Question 1 - Use Case Diagram

A Use Case Diagram is a simple flow picture that shows how different users (like customers, admins,
or staff) interact with a system. It helps us understand who does what in the system and what
features they use. This diagram is very important in projects because it gives a clear view of the
system's functions from the user's side.

Payment Gateway Use Case Diagram

Payment Intiated

Customer Data BaseAdmin

Question 2 - Derive Boundary Classes, Controller classes, Entity Classes.

In any software system, we divide the work into three types of classes to keep things clean and easy
to manage. These are Boundary Class, Controller Class, and Entity Class.

Boundary Class: This class connects users to the system. It takes user inputs and shows results back
to them. It acts like the front desk person in a shop, talking to customers but not making business
decisions.

Example: In Gold & Silver shopping app, the Login Page, Product Page, or Payment Screen are
boundary classes. They take input from the customer and show information like item price or
payment status.

Controller Class: This class works like a manager. It takes the input from the boundary class,
understands what to do, and then talks to the entity class to perform the real work.

Example: When the user clicks "Buy Now", the controller checks if the user is logged in, if the item is
in stock, and then asks the entity class to process the order.

Entity Class: This class handles the main business logic and data. It saves, updates, and keeps the
records safe, like a cashier or accountant who manages bills and balances.

Example: Entity classes manage details like user profile, product info, order history, and payment
records in the database.

@ J | C
Boundary Entity Control
object object ohject

Each class plays an important role to keep the system clean and working properly. This way, the
system becomes easy to maintain and change later.

Question 3 - Place These Classes on 3-Tier Architecture

In software development, we organize the system into three main layers called 3-Tier Architecture.
Each layer has its own role, and the classes we discussed earlier (Boundary, Controller, Entity) fit into
these layers.

1. Presentation Tier (User Interface Layer): This layer interacts directly with the user. It collects
inputs and shows outputs using screens like webpages or mobile apps. It includes Boundary Classes
because they handle what the user sees and does.

Example: When a customer browses the gold items on the app or enters login details, it’s all handled
in the presentation tier.

2. Business Logic Tier (Middle Layer): This layer handles all the logic and decisions. It connects the
presentation tier with the database. Controller Classes are part of this layer, because they decide
what to do based on user actions and business rules.

Example: When a user clicks “Place Order”, this layer checks stock, calculates the price, verifies
payment, etc., before proceeding.

3. Data Tier (Storage Layer): This layer is where all the data is saved and managed, like product
details, user profiles, order history, etc. Entity Classes belong here because they deal with storing
and retrieving real data.

Example: If a user orders a silver bracelet, this layer stores the order details and updates the stock in
the database.

By placing each class in its right tier, the system becomes well-organized, easier to update, and more
secure.

Question 3 - Explain Domain Model for Customer making payment through Net Banking

A Domain Model shows how different parts of a system are connected in a simple visual format. It’s
like showing the major tables or objects, such as customer, bank, account, payment, and transaction,
along with their basic details. This model helps everyone understand how the information flows
when a customer makes an online payment.

Customer

ID Name Details Address Account No

EMP1234 M.Eswar BA Hyderabad 0001234

Bank

Bank Name Bank Location Branch Code

Equitas Bank Ameerpet EQT5678

Payment

Payment ID Payment Amount Payment Date Status

CHP18906 10,000 24/05/2025 Completed

Account

Account Number Account Type Balance Account Holder
Name

EQT180654 Saving X5,00,000 Malladi Eswar

Net Banking Service

Authentication Fund Transfer Transaction History Account
Management
Done Done 10,000 Done

Authentication

User Name

Password

OTP

Eswar

EswarNet1234

5782

Transaction

Transaction ID

Reception Details Amount

TimeStamp

CHP18906

BHR6742

X10,000

24/04/2025

Question 5 - Draw a sequence diagram for payment done by Customer Net Banking

A sequence diagram is used in software development to show how different parts of a system talk to
each other step by step over time. It helps us understand the flow of events that happen when a
user performs a particular task - like making an online payment.

