need all stakeholders.
	Includes all relevant stakeholders: business users, technical people, analysts. Everyone whose input is crucial to requirements.

	Duration & Preparation
	Short; little advanced preparation needed. Mainly defining the problem, inviting participants.
	More time needed for preparation (materials, agenda, participants alignment), longer sessions (could be multiple days).

	Output
	A large list of ideas, concepts. Many are raw, need filtering.
	Documented requirements, consensus-based decisions, defined scope or prototypes, specification artifacts.

	When best used
	Creative phases; exploring possibilities; early ideation.
	Requirement gathering / elicitation; design phases; when accuracy and stakeholder alignment are critical.



Q 2. Why Document Analysis is one of the compulsory techniques we use in a Project?
ANSWER
Document Analysis is a requirements-elicitation and requirements-validation technique in which we collect, review, and interpret existing documentation in order to derive or confirm requirements, understand existing systems / processes, uncover constraints, assumptions, or business rules, identify gaps, etc. 
Documents may include existing system specifications, user manuals, operating procedures, policy documents, contracts, process maps, data dictionaries, previous project reports, legal / regulatory documents, etc.
Compulsory Aspects
· Establishing the baseline (As-Is situation):
To know what already exists — current processes, systems, data, business rules, constraints. Without this, we risk basing wer solution on wrong assumptions, duplicating work, ignoring legacy constraints, etc. Document analysis helps we see what things are, often before interviewing people.
· Uncovering implicit knowledge:
Stakeholders frequently omit or forget to mention things they assume everyone knows. Many policies, rules, constraints are only documented (or better documented) but not always verbalized. Document analysis surfaces those hidden or assumed requirements.
· Clarifying legal/regulatory/compliance requirements:
Many projects must comply with external or internal policies, laws, contracts. These requirements are often embedded in documents. Missing them can lead to serious issues (non-compliance, fines, rework). Document analysis helps collect these constraints.
· Reducing redundant effort & avoiding reinventing the wheel:
By studying what is already in place, we can avoid duplicating existing functionality or repeating past mistakes. This saves time and cost. Also helps in setting realistic expectations for what must change vs what stays.
· Supporting preparation for other elicitation techniques:
When we do interviews, workshops, etc., having already reviewed documents helps we draft better questions, spot inconsistencies, focus sessions more sharply. It essentially makes we more efficient.
· Improving accuracy, reducing ambiguity:


Requirements (functional, non-functional, business rules) drawn from documents tend to be more precise. Helps reduce misunderstandings among stakeholders. Clarity leads to better design, better testability, etc.
· Traceability & change management:
Document sources can serve as origin (source) for requirements. If change requests come later, we can trace what decision or document led to a requirement. That is useful for maintaining consistency and for impact analysis.
· Risk mitigation:
Many risks in projects come from missing requirements, missed constraints, scope creep, ambiguous expectations. Since document analysis helps find many of those early on, it reduces risk of surprises later.
Q3. In Which Context we will use Reverse Engineering?
ANSWER
Reverse engineering is the process of analysing an existing system, product, software, hardware, etc., to understand its structure, function, architecture, or behaviour — especially when documentation is missing, incomplete, or non-existent.
Context in which we use Reverse Engineering are as follows:
· Outdated / Legacy Systems with Poor or No Documentation
· When the original design documents, source code comments, user manuals etc. are missing, incomplete, or no longer reflect the real system. 
· To recover business logic, rules, or calculation logic that stakeholders can no longer explain. 
· System Maintenance, Bug Fixing, or Performance Optimization
· To locate where bugs are, especially “mystery” bugs that occur due to interactions or dependencies that are not well understood. 
· To find performance bottlenecks or suboptimal modules when system behaviour is slower than expected. 
· Interoperability / Integration
· When we need to integrate with external or third-party systems whose internal design or API is undocumented or proprietary. Reverse engineering can help discover data formats, communication protocols, constraints etc. 
· Also used when migrating data from one system to another: understanding how data is stored, processed, what transformations are happening, so the migration preserves semantics. 
· Modernization / System Migration
· When porting or rewriting an old system to a new platform or entirely new architecture. We must understand how the old system works in order to replicate or improve functionality. 
· To decide what can be reused, what needs redesigning, what constraints must be preserved.
· Security / Forensic Analysis
· Analysing malware, viruses, or malicious code to understand how they work (attack vectors, payloads, hide-behaviours) so as to build countermeasures. 
· Auditing systems to detect vulnerabilities, code obfuscation, back doors, unintended side-effects.
· Hardware / Device and Firmware Understanding
· Disassembling physical devices or reviewing firmware when sources are proprietary or unavailable, e.g. to replicate parts, or to ensure compatibility. 
· Reverse engineering embedded systems (controllers, IoT devices etc.) to understand how they behave, especially when needing upgrades, patches or modifications.
· Legal / Compliance / Reverse Legal Necessity
· When we need to verify that a system complies with regulatory / contractual obligations, especially when documentation claims do not match actual behaviour. Reverse engineering can help show what is really enforced. 
· In some cases, reverse engineering is used for “clean room” compatibility or interoperability so that a new implementation adheres to existing standards without infringing intellectual property.
· Product Analysis, Emulation, or Competitive Benchmarking
· Studying competitor products (hardware or software) to understand their features, strengths, weaknesses (“how did they do that?”). Not necessarily to copy, but to learn and possibly do better. 
· Emulating proprietary functionality in a compatible system or environment.
· Data Structure / Model Reconstruction
· When database schemas, file formats, or data storage structures are undocumented, reverse engineering helps rebuild them. For example, figuring out how data is organized in legacy files or databases. 
Q4. What is the difference between Brainstorming and Focus Groups?
ANSWER
	Aspects
	Brainstorming
	Focus Groups

