 Waterfall Project1 – Part -2

Document 1- Business case document template
· Why is this project initiated?
The CodeBuddy project is initiated to address a common challenge faced by students at Pimpri Chinchwad College of Engineering — many students across various departments struggle with writing accurate code and understanding the underlying programming logic.
Key reasons for initiating this project include:
· A significant number of students, even in Computer Science and IT streams, lack confidence in independent coding.
· Students from non-computer streams (such as Electronics, Mechanical, and AIML) also need coding skills to complete their academic projects but lack proper guidance.
· Existing teaching methods focus on theory, with limited practical hands-on coding practice.
· There is no integrated, college-wide platform where students can learn and practice coding in a structured way, at their own pace.
· Lack of regular practice and feedback impacts students’ ability to complete projects and prepare for placement opportunities.
The main goal of the project is to provide students with an easy-to-use virtual platform where they can practice coding, learn concepts, and gradually build their programming skills — leading to improved academic performance and better career readiness.

· What are the current problems?
Several challenges and gaps have been identified in the current coding education and practice environment at Pimpri Chinchwad College of Engineering:
· Many students struggle to apply theoretical programming concepts in practical scenarios.
· A large number of students lack the confidence and skills to write correct and optimized code independently.
· Non-Computer Science/IT students (from Electronics, Mechanical, AIML, etc.) also need to develop coding skills for their project work, but they do not have enough structured resources or guidance.
· Current practical sessions are limited in time and scope; there is no dedicated platform for self-paced practice.
· Existing online platforms are not tailored to the college syllabus, and students face difficulty selecting appropriate resources.
· Faculty members have no way to monitor individual student progress in coding skills.
· Without sufficient practice, students struggle to complete academic projects and face challenges during placement interviews.
These problems highlight the need for a centralized, structured, and easy-to-use coding practice platform, which will help students across all departments improve their programming skills and confidence.

· With this project how many problems could be solved?
By implementing CodeBuddy, several key problems faced by students and faculty can be effectively addressed:
 1. Lack of practical coding practice
· Students will have access to a dedicated platform for practicing coding anytime, beyond classroom hours.
 2. Difficulty in understanding programming logic
· CodeBuddy will offer tutorials, problem statements, and step-by-step guidance to help students build logical thinking.
 3. Limited support for non-CS/IT students
· Students from Electronics, Mechanical, AIML, and other streams can now learn coding at their own pace, aligned to their project needs.
 4. Low confidence in writing correct code
· Small coding exercises, progressive learning modules, and regular practice will boost students' coding confidence.
 5. Lack of structured learning resources
· The platform will provide a curated set of coding tutorials, videos, tools, and libraries in one place — avoiding the need to search externally.
6. Faculty unable to track student progress
· Faculty will be able to monitor student progress through the platform’s reporting and tracking features.
7. Limited preparation for academic projects & placements
· Continuous coding practice will prepare students better for academic projects and technical interviews.

· What are the resources required?
1. People (Human Resources)
· Business Analyst (BA): To gather requirements, coordinate between stakeholders, and ensure business needs are met. (Rashmi Asole)
· Project Sponsor: To provide overall project support and budget approval. (Dr. Satish Borkar, HoD – CSE Dept)
· Project Manager: To plan, monitor, and manage the project timeline and deliverables. (Mr. Vandanam, APT IT Solutions)
· Technical Architect: To design the system architecture and technical components. (Mr. Karthik)
· Software Developers (3 members): To develop the web, desktop, and mobile versions of CodeBuddy.
· UI/UX Designer: To design an intuitive and user-friendly interface.
· QA/Test Engineers : To perform thorough testing and ensure the platform’s quality.
· IT Support Engineer: To assist with deployment and ongoing maintenance.
2. Technical Resources
· Hardware: Servers or cloud infrastructure to host the platform.
· Development Tools & IDEs: Visual Studio Code, Eclipse, IntelliJ IDEA, Android Studio.
· Version Control: GitHub or GitLab for code management.
· Testing Tools: Selenium, Postman, JUnit, etc.