STEP1:
Customer Initiation

Net Banking Payment Sequence Diagram

STEP2:
Net Banking Processing

Payment

STEP 1:
Customer Initiation

Question 6 - Explain Conceptual Model for this Case

Initiated

STEP3:
Bank Outcome

Validate
—_
Customer Details

Payment Data

Process Account
Deduction

Disburse Payment to
Reciplent’s Account

_—

Verify Payment Status
(Success/Failure)

B ——

Acknowledge Payment Receipt

STEP 2:
Net Banking Processing

STEP 3:
Bank Outcome

A Conceptual Model is a simple way to explain the system at a high level. It helps everyone
understand the system, what it does, who uses it, and how things are connected. For this Net
Banking Payment project, this model shows how users, banks, and supporting features work

together.

Key Concepts in the Conceptual Model:

1. Customer: This represents the person using Net Banking, like Eswar who logs in to pay for a
product using his online banking account.

2. Service Awareness: The customer should know what services are available in the Net
Banking system like Fund Transfer, Transaction History, or Bill Payments.

3. Privacy of Data: The system must make sure that the customer's personal details and
banking information are protected. Only authorized users should access the data.

4. Technology Awareness: The customer should be familiar with basic online usage like
entering OTPs, passwords, and using secure login methods to use Net Banking without
confusion.

5. Trust and Support: The customer must feel that the bank is secure and responsive. A strong
customer service and smooth payment experience builds trust in the system.

6. Bank: The bank acts as a service provider that manages user accounts, handles payments,
verifies login, and maintains transaction records securely.

7. Online Information: Customers should get timely and accurate updates through messages
or dashboards about their payment status, account balance, or transaction receipts.

8. Security and Privacy: The bank must use proper security features like firewalls, encryption,
and authentication to ensure no unauthorized access or data leaks during transactions.

CUSTOMER TECHNOLOGY

FAMILIARITY

" NET BANKING

ﬁﬁpmw\g}l é

SECURITY & ONLINE
INFORMATION

TRUST & SUPPORT

—_

Question 7 - What is MVC architecture? Explain MVC rules to derive classes from use case
diagram and guidelines to place classes in 3-tier architecture

MVC (Model-View-Controller) is a widely used architectural pattern in software design. It
helps in organizing code neatly by dividing the application into three major components
Model, View, and Controller.

Model (Entity Classes): These are the classes that represent the real-world data. They are
responsible for storing and processing the data.

Example: Customer, Order, Product, Payment are all Model classes because they contain the
actual business data like gold weight, jewellery price, order date, customer address, etc. These
classes are placed in the Database Layer.

View (Boundary Classes): This part is responsible for interacting with the user. It collects inputs
from the customer and displays outputs.

Example: Screens like Login Form, Product Display Page, Order Confirmation Page are boundary
classes. If a customer logs in to buy a gold necklace, the interface he sees and interacts with is part
of the View. These are placed in the Application Layer.

Controller (Controller Classes): These classes act like a bridge between the View and Model. They
receive inputs from the user (via View), process the logic, and update the data (via Model).

Example: Login Controller, Payment Controller, Order Controller manage what happens after the
user clicks "Place Order" or "Pay Now". These controllers handle the flow of data and decision-
making. Placed in the Application Layer or Business Logic Layer based on reuse and complexity.

Rules to Derive Classes from Use Case Diagram:

1. One Actor with One Use Case - One Boundary Class
Example: Customer using "Add to Cart"

2. Two Actors with One Use Case - Two Boundary Classes
Example: Admin and Manufacturer using “Manage Products”

3. Each Use Case - One Controller Class
Example: “Checkout” use case

4. Each Actor -> One Entity Class
Example: Customer, Manufacturer, Admin become Entity classes

Guidelines to Place Classes in 3-Tier Architecture:

Layer Class Type Example in Jewellery E-
Commerce
Database Layer Entity Classes Customer, Order, Product,
Payment

Application Layer

Primary Boundary Classes &
Controllers

Login Form, Product Search
Page, Checkout Controller

Business Logic Layer

Reusable Controllers /
Governing Forms

Inventory Controller, Report
Controller (used by multiple
actors)