	Primary Purpose
	Generate a large number of ideas, encourage creativity and exploring possibilities
	Gather reactions, feedback, opinions or attitudes about an existing idea, product, concept or process.

	Trigger / When used
	When there is a problem or opportunity and many potential solutions are needed. Early in the design or planning phase.
	When we have something fairly developed (prototype, features, concept, process) and we want to validate, refine, or understand user / stakeholder perceptions.

	Structure & Formality
	Less formal. Rules may be minimal (e.g. “no criticism during idea generation”), free flow of ideas.
	More structured. Guided by a discussion plan or script. Moderator leads, with prepared questions, possibly probes for deeper insight.

	Participants
	Usually internal team members, experts, people who can contribute solution-ideas. May not be the end users.
	Usually specific target users, customers, or people affected by the subject. The group is selected to represent certain demographics or usage profiles.

	Number of Participants
	Often smaller (≈ 6-8 people) to keep idea flow manageable and avoid chaos.
	Slightly larger (≈ 6-12), depending on how many user perspectives or variation we want

	Knowledge Required
	Prior in-depth knowledge of the domain is not always necessary; creative thinking can come even from less-experienced participants.
	Participants often need some background (either experience with product/issue or being representative users) so their feedback is meaningful.

	Moderator / Facilitator Role
	May be simpler: set the prompt, maintain encouraging atmosphere, capture ideas. Less probing.
	A skilled moderator is needed: to guide discussion, ask follow-ups, ensure all voices heard, avoid bias.

	Output / Result
	A broad list of ideas, possible directions, many options (some may be wild or impractical). The aim is quantity and variety.
	Feedback on what works, what doesn’t; insights into user attitudes, preferences; themes & opinions; possible improvements.

	Analysis and Use of Output
	Ideas are then filtered, evaluated, selected, refined in subsequent sessions or processes
	Insights are usually analysed qualitatively (e.g. grouped by themes), used to adjust designs, plans, messaging, features etc.

	Time, Cost & Preparation
	Generally quicker to arrange; less heavy prep required. Lower cost if internal.
	More preparation (screening participants, setting up discussion guide, possibly incentives), and analysis takes more effort. Moderate to higher cost.