3. Infrastructure
· College IT Infrastructure: For platform hosting (if on-premise).
· Cloud Services (if used): AWS / Microsoft Azure / Google Cloud for scalability.
· Laptops & Internet: For development, testing, and usage by students and faculty.

4.Budget
· Estimated Total Budget: ₹7,00,000 INR
· Development: ₹4,00,000
· Testing & QA: ₹50,000
· Training & Support: ₹1,00,000
· Hosting & Deployment: ₹50,000
· Contingency: ₹1,00,000

5. Other Resources
· Reference Material: Course syllabus, coding tutorials, programming standards.
· Faculty & Student Time: For feedback during testing and rollout.

· How much organizational change is required to adopt this technology?

The organizational change required to adopt CodeBuddy is minimal to moderate, as the platform is designed to complement existing teaching practices, not replace them.
Minimal Change Areas:
· The platform will be integrated with the existing college infrastructure.
· Students will access CodeBuddy using their existing college login credentials.
· The platform will be used as an additional practice tool, not as a replacement for lectures or labs.
Moderate Change Areas:
· Faculty members will need to encourage students to regularly use CodeBuddy and monitor their progress.
· Practical sessions may be slightly adjusted to include dedicated time for using the platform.
· Faculty training will be required to familiarize teachers with the features and tracking tools available.
· Some policies may need to be created to include CodeBuddy usage in grading or internal assessment criteria (optional).
No Major Change Required:
· The core curriculum and subject content do not need to be changed.
· Faculty roles and responsibilities remain the same — CodeBuddy serves as an enhancement tool.

· Time frame to recover ROI?

The estimated Return on Investment (ROI) for the CodeBuddy platform can be recovered within 1 to 2 academic years.

How?
· The initial investment (~₹7,00,000 INR) covers development, testing, hosting, and training.
· Once deployed, the platform can be used by multiple batches of students across all departments.
· There will be minimal recurring costs — mainly for maintenance and minor updates.
Benefits Start Immediately:
· Improved coding skills and student confidence.
· Higher quality academic projects.
· Better placement outcomes — increased value for students and the institution.
· Long-term usage by multiple student batches further improves the ROI.
Summary:
 Expected ROI Recovery Time: 1–2 years (after regular use by at least 2 student batches).
 After this, the platform continues to provide value with very low ongoing cost.

· How to identify Stakeholders?

To identify stakeholders, we first understood the project scope, then listed all people or teams impacted or involved, and categorized them into primary, secondary, and external stakeholders. For CodeBuddy, this includes students, faculty, HoDs, IT support, and the development team."

· Understand the Project Scope
· First, understand the project’s purpose, goals, and expected outcomes.
· In CodeBuddy’s case: improving coding skills of students through a virtual platform.
· Brainstorm and List All Possible Groups
· Ask: Who will use this platform?
· Who will be involved in building or supporting it?
· Who will approve or fund it?
· Categorize Stakeholders
· Primary Stakeholders (directly impacted):
· Students (end users)
· Faculty members (who monitor progress and guide usage)
· Secondary Stakeholders (indirectly impacted):
· HoDs and College Management (approve and fund project)
· IT Department (provide support and infrastructure)
· Placement Cell (benefit from improved student coding skills)
· External Stakeholders:
· Software Development Team (APT IT Solutions)
· Project Sponsor (HoD CSE or Principal)
 Validate the List
· Review the stakeholder list with the Project Sponsor and Project Manager to ensure no key stakeholder is missed.

Document 2: BA Strategy
Write BA approach strategy(As a Business Analyst, what are the steps that you would need to follow to complete a project-What elicitation techniques to apply, How to do stakeholder analysis RACI / ILS, What Documents to Write, What process to follow to Sign off on the Documents, How to take Approvals from the Client, What Communication Channels to establish and implement, How to Handle the Change Requests,  How to update the progress of the project to the Stakeholders, How to take signoff on the UAT - Client Project Acceptance Form.)