Question 8 - Explain BA contributions in project (Waterfall Model - all Stages)

In a Jewellery E-Commerce project (where customers buy gold and silver jewellery online), a
Business Analyst (BA) plays a key role from start to end. Below is how a BA contributes in each stage
of the Waterfall Model:

1. Pre-Project Phase

e |first do a SWOT Analysis to understand if an online jewellery store is feasible (e.g.,
strength: high gold demand, weakness: trust in online quality).

e | perform a GAP Analysis to check what’s missing in the current jewellery market (e.g., most
stores don’t offer home delivery).

e lalso identify the Root Cause of problems (e.g., why customers avoid online buying — maybe
due to lack of real images or certification).

2. Planning Phase

e | do a Stakeholder Analysis (e.g., owners, gold vendors, delivery team).

e | go through the project plan shared by the PM to understand the timelines and scope.

e | prepare a BA strategy — like how | will gather requirements, how often I’ll interact with the
client, etc.

3. Requirement Gathering Phase

e linteract with the client (say, a jewellery brand owner) to understand what features they
want: product catalogue, virtual try-on, online payments.

e | use Brainstorming sessions to get inputs from marketing and delivery teams too.

e | then organize the requirements and use MoSCoW to prioritize them (e.g., “Must have” —
online payments, “Could have” — 3D jewellery viewer).

e lvalidate all requirements using SMART and FURPS techniques to ensure they are clear and
achievable.

4. Requirement Analysis Phase

e | create UML diagrams (like Use Case and Activity) to visually represent how customers will
use the website.

e | draft the SRS (Software Requirement Specification) document with clear business and
technical needs.

e Once the client confirms, | take a sign-off.

e | prepare the RTM (Requirement Traceability Matrix) to map each requirement with its test
cases later.

5. Design Phase

e | help the QA team in writing Test Cases (e.g., check if the invoice is generated after
jewellery payment).

| explain the solution design to the client, like how the cart, wish list, and payment gateway
will work.

| start working on the End-User Manual, which will guide users (like shop managers or
customer care teams) on how to use the system.

6. Coding Phase

| organize JAD (Joint Application Development) sessions between developers and business
users to avoid confusion.

| clarify any doubts the development team has (e.g., “Should COD be available for gold
orders?”).

| prepare the client for UAT (User Acceptance Testing) by briefing them about the new
features.

7. Testing Phase

| request test data from the client (like sample product listings, dummy customer accounts).
| support the QA team in testing the workflows (like checkout, order tracking).
Once the client is happy, | take a sign-off on the Client Project Acceptance Form.

8. Deployment & Implementation Phase

| share the final RTM with the PM or Client to track that all requirements are delivered.

| plan training sessions for users like jewellery sales agents, warehouse staff, etc.

| document lessons learned (e.g., “Next time, involve jewellery designers early to avoid last-
minute changes in product info”).

Question 9 - What is conflict management? Explain using Thomas — Kilmann technique

Conflict Management is the process of identifying, addressing, and resolving disputes that arise
between stakeholders during the project lifecycle. For example In a Jewellery E-Commerce project,
conflicts may occur between the marketing team and developers regarding feature release dates or
between the client and Ul designers over the design layout of a product page.

To manage such situations, the Thomas—Kilmann Conflict Mode Instrument (TKI) offers five
practical techniques based on two factors: assertiveness and cooperativeness. These help team
members handle conflicts based on the situation.

Five Conflict Handling Modes in Thomas—Kilmann Technique:

1.

Competing: High assertiveness, Low cooperativeness
Example: When the Product Owner insists on launching a "Diwali Jewellery Sale" feature
within a strict deadline, even if the development team needs more time.

Accommodating: Low assertiveness, High cooperativeness
Example: A BA agrees to a Ul design change requested by the client, even if it's minor and
not part of the original scope, just to maintain good relations.