Q5. Observation Technique – Explain both Active and Passive approaches 
ANSWER
Observation (also called “job shadowing,” “user observation,” or “social analysis”) means watching how users or stakeholders perform tasks in their real work environment, in order to understand actual behaviour, workflows, tools, environment, interactions, difficulties, etc. It helps uncover actual practices (not just what people say they do). 
Observation can be done in various modes; two important ones are Passive and Active. Sometimes there are also hybrid or explanatory variants. 
· Passive Observation
Passive observation is an approach in which the analyst or observer watches users performing their regular tasks without interrupting or interacting with them during the process. The observer remains in the background, taking detailed notes (or using recording tools, if permitted) of what happens — the sequence of steps, tools used, workarounds, environmental conditions, timing, interruptions, interactions among people — but does not ask questions or intervene while the work is being done. Because the watcher remains “invisible” or minimally intrusive, passive observation often reveals realistic, natural behaviour that might not show up in interviews or active sessions. It’s especially useful at the start of a project when we want to understand the “as-is” state, or when the daily workflow is sensitive to interruptions (e.g. in medical, manufacturing or customer-facing operations). The major limitation is that we may see what people do, but not why; many decisions, shortcuts, or frustrations are internal and go unstated. Also, users may behave differently simply because they know they are being observed (“observer effect”), or rare/unusual situations may not be captured in short observation periods. 
· Active Observation
Active observation goes a step further: the observer still watches users doing their tasks, but also interacts with them during the observation. This means asking clarifying questions in the moment (“Why did we do that?”, “What prompted this decision?”, “What are we thinking when we use this tool?”), potentially even participating in or attempting parts of the task (if feasible and permissible) to gain hands-on insight. This approach helps uncover tacit knowledge, motivations, reasons for workarounds, edge-cases and assumptions that users may not articulate in interviews after the fact. It is helpful when tasks are complex, decision points are frequent, or when existing documentation and user accounts are inconsistent. The drawback is that interaction can interrupt workflow, change how users behave, or influence what they do (they might “perform better” or differently because of the active questions). Also, because it is more intrusive, it generally requires more preparation: permissions, clear communication that the observer may interject, perhaps even training of the observer so they don’t bias what is seen.
Q6. How do we conduct the Requirements Workshop 
ANSWER
A requirements workshop is a facilitated, structured meeting (or series of meetings) involving key stakeholders, subject matter experts (SMEs), users, business analysts, and technical team members. Its goal is to elicit, refine, validate, and prioritize requirements in a collaborative manner, building consensus and clarity. It often uses techniques like brainstorming, storyboarding, role-playing, use-cases, etc.
Steps to Conduct the Workshop
1. Planning / Preparation:
• Define Objectives & Scope: 
Be clear about what the workshop aims to accomplish (e.g. list of functional requirements, prioritization, resolving conflicts, defining non-functional requirements). 
• Identify Participants / Stakeholders: 
Include those who have knowledge, decision power, and will be impacted: business owners, end-users, SMEs, technical leads, perhaps compliance / legal if relevant. 
• Set the Agenda: 
Decide what topics to cover, time allocations, breaks, order of sessions (e.g. context setting → elicitation → validation → prioritization) so that workshop is focused. 
• Prepare Pre-Workshop Material: 
Distribute background documents (business case, current system / “as-is” process, any existing requirements, user personas, etc.), so people arrive prepared. 
• Logistics & Tools: 
Book venue (or virtual platform), arrange materials (whiteboards, sticky notes, flipcharts, projector, virtual tools), arrange time, ensure comfortable environment. 
• Assign Roles: 
Facilitator / moderator, scribe / note-taker, timekeeper, someone to handle technical set-up, etc. Clarify roles so that during the workshop things proceed smoothly.
2. Conducting the Workshop:
• Kick-off / Icebreaker: 
Introduce participants, remind of objectives and agenda. Possibly a small icebreaker to help people feel comfortable. 
• Set Ground Rules: 
For e.g., everyone participates, respect, no criticism during idea generation, stay on topic, time limits, decision-making approach. 