1. Elicitation Techniques to Apply
To gather accurate requirements from stakeholders, I will apply a combination of the following techniques:
· Workshops (with faculty and students to understand needs)
· Interviews (with HoD, Project Sponsor, Faculty)
· Questionnaires & Surveys (for students to collect expectations)
· Document Analysis (existing syllabus, current tools)
· Brainstorming Sessions (with project team and faculty)

2. How to do Stakeholder Analysis
· Identify Stakeholders: Using project charter and initial meetings.
· Categorize Stakeholders: Primary, Secondary, External.
· Define Interests & Influence: Who is impacted and how much influence they have.
· Document Stakeholder Matrix.
· Keep Stakeholders Engaged through regular communication.

3. RACI / ILS Matrix
· Prepare a RACI matrix to define:
· R = Responsible (Developers, QA)
· A = Accountable (Project Manager, Sponsor)
· C = Consulted (Faculty, BA)
· I = Informed (Students, IT Support, Placement Cell)
· Helps ensure clarity of roles and accountability.

4. Documents to Write
· Business Case Document
· Requirements Specification Document (BRD / SRS)
· Stakeholder Analysis Document
· Process Flow Diagrams / Use Cases
· Test Scenarios & UAT Criteria
· Change Request Document
· Meeting Minutes & Status Reports
· Final Project Sign-Off Document

5. Process to Follow to Sign Off on Documents
· Prepare draft document → circulate to key stakeholders.
· Conduct review meeting / walkthrough.
· Collect feedback and make revisions.
· Final approval and sign-off from:
· Project Sponsor
· Client (HoD/Principal)
· Project Manager

6. How to Take Approvals from the Client
· Conduct formal meetings / presentations.
· Share documents and give review period.
· Address client feedback and update documents.
· Collect written approval through email or signed forms.

7. Communication Channels to Establish & Implement
· Email: Formal communication and document sharing.
· Meetings: Weekly project progress meetings.
· Project Management Tool (if applicable) or shared folder.
· Status Reports: Weekly / bi-weekly to client and team.
· Instant Messaging (optional) for quick coordination.

8. How to Handle Change Requests
· All change requests captured through formal Change Request Form.
· Assess impact on scope, timeline, cost.
· Conduct Change Control Board (CCB) meeting (Project Manager, BA, Sponsor).
· Approve / reject changes.
· Update scope documents and communicate the change.

9. How to Update Progress to Stakeholders
· Send Weekly Progress Reports (Status, Risks, Issues, Next Steps).
· Conduct Monthly Review Meetings.
· Share updated Project Plan / Milestones.
· Log key updates in Project Tracker / Dashboard.

10. How to Take Sign-off on UAT (Client Project Acceptance Form)
· Conduct UAT Testing with client representatives.
· Record test results and feedback.
· Fix any defects identified during UAT.
· Prepare Client Project Acceptance Form.
· Conduct final review with client.
· Obtain formal sign-off on the form — this is the official project closure.

Document 3- Functional Specifications

	Project Name
	CodeBuddy — Virtual Coding Lab Platform

	Customer Name
	Pimpri Chinchwad College of Engineering
(Computer Science & IT Departments)

	Project Version
	Version 1.0
(Initial Release)

	Project Sponsor
	Dr. Sunita Kulkarni HoD, Computer Science Department

	Project Manager
	Mr. Vandanam — Project Manager, APT IT Solutions

	Project Initiation Date
	15th June 2025

Functional Requirement specifications:

	Req ID
	Req Name
	Requirement Description
	Priority

	FR001
	Login
	User (student / faculty) should be able to login securely using college credentials.
	High

	FR002
	User Registration
	New users should be able to register and create an account if not auto-created.
	High

	FR003
	Code Editor
	Provide an online code editor supporting multiple programming languages (C, C++, Java, .Net, Python ...etc).
	High

	FR004
	Tutorials
	User should view Tutorials in Text & Video format.
	High

	FR005
	Problem Statements Bank
	Users should be able to browse and select coding problems based on difficulty level.
	High

	FR006
	Progress Tracking
	System should track the coding progress of each user and display reports.
	Medium

	FR007
	Admin Panel
	Admin (faculty) should be able to upload new tutorials and problem sets.
	Medium

	FR008
	Mobile Compatibility
	Platform should be accessible from both desktop and mobile devices.
	High

	FR009
	 Code Execution
	Students should be able to compile and run code within the platform.
	High