3. Avoiding: Low assertiveness, Low cooperativeness
Example: The development team postpones discussions on less critical wish list module
issues to focus on core payment integration during a sprint.

4. Collaborating: High assertiveness, High cooperativeness
Example: The QA (Quality Assurance) and developer teams work together to solve a critical
bug in the "Add to Cart" function during peak festival sales season, ensuring both speed and
quality.

5. Compromising: Moderate assertiveness and cooperativeness
Example: The client wants a “Try Jewellery Virtually” feature, but due to time limits, the
team agrees to launch a basic version now and enhance it in the next sprint.

5 Steps for Conflict Management:

1. Identify the Conflict:
Ex: A delay in feature delivery raises concerns among the client.
2. Discuss the Details:
BA arranges a call between the technical team and the client to understand both sides.
3. Agree on the Root Problem:
They find that unclear requirement details caused repeated rework.
4. Explore Possible Solutions:
Propose additional grooming sessions before every sprint.
5. Negotiate and Finalize:
All agree to involve the client early in each sprint to reduce miscommunication.

Question 10 - List down the reasons for project failure
Project failures can happen due to the following reasons Example - In Jewellery E-Commerce project:

Improper Requirement Gathering:

If the BA doesn’t collect detailed requirements like payment gateway options for high-value
jewellery or image zoom for product view, the system might miss critical features, leading to
customer dissatisfaction.

Frequent Requirement Changes:
When the client keeps changing the design or flow of the product catalogue or checkout process
after development has started, it delays timelines and increases rework.

Lack of User Involvement:
If actual users like jewellery buyers or customer care staff aren’t involved during UAT, important
practical issues (like price fluctuations or live gold rate integration) may go unnoticed.

Poor Executive Support:
If senior management does not approve budgets on time for secure hosting or does not provide
feedback on product releases, it affects planning and delivery.

Unrealistic Expectations:
Assuming the app will be ready within 2 weeks without understanding the effort needed for features
like product recommendation, secure transactions, and real-time inventory sync leads to failure.

Improper Planning:

Not scheduling tasks like festive season load testing (e.g., for Diwali sales) or failing to assign roles
clearly among the QA, developer, and content upload teams results in confusion and missed
deadlines.

Question 11 - List the Challenges faced in projects for BA
Several challenges arise during the project lifecycle Example - In Jewellery E-Commerce project:

Lack of Proper Training:

Sometimes, team members may not fully understand how jewellery-specific platforms work (e.g.,
purity filters, gold rate integration). The BA has to train the internal team and sometimes even the
client on the basics of the system.

Difficulty in Getting Requirement Sign-Off:
Clients may hesitate to approve requirements for modules like online gold loan eligibility or custom
jewellery order tracking. Delays in sign-offs slow down development.

Frequent Requirement Changes:

The client may initially request a simple "Gold Purchase" module, then later add EMI or dynamic
pricing based on weight. Managing these changes while sticking to the timeline becomes
challenging.

Coordination Between Developers and Testers:

A BA often needs to clarify confusion between developers and testers. For instance, the developer
may build a gold cart with GST inclusive, but the tester checks it against outdated requirements. BAs
must keep both teams aligned.

Client Meetings and Communication Gaps:

Scheduling meetings with jewellery brand owners, who may not be tech-savvy, and explaining
system flows like secured payment or BIS Hallmark certificate uploads is often time-consuming and
requires patience.

Status Reporting and Tracking Progress:
The BA is responsible for preparing weekly updates, but when issues like inventory mismatch or
vendor portal delay occur, it becomes tough to justify pending tasks to stakeholders.

Driving UAT Completion:
Getting business users to test the site, especially busy jewellery store owners, is tough. The BA must
coordinate closely, ensure test cases are shared, and follow up for feedback and final sign-off.

Handling People and Conflict:

Conflicts may arise when developers complain about unclear logic (e.g., real-time gold rate updates),
or when clients demand last-minute Ul changes. A BA needs strong communication and people skills
to manage expectations.