• Context Setting / Current State Review: 
Review business goals, “as-is” situation, what is known, constraints, any existing requirements. Helps level-set and surface assumptions. 
• Elicitation Techniques: 
Use structured techniques like brainstorming, use cases, user stories, storyboarding, role-playing, scenarios etc. The choice depends on project context. 
• Facilitation: 
Facilitator ensures equal participation, manages dominant voices, draws out quieter people, keeps time, ensures focus, manages conflict. 
• Prioritization / Consensus Building: 
Once many requirements are collected, use prioritization techniques (e.g. MoSCoW, voting, pairwise comparison) to decide what’s most important. 
• Validation / Clarification in Workshop: 
As requirements are captured, validate them with the group to reduce misunderstandings. Clarify ambiguities. 
• Wrapping Up: 
Summarise what has been achieved (requirements, decisions, action items), ensure everyone agrees on next steps, any follow-ups, who owns what.
3. Post-Workshop Follow-Up:
• Consolidate & Document Results: 
Scribe / BA compiles all requirements, decisions, prioritized lists, assumptions, open issues; formalize it into requirement artifacts. 
• Review & Validate with Stakeholders: 
Send out summaries to participants and possibly absent stakeholders for feedback & confirmation. 
• Assign Action Items: 
Any research, prototyping, follow-ups, clarifications must have owners & deadlines. 
• Manage Changes / Traceability: 
Set up process for tracking changes to requirements; trace them to business goals, stakeholder inputs. 
• Reflect on Workshop Process: 
What went well, what did not; gather feedback to improve future workshops.
Q7. In which context, Interview Technique can be conducted by a BA? How may approaches are there in conducting Interviews? (Structured – Unstructured) Explain them. Explain the difference between Open Ended Questions and Closed ended Questions 
ANSWER
Where or in which contexts a BA Uses the Interview Technique
A BA uses interviews in many situations during a project. Some common contexts:
· Eliciting requirements — When gathering functional and non-functional requirements from stakeholders: users, managers, customers, subject matter experts.
· Understanding business processes — To learn how current (“as-is”) processes work, decision points, hand-offs, pain points.
· Clarifying ambiguous or conflicting requirements — When there are contradictions, assumptions, or unclear areas among stakeholders; interviews help resolve.
· Discovering user needs, motivations, expectations — Especially tacit or unspoken needs that aren't documented elsewhere.
· Stakeholder analysis — Understanding who cares about what, their priorities, constraints, concerns.
· Validating and refining — After initial requirements are drafted, interview stakeholders to validate assumptions, refine details, check feasibility.
· Gathering domain knowledge — When dealing with new domains, new technologies, or regulatory/ legal issues where expert knowledge exists but not in documents.
Approaches to Conducting Interviews: Structured vs. Unstructured
Structured Interview
· In a structured interview, the BA prepares a set of predetermined questions in advance. The questions are the same for all stakeholders being interviewed (or at least for similar stakeholder roles). The order might also be fixed.
· The questions are often more specific, often with closed-ended elements (but can include some open-ended) to ensure consistency, comparability, and completeness.
· Advantages:
· Easier to compare responses across different stakeholders.
· Helps ensure coverage of all needed topics.
· Less risk of missing something because questions were overlooked.
· More efficient in time and easier to analyze systematically.
· Disadvantages:
· Less flexibility to explore unexpected issues that come up.
· May feel rigid; stakeholders might not bring up things outside the preprepared questions.
· Might not surface deeper motivations or tacit knowledge.
Unstructured Interview
· In unstructured interviews, there is minimal predefinition of questions. The BA might have topics in mind, perhaps a few guiding questions, but much of the flow depends on what stakeholders say. The interviewer probes, follows leads, asks clarifying questions dynamically.
· These interviews tend to be more conversational, flexible, responsive to stakeholder input.
· Advantages:
· Can uncover richer, deeper insights: motivations, workarounds, problems not initially thought of.
· Better for domains with high uncertainty or novelty where you don’t know all the relevant questions up front.
· Builds rapport, may make stakeholders more open.
· Disadvantages:
· Harder to ensure coverage of all required areas.
· Analysis becomes more complex: responses vary greatly, making comparisons and aggregation harder.
· More dependent on interviewer skill (to guide without leading, to probe appropriately, to stay focused).