	FR010
	User Feedback Mechanism
	Users should be able to provide feedback about tutorials and problems.
	Low

Document 4- Requirement Traceability Matrix

	Req ID

	Req Name

	Requirement
Description
	Design D1
	Testcase T1
	Design D2
	Test case T2
	UAT

	FR0001
	Login
	User must be able to login to access the application.
	Yes
	Pending
	No
	Yes
	No

	FR0002
	User Registration
	User must be able to register and create an account.
	Yes
	Yes
	Yes
	yes
	Yes

	FR0003
	Code Editor
	Provide online code editor supporting multiple programming languages.
	Yes
	Yes
	No
	Pending
	No

	FR0004
	Tutorial Access
	Users should be able to view tutorials (text and video).
	Yes
	Yes
	No
	No
	No

	FR0005
	Problem Bank
	Users can browse coding problems by difficulty.
	Yes
	Yes
	Yes
	Yes
	Yes

	FR0006
	Progress Track
	System tracks coding progress of users and displays reports.
	Yes
	Pending
	Yes
	Yes
	yes

Document 5- BRD Template- Business Requirement Document.
	Field
	Value

	Project Name
	CodeBuddy-Virtual coding Lab Platform

	Project ID
	CB-2025

	Version ID
	V1.0

	Author
	Rashmi – Business Analyst

	Document Status
	Final

	Date
	1st June 20215

1. Document Revisions

	Date
	Version No
	Document Changes

	05/02/2025
	0.1
	Initial Draft

	10/02/2025
	0.2
	Added Functional Requirements section

	15/02/2025
	0.3
	Added Requirement Traceability Matrix

	20/02/2025
	0.4
	 Added feedback from stakeholders

	25/02/2025
	1.0
	Final version approved by Project Sponsor.

2. Approvals

	Role
	Name
	Title
	Signature
	Date

	Project Sponsor
	Mr. Prakash Kulkarni
	Head of Engineering Dept.
	
	

	Business Owner
	Dr. Meena Sharma
	Principal, PCCOE
	
	

	Project Manager
	Mr. Nikhil Deshmukh
	Project Manager, CodeBuddy
	
	

	System Architect
	Mr. Ravi Patil
	Lead Solution Architect
	
	

	Development Lead
	Ms. Juhi Nair
	Senior Developer
	
	

	User Experience Lead
	Ms. Alka Mehra
	UI/UX Designer
	
	

	Quality Lead
	Mr. Jason Thomas
	QA/Test Manager
	
	

	Content Lead
	Ms. Priya Gokhale
	Content Strategist
	
	

3. RACI Chart for This Document
The RACI chart identifies the persons who need to be contacted whenever changes are made to this document. RACI stands for responsible, accountable, consulted, and informed. These are the main codes that appear in a RACI chart, used here to describe the roles played by team members and stakeholders in the production of the BRD. They are adapted from charts used to assign roles and responsibilities during a project.(RACI Can be made for IT side[Project stakeholder] as mentioned above, apart from that Can also Be made for Client side[Business Stakeholder]).
The following describes the full list of codes used in the table:

* → Authorize (has ultimate signing authority)
 R → Responsible (for creating this document)
A → Accountable (ensures the document’s accuracy)
S → Supports (assists in production)
C → Consulted (provides input or feedback)
 I → Informed (kept informed of changes)

Codes Used in RACI Chart
* Authorize Has ultimate signing authority for any changes to the document.
R -Responsible Responsible for creating this document.
A- Accountable Accountable for accuracy of this document (for example, the project manager)
S -Supports Provides supporting services in the production of this document
C- Consulted Provides input (such as an interviewee). I Informed Must be informed of any changes
	Name
	Position
	*
	R
	A
	S
	C
	I

	Rashmi Asole
	Business Analyst (APT IT SOLUTIONS)
	
	✔
	
	
	✔
	✔

	Mr. Vandanam
	Project Manager (APT IT SOLUTIONS)
	
	
	✔
	✔
	
	✔

	Mr. Karthik
	Delivery Head (APT IT SOLUTIONS)
	✔
	
	
	
	✔
	✔

	Ms. Juhi Nair
	Senior Developer
	
	
	