Question 12 - Write about Document Naming Standards

It helps all team members, including clients, easily identify, track, and refer to the correct documents
across different phases of the project. A proper document naming format looks like this:

[Project ID] [Document Type] V[Version]D[Year].ext
Breaking it down:

e Project ID: A unique code for the project (example: JEWO001 for Jewellery Project 1)
e Document Type: Specifies what the document is about (e.g., BRD, SRS, RTM)

e V[Version]: Version number (e.g., V1.0 for the first version)

e D[Year]: Year of creation (e.g., D2025)

e ext: File extension (e.g., .docx, .xlsx)

Example: If the Business Requirement Document for a gold jewellery platform is created in 2025
with version 1.0, the file name would be: JEW001_BRD_V1.0D2025.docx

This system ensures that everyone on the team, including developers, QA, testers, and
stakeholders, is on the same page and uses the latest version of the correct document without
confusion.

Question 13 - What are the Do’s and Don’ts of a Business Analyst?
Below are the key do’s and don’ts based on Example - In Jewellery E-Commerce project:
Do’s:

e Always listen completely before responding: When a client, like a jewellery store owner,
explains their issues with the online ordering system, let them finish completely before
asking questions.

e Clarify, don’t assume: Never make assumptions about how features like "gold purity filter"
or "engraving options" work. Ask detailed questions and validate with the client.

e Stay neutral and gather facts: Approach every meeting without bias or prior conclusions.
For example, if one feature worked for a silver vendor, it doesn’t mean it will work the same
for a diamond vendor.

e Involve SMEs (Subject Matter Experts) when needed: If the client mentions complex tax
rules for gold or gemstone pricing, consult with domain experts rather than assuming.

e Capture unique problems: Understand that each vendor’s needs are different. A shop in
Hyderabad might want multi-language support, while one in Delhi may need dynamic
pricing, respect these variations.

e Encourage client participation: Push for active input from stakeholders during feature
demos, especially for modules like payment gateways or product upload flows.

e Prioritize requirements: Focus on business-critical features like “secure payment” or “trust
indicators for certification” over cosmetic Ul feedback during early phases.

Don’ts:

e Never interrupt the client: If the jeweller is describing an issue with return policies for
customized rings, don’t jump in midway with assumptions or quick solutions.

e Avoid GUI (Graphical User Interface) imagination: Don’t promise the layout or screen
design upfront unless validated by the UX/UI team. Instead, focus on what the client wants
the system to do.

o Don’t rely on ‘By Default’ logic: For instance, don’t assume that all products should display
“offers” by default. Confirm it with the client.

e Don't offer pre-built solutions too early: Even if a past project had a similar return module,
wait to hear the client's full problem before suggesting it as a solution.

¢ Don’t generalize or ignore details: Two similar shops might have different packaging needs,
respect and capture those details.

¢ Never say NO to the client: Even if a feature seems out of scope like “Al-based jewellery
suggestions,” acknowledge the request and discuss its feasibility politely.

Question 14 - Write the difference between packages and sub-systems

We organize the system into smaller and larger units to keep it manageable and scalable. Two key
ways of doing this are using Packages and Sub-systems. Both help in organizing the code, but they
serve different purposes.

Package: A package is like a small folder in the system that focuses on one specific feature. It groups
together related classes or functions.

Example: We may have a “Payment Package” that includes all classes related to payment processing
(like Net Banking, Credit Card, UPI, Wallet). It is small and focused, so it handles only payment-
related logic.

Sub-system: A sub-system is a bigger block that includes multiple packages. It represents a major
part of the system with its own functionality and boundaries.

Example: An “Order Management Sub-system” could include packages for Cart, Checkout, Payment,
and Order Tracking. It is larger and covers an entire business function. It manages higher-level
dependencies, like how Cart talks to Payment and then to Order.

Question 15 - What is camel-casing and explain where it will be used

Camel-casing is a naming style used in programming where each word in a compound name starts
with a capital letter, except for the first word. There are no spaces or special characters used. This
method makes long variable names easier to read and understand.

Example: Let’s say we are naming variables or functions in our application. Instead of writing Add
new product to cart, we write it as addNewProductToCart. Similarly, View Customer Orders
becomes viewCustomerOrders.