Q8. Questionnaire Technique – Where we will use? Give one example 
ANSWER
The Questionnaire technique is a requirements-elicitation method where we prepare a set of questions (open-ended, closed, scale/rating, multiple choice etc.) and send them to stakeholders or users so they can fill in their responses. This helps gather information about needs, preferences, constraints etc. It is especially useful in certain contexts. I will explain where we would use it and then give an example.
Where and when to use Questionnaires
· When stakeholders are many or geographically dispersed
If we have a large user base, customers, or stakeholders who are spread across different locations, time zones etc., a questionnaire is efficient. It avoids trying to bring everyone together in interviews or workshops.
· When we need to collect quantitative as well as qualitative data
Because questionnaires allow closed questions (yes/no, rating scales, multiple choice) and open questions, we can get both measurable data (e.g. “How often do we use feature A?”) and subjective feedback (e.g. “What do we dislike about feature B?”). 
· When stakeholder time is limited
Some people may not have time for long interviews or workshops. Questionnaires let them reply at their convenience. It is less intrusive. 
· When cost or logistics make direct interaction difficult
If travel is expensive, or scheduling many interviews is impractical, distributing questionnaires (paper-based or electronic) is cheaper and faster. 
· For getting baseline data or verifying assumptions across many users
Often, after initial interviews or observations, one may use questionnaires to validate or prioritize among many requirements, to see which features or expectations are common. 
· When anonymity might encourage honesty
Sometimes stakeholders/users may be more open if their responses are anonymous (or perceived so). Questionnaires can allow that more easily than face-to-face techniques.
Example:
Suppose a company is developing a new mobile banking app. They have multiple stakeholder groups: existing customers, prospective customers, customer support staff, compliance/legal department, etc. Many customers are spread across cities, rural and urban, some with limited access, some tech-savvy, others less so.
How a Questionnaire could be used
· The business analyst Team designs a questionnaire with sections like:
1. User Demographics — age group, city/rural, frequency of using banking apps.
2. Current App / Bank Service Usage — which banking features do we use most? (e.g. money transfers, bill pay, check deposit etc.), how many times per week.
3. Pain Points / Frustrations — What tasks do we find difficult in the current app or service? (open-ended)
4. Desired Features — Which of the following features would we want in a future app? (multiple choice)
5. Non-functional requirements — Rate importance of speed, security, offline mode, ease of use etc. (Likert scale)
6. Prioritization — If we had to pick three most important features, which would we choose?
· The questionnaire is distributed via email, app notification, social media; both printed versions (for some local branches) and digital forms (for wider user base).
· The responses are analysed:
. Quantitative data (ratings, usage frequencies) is summarized (e.g. % of users for each feature, average importance ratings).
. Qualitative open-ended responses are coded or grouped to find common themes (e.g. many users complain about login complexity, or poor performance in low-bandwidth areas).
· Based on the results, the team can decide which features to prioritize, refine functional & non-functional requirements, decide which user groups to focus on, possibly identify usability needs (for example, if many users are “non-tech-savvy”, then UI simplicity becomes high priority).
This example shows how questionnaire technique can help in:
· Reaching many users spread geographically.
· Getting measurable data to support decisions.
· Capturing both what users do now, what they want, and what they expect.
Q9. How to Sort the Requirements – Where we will use? Give one example 
ANSWER
“Sorting requirements” means organizing or arranging the elicited requirements in a meaningful order or classification so that we can manage them more easily, understand dependencies, and decide implementation order. It is closely tied to prioritisation, but “sorting” often refers to structuring or classifying rather than purely ranking by importance.
Where or When to Use Sorting of Requirements
· During analysis or backlog grooming — once we have gathered many requirements, you sort them (group, classify) to make them manageable (by module, by priority class, functional vs non-functional, by stakeholder, etc.).
· Before development planning — to organize which, requirements go into which release, sprint, or version.
· To manage complexity and dependencies — sorting helps identify dependencies (i.e., requirement A must come before B), conflicting sets, and grouping related ones together.
· To communicate structure — sorted requirements are easier to present to stakeholders, so everyone understands how they are organized (e.g., “core vs optional”, “by modules”).
· To support prioritization and trade-offs — once sorted into logical groups, stakeholders can more easily compare within a group and decide trade-offs.
· When many requirements exist — sorting helps prevent chaos; you subdivide, classify, cluster, filter.
For instance, one common sorting technique is grouping by Moscow categories (Must / Should / Could / Won’t) — this is both classification (sorting) and prioritisation combined. 
Another is ranking (ordinal order) within categories or across all requirements. 
We may also sort by modules / components (e.g., UI requirements, backend requirements), stakeholder, risk level, or cost/effort estimate.
Example
Project: An e-commerce website redesign.
Suppose after elicitation, we have collected 20 requirements (features, performance constraints, usability items, etc.).
1. By functional vs non-functional
· Functional: “Add to cart”, “User login via social media”, “Order tracking”, “Wishlist” etc.
· Non-functional: “Page load time < 2 seconds”, “Mobile responsiveness”, “SSL encryption”, “Accessibility compliance” etc.
2. Within each class, further sort by priority or Moscow
· Must have (core): “Login”, “Product listing”, “Add to cart”, “Checkout”
· Should have: “Wishlist”, “Product recommendations”
· Could have: “Social share of product”, “User reviews import from external site”
· Won’t have (for this version): “Augmented reality try-on” option
3. Sort by dependency
· E.g., “Checkout payment gateway integration” depends on “Login & user account subsystem” — so that must be scheduled earlier.
· “Product recommendations” might depend on having user history / analytics subsystem.
4. Sort by effort or complexity 
· For example, within Must-haves, “Login” might be simple (low effort), whereas “Checkout with multiple payment modes + wallet integration” might be high effort. we may further order inside Must-haves by effort so we can plan incremental releases.
Once sorted, our sorted list gives a clear structure: which requirements are functional vs non, which are core vs optional, what needs to come first due to dependency, and which ones are more complex. We can then use this sorted set to plan releases, set sprints, communicate to developers and stakeholders, and manage trade-offs efficiently.