	✔
	✔
	

	Mr. Jason Thomas
	QA Lead
	
	
	
	✔
	✔
	

	Ms. Alka Mehra
	UI/UX Designer
	
	
	
	✔
	✔
	

	Mr. Prakash Kulkarni
	Project Sponsor (PCCOE)
	✔
	
	
	
	✔
	✔

	Dr. Meena Sharma
	Business Owner (Principal, PCCOE)
	
	
	
	
	
	✔

	Mr. Nikhil Deshmukh
	Client-side Project Manager
	
	
	✔
	
	✔
	✔

	Ms. Priya Gokhale
	Content Lead (Faculty)
	
	
	
	✔
	✔
	

4. Introduction
4.1. Business Goals
The primary goal of the institution (Pimpri Chinchwad College of Engineering - PCCOE) is to enhance the technical competency of students across all engineering departments, especially in the area of programming and software development. By integrating practical learning platforms with regular academics, the college aims to:
· Improve student outcomes in programming-related subjects.
· Increase the employability of students by equipping them with real-world coding skills.
· Foster innovation and self-learning through guided tutorials and coding exercises.
· Support final-year and mini-project work by making programming tools easily accessible.

 Need:
It has been observed by faculty members from the Computer and IT departments that a significant number of students struggle with coding despite understanding theoretical concepts. Some are from non-CS branches (like Electronics, Mechanical, or AIML), and they lack continuous exposure to programming tools and environments.
Hence, there is a strong need to develop a dedicated platform ("CodeBuddy") that:
· Offers coding practice modules integrated with tutorials (video and text-based).
· Supports multi-language environments (like C, C++, Java, Python, .NET, etc.).
· Allows students to code in a sandbox environment using mobile or desktop devices.
· Can be optionally included in lab/practical hours as well as used independently.
This platform aligns with the organization’s broader mission to promote digital learning, technical excellence, and industry-readiness among students.

4.2. Business Objectives
To provide an IT solution for the following goals:
1. Develop a cross-platform application (Android & iOS):
· The software, named CodeBuddy, will be available as a mobile application to ensure students can access the platform anytime, anywhere.
· Allows hands-on coding on mobile devices with basic compiler integration and tutorial access.
2. E-Learning Management System (ELMS):
· A structured learning platform with:
· Text and video tutorials
· Problem statements with guided solutions
· Practice exercises and mini coding challenges
· Personalized learning paths based on student performance.
3. HRMS (Human Resource Management System) - Faculty Use:
· Enables internal faculty members and admins to:
· Track student progress and activity
· Assign coding tasks or assessments
· Manage tutorials and upload learning content
· Generate reports on student engagement
4. Additional Objectives:
· Encourage coding practice across departments (CS, IT, Mechanical, Electronics, AIML).
· Provide downloadable desktop software for offline access.
· Seamless user login and dashboard experience.
· Easy scalability for future features like code competitions, live doubt sessions, and certifications.

4.3 Business Rules
These are the organization’s policies, procedures, and rules that must be followed while using or implementing the CodeBuddy platform.
· Academic & Access Rules
1. Login Credentials:
· Every student and faculty member must log in with their institutional email ID.
· Access will be role-based: students, faculty, and admin.
2. Usage Hours:
· CodeBuddy can be used during designated lab/practical hours and optionally during extra learning hours.
· Maximum daily usage limits may be set for fair resource sharing.
3. Code Submission Policy:
· Students must complete and submit exercises within defined deadlines for academic credit.
· Plagiarism or code-copying from others will result in action as per academic policy.

· Faculty Guidelines
4. Content Upload Policy:
· Faculty can upload only institution-approved tutorial materials.
· All content must follow academic curriculum standards and language policies.
5. Evaluation Standards:
· Code performance and correctness will be auto-evaluated, but faculty can review manually if needed.
· Student progress reports must be generated and stored monthly.

· IT & Data Policies
6. Data Privacy:
· Student data and code submissions are confidential and should not be shared externally without permission.
7. Platform Maintenance:
· Scheduled maintenance and update windows will be informed 24 hours in advance.
· Emergency downtime may occur with prompt communication from the IT admin team.
8. Device Compatibility:
· The mobile app and desktop application must meet the minimum system requirements defined by the IT team.