This style is useful when we write code for functions like:

o checkGoldPriceToday()
e applyDiscountOnCheckout()
e generatelnvoiceForOrder()

Why We Use Camel-Casing:

e Helps developers easily read and identify parts of a function or variable.

e Brings uniformity in naming across the code base.

e Makes it easier to collaborate in teams because everyone follows the same standard.

e Reduces confusion between words in a name (like productnamequantity vs
productNameQuantity).

Camel-casing is mostly used in coding, especially while writing:

e Variable names
e Function names
e Class names

Question 16 - lllustrate Development server and what are the accesses does business
analyst has?

A Development Server is used for testing the system in real time before it reaches the end-user. It
mirrors the live system but is safe for trial runs, debugging, and corrections.

As a Business Analyst, my role in the development server is mostly observer and reviewer:

e | usually have Read-Only Access, which means | can see how the system behaves but |
cannot make changes.

e Sometimes, | have Collaborative Access, where | can test flows like jewellery product
listings, order tracking, or invoice generation with the QA team.

e | may also be given Limited Configuration Access, like updating test data for customer
names, prices, or order scenarios, but without changing the core code.

This limited access ensures that while I’'m closely monitoring how the features work, | don’t
accidentally make any change that could affect the developers’ work. It helps in raising bugs and
validating features against the requirements in a controlled and safe environment.

Question 17 - What is Data Mapping?

Data mapping is the process of matching data from one system or format to another. It is mainly
used when two systems need to talk to each other, especially during system integration, data
migration, or report generation.

For example: When we are connecting the online shopping application with the payment gateway,
we must ensure that data like Customer Name, Order ID, Payment Amount, Payment Status, etc.
Are correctly matched and transferred from one system to another without any mismatch.

Here’s how it works:

e First, we identify what fields are present in the source system (e.g., the shopping cart).

e Then we check what fields are expected in the destination system (e.g., payment processor
or invoice generator).

o We then map them so that the data flows correctly. For Example, the "Order ID" in the
shopping cart matches with the "Transaction ID" in the payment gateway.

e If some formats are different (like date format or currency), we also define how to convert
them properly.

This process ensures that customers’ payment data, invoices, shipping addresses, and other order-
related information are smoothly transferred between systems with zero confusion.

Data mapping helps in maintaining accuracy, avoids errors, and ensures a smooth flow of data
between modules.

Question 18 - What is API? Explain how you would use API integration in the case of your
application Date format is dd-mm-yyyy and it is accepting some data from Other
Application from US whose Date Format is mm-dd-yyyy

An API (Application Programming Interface) is like a bridge that allows two different software
systems to talk to each other. It helps in exchanging data between systems in a structured and
secure way, even if those systems are built using different technologies or formats.

Suppose Jewellery E-Commerce application stores order and delivery dates in dd-mm-yyyy format
(like 25-07-2025), but we’re receiving some data from an international logistics partner based in the

US, where dates are formatted as mm-dd-yyyy (like 07-25-2025).

To handle this using APl integration, here’s how we proceed:

Step 1 — Establish API Communication
We integrate our jewellery app with the external system (e.g., courier service) using APIs so that
both systems can exchange information like order status and delivery dates.

Step 2 — Convert Outgoing Dates

When sending data (like shipment requests or invoices) from our system to theirs, we take our local
date format (dd-mm-yyyy) and convert it to their format (mm-dd-yyyy). Example: “25-07-2025"
becomes “07-25-2025".

Step 3 — Parse Incoming Dates

When we receive order updates or delivery confirmations from their system in mm-dd-yyyy, we
convert it back to our format before saving it into our database or showing it on the user screen.
Example: “07-30-2025” is parsed to “30-07-2025".

Step 4 — Validate the Dates
We also put checks to make sure the converted dates are real and correct, like not accepting 31-07-
2025 or wrong leap year data.

This helps avoid confusion in delivery schedules and ensures our users, vendors, and system all work
on the same timeline.