Q10. Prioritise the Requirements – –Where we will use? Give one example 
ANSWER
Prioritisation of requirements is the process of ranking, ordering or categorising requirements based on criteria such as business value, risk, cost, time, stakeholder urgency, dependencies etc., in order to decide which ones to implement first, which can be deferred, or which are optional. It helps focus resources on what delivers most value, manage scope, and make trade-offs clear.
When and where to use Prioritisation
We use requirement prioritisation in many contexts, especially:
· When there are more requirements than can be delivered in a given budget, time frame, or resource capacity.
· When deadlines are fixed (time-boxed releases), so we have to choose what features / functions must go in vs what can wait.
· When stakeholders have different interests and conflicting requirements; prioritisation helps resolve which are most important.
· When we are defining releases / sprints / phases — deciding what goes into the first iteration vs later ones.
· When we need to manage scope creep: new requirements may come in, and we must decide which new ones replace existing ones or get deferred.
· When cost, effort or technical complexity of requirements differ widely, so it’s inefficient to treat all equally.
· In Agile / incremental development, to maintain a backlog that reflects what is most valuable now, vs what can wait.
Some common techniques for prioritisation include Moscow method, Weighted Scoring, Kano model, voting, pairwise comparison, cost-value matrices, etc
Example
Project: Developing a mobile banking app
Scenario: 
The product team has a list of ~25 possible features (requirements) for version 1.0 of the app. However, the time available for the first release is limited (say 3 months), resources (developers, testers) are limited, and certain technical tasks take longer. The stakeholders include the bank’s business owners, compliance/legal, IT/security, and actual users.
How prioritisation is applied:
1. The team holds a workshop with stakeholders. They list all 25 requirements, including functional ones (login, money transfer, bill payments, notifications, biometric login, etc.) and non-functional ones (security standards, performance, responsiveness, offline mode etc.).
2. They apply the Moscow method:
· Must-haves: Basic login, account balance view, secure money transfer, security / data encryption, compliance with regulations.
· Should-haves: Notifications on transactions, biometric login, smoother navigation.
· Could-haves: Budget tracking, user personalization options.
· Won’t-haves (for version 1): Social media sharing, advanced investment tools.
3. For more granularity, they use a Weighted Scoring technique. For each requirement, stakeholders assign scores based on criteria like business value, cost / effort, risk, and urgency. For example, secure money transfer might get very high business value, high cost but also high risk; a feature like budget tracking might have moderate value and moderate cost. The combined score determines its position in the release plan.
4. Based on prioritisation, a “Minimum Viable Product” (MVP) is defined containing all Must-haves plus some Should-haves that scored highest. The app is built accordingly, with the Could-haves scheduled for later releases.
Q11. Weekly status reporting – How we will drive?
ANSWER