4.4 Background

The idea for the CodeBuddy project originated from observations made by faculty members at Pimpri Chinchwad College of Engineering (PCCOE), specifically from the Computer Science and Information Technology departments. Over the years, it was observed that a significant number of students struggled with understanding and writing code independently during their engineering journey.
Some students could grasp the logic but lacked the confidence to write full programs, while others showed potential but did not have consistent support or practice opportunities. Final-year projects and lab exams further highlighted these gaps, as many students depended heavily on others for code completion.

To address this issue, the faculty collectively proposed the development of an interactive learning and coding platform that would provide:
· Structured tutorials (text and video format)
· Practice exercises and problem-solving workflows
· Support for multiple programming languages
· Accessibility through mobile and desktop applications
This idea was formally taken forward as a project under the Waterfall model, aiming to build a comprehensive solution that supports both self-paced learning and guided instruction.

4.5 Project Objective
The primary objective of the CodeBuddy project is to design and develop a user-friendly, cross-platform coding support system that enables students—especially those struggling with programming—to build coding skills through guided practice, self-paced learning, and structured tutorials. The product will serve as an educational tool integrated into the college's academic curriculum and provide long-term benefits for both students and faculty.

High-Level Product Descriptions:
· Interactive Coding Platform:
Students can practice and write code directly within the platform with built-in syntax validation, code suggestions, and result feedback.
· Tutorial-Based Learning Modules:
Text-based and video tutorials that cover programming concepts, problem-solving logic, and step-by-step guidance for beginners.
· Practice Problems and Exercises:
A library of categorized problems based on difficulty and subject, enabling students to learn and apply concepts gradually.
· Multi-Platform Support:
Available as both a web-based and mobile application (Android & iOS), allowing access from desktops, laptops, and smartphones.
· Faculty Dashboard:
Faculty can monitor student activity, assign tasks, upload custom tutorials, and generate performance reports.

Alignment to Business Objectives:
· Encourages independent learning and boosts confidence in programming among students from all departments.
· Reduces dependency on external coaching or last-minute project assistance.
· Supports institutional goals of promoting digital learning and improving academic performance.
· Enhances placement preparedness and technical skillsets across engineering disciplines.

4.6 Project Scope
The CodeBuddy project aims to build a comprehensive coding education platform to help students improve their programming skills through structured tutorials, coding exercises, and faculty guidance. The scope outlines the functionalities to be delivered in the current project phase and also clarifies what is excluded.

4.6.1 In-Scope Functionality
The following features are included in the current phase of the project:
· User Registration & Login
· Secure authentication for students and faculty using college credentials.
· Role-Based Access
· Separate user dashboards for students and faculty.
· Interactive Coding Editor
· In-browser code editor with syntax highlighting and error prompts (for languages like C, C++, Java, Python).
· Tutorial Section
· Learning content in the form of text and videos categorized by topic and programming language.
· Problem Statements and Exercises
· Practice problems with increasing difficulty and auto-evaluation features.
· Faculty Upload & Monitoring
· Faculty can upload tutorials, assign exercises, and monitor student progress.
· Progress Reports
· Generation of performance reports per student/module.
· Multi-Platform Access
· Web and mobile application (Android) development.

4.6.2 Out-of-Scope Functionality
The following features are not included in the current version of the project:
· iOS Mobile Application
· iOS version will be considered in future project phases.
· Live Coding Sessions / Chat Support
· Real-time chat with mentors or peer coding is not implemented in this phase.
· Integration with External LMS (Learning Management System)
· No third-party learning system integrations (like Moodle or Canvas).
· AI-Based Code Review
· Automated feedback using AI models for code quality is not in scope currently.
· Offline Access Mode
· Full offline access or code execution without the internet is not supported in this version.

5. Assumptions

These are the conditions we assume to be true during the project planning and execution. If any of these assumptions change, the scope, timeline, or cost of the project may be affected.
· The target users (students and faculty) have access to internet-enabled devices (smartphones/laptops).
· All students have at least basic knowledge of computers and internet usage.
· Faculty members will contribute and upload learning materials (tutorials, exercises).
· The college IT infrastructure will support the hosting of the web application.
· Project sponsors will provide timely approvals and budget release.
· Stakeholders will be available for requirement gathering and feedback sessions.
· All coding exercises and tutorials will follow the standard academic syllabus.
· Android will be the initial supported mobile platform; iOS may be added later.

6. Constraints
These are the limitations that may impact the execution or delivery of the project.
· Time Constraint: The project must be completed within the fixed timeline as defined by the academic schedule.
· Budget Constraint: The budget allocated for software development, testing, and deployment is fixed and cannot exceed the approved limit.
· Technology Constraint: Only open-source or licensed technologies approved by the college may be used.
· Platform Limitation: Mobile app will be developed only for Android in the current phase.
· Team Availability: Limited availability of in-house IT and faculty resources for testing and feedback.

7. Risk Analysis

Following are the various risk categories that could affect the project:
1. Transfer / Accept Strategies
· Transfer: Outsourcing infrastructure hosting to a cloud provider to reduce internal dependency.
· Accept: If minor features are delayed, the project will continue with the core functionality.

2. Technological Risks
· Risk of failure in integrating the mobile and desktop platforms.
· Dependency on third-party tools or libraries that may be deprecated or unsupported.
· Compatibility issues across different Android versions.

3. Skills Risks
· Lack of developers with expertise in educational tech platforms.
· Faculty may not have the time or technical skills to create content or test thoroughly.
· Delay in onboarding skilled testers or backend engineers.

4. Political Risks
· Resistance from departments not part of Computer Science or IT.
· Delay in decision-making or approvals due to administrative hierarchy.
· Shifting college policies that deprioritize the platform mid-development.

5. Business Risks
· If the platform fails to improve student coding performance, it may not be adopted widely.
· The platform may not get enough student engagement to justify ongoing investment.
· Potential reputational risk if the system has critical bugs post-launch.

6. Requirements Risks
· Misunderstanding the needs of non-CS students who want to learn coding.
· Feature expectations may be unclear or evolve later, but the waterfall model limits change.
· Lack of clarity in specifying tutorial content structure and delivery.

7. Other Risks
· Delays due to unplanned academic holidays or exam schedules.
· Infrastructure downtime during deployment.
· Budget cuts due to shifting institutional priorities.

8. Business Process Overview
This section describes the sequential flow of the business process followed during the development of the CodeBuddy project using the Waterfall model. Each phase is completed before the next begins, ensuring structured and disciplined project execution.

1. Requirement Gathering & Analysis
· Meetings conducted with faculty from Computer, IT, and other departments to understand students’ coding challenges.
· Identified key needs: a coding tutorial platform, practical exercises, student tracking.
· Finalized scope, goals, and key modules to be included.

2. System Design
· Architecture finalized: Web-based platform + Android mobile app.
· UI/UX wireframes designed for student and faculty modules.
· Database schema and system integration plan created.

3. Development
· Backend developed using Java/PHP and frontend using HTML/CSS/JavaScript.
· Mobile app built for Android using Android Studio.
· Modules like login, tutorial upload, code editor, and quiz integrated.

4. Testing
· Unit Testing by developers to check individual modules.
· System Testing by QA team to ensure end-to-end functionality.
· User Acceptance Testing (UAT) with selected students and faculty.

5. Deployment
· Application hosted on college servers.
· Android app released via college website for student download.
· Faculty and students trained to use the platform.

6. Maintenance & Support
· Ongoing support planned from college IT team and vendor.
· Feedback mechanisms built in to gather student/faculty input for future updates.
· Scheduled bug fixes and content updates.

8.1. Legacy System (AS-IS)
Overview:

Currently, there is no centralized digital platform available in the college for students to learn and practice coding across departments. Students rely on textbooks, classroom lectures, and third-party platforms, which are often not aligned with their academic syllabus. Faculty members manually distribute problem statements, and students often submit handwritten or word-processed solutions without proper validation or feedback.

Challenges in the Legacy System:

· No structured platform for interactive coding practice.
· Lack of real-time feedback on code submitted.
· Coding exercises are not standardized across departments.
· Manual distribution and collection of assignments.
· Students from non-CS/IT streams (e.g., Mechanical, Electronics) struggle to find appropriate guidance.
· Limited access to learning materials outside the classroom.

Legacy (AS-IS) Process Flow:

Here’s the process currently followed without the CodeBuddy system:

1. Faculty prepares coding assignments manually (Word/PDF).
2. Assignments are shared via email, printed copies, or WhatsApp groups.
3. Students write code in IDEs or on paper and submit screenshots or documents.
4. Faculty evaluates manually, gives feedback during practical sessions.
5. No record of performance or progression is maintained digitally.

[image: Generated image]

8.2. Proposed Recommendations (TO-BE)
The proposed system, CodeBuddy, is designed to address the limitations of the legacy system by offering a modern, accessible, and efficient platform for students and faculty involved in programming education. Below are the recommendations and improvements:
🔹 Process Enhancement
· Shift from manual/offline coding practice to a digital, interactive platform.
· Enable students to practice coding exercises from anywhere using mobile or web devices.
· Automate code evaluation and feedback to reduce dependency on lab instructors.
🔹 User-Friendly Interface
· Simple login system for students and faculty.
· Dashboards to track coding progress, completed modules, and performance.
🔹 Content Accessibility
· All coding tutorials, assignments, and examples are organized by topic and level.
· Faculty can upload new materials regularly and monitor student progress.
🔹 Feedback & Evaluation
· Instant feedback on code submissions helps students self-correct.
· Faculty can review reports and focus on areas where students are struggling.
🔹 Centralized Data and Reporting
· Secure storage of user data, code submissions, and progress reports.
· Admin panel for generating reports on student activity, engagement, and performance trends.
🔹 Scalability and Upgrades
· Designed to scale across departments or batches.
· Future enhancements can include iOS support, AI-based code evaluation, or gamification.

9. Business Requirements
This section captures the core business needs identified from the stakeholders (faculty, students, IT department) during requirement-gathering sessions. The requirements are categorized by priority and functionality, and they include both functional and non-functional aspects. These will guide the development of the CodeBuddy system.

Functional Requirements (What the system should do):-

	Req ID
	Requirement Name
	Description
	Priority

	BR001
	User Registration
	Students and faculty should be able to register with their institutional ID
	High

	BR002
	User Login
	Secure login with username and password
	High

	BR003
	Code Practice Module
	Students should be able to practice code based on small problem statements
	High

	BR004
	Video/Text Tutorials
	Tutorials in text and video format for programming topics
	Medium

	BR005
	Admin Dashboard
	Admin can manage users, upload content, and generate reports
	High

	BR006
	Progress Tracking
	Students and faculty should be able to see performance reports
	High

	BR007
	Feedback System
	The system should give instant feedback on submitted code
	Medium

	BR008
	CodeBuddy Mobile App
	Users can practice coding using the mobile app
	Medium

Non-Functional Requirements (How the system should behave):

	Req ID
	Requirement Name
	Description
	Priority

	NFR001
	Performance
	System must support 100+ users at a time without performance drop
	High

	NFR002
	Usability
	Simple UI with navigation help and multilingual support
	High

	NFR003
	Availability
	System should be available 24x7 with 99% uptime
	High

	NFR004
	Security
	User data must be stored securely and passwords must be encrypted
	High

	NFR005
	Portability
	Application should be accessible on browsers and Android devices
	Medium

	NFR006
	Maintainability
	Codebase must be modular and documented for easy updates
	Medium

10. Appendices
	Acronym
	Full Form

	BA
	Business Analyst

	BRD
	Business Requirements Document

	UI
	User Interface

	UAT
	User Acceptance Testing

	ITS
	Information Technology Services

	IDE
	Integrated Development Environment

	FR
	Functional Requirement

	NFR
	Non-Functional Requirement

	RACI
	Responsible, Accountable, Consulted, Informed

	ROI
	Return on Investment

	RFP
	Request for Proposal

10.2. Glossary of Terms
	Term
	Definition

	Stakeholder
	Any person or group affected by the project (e.g., students, faculty, IT team).

	Legacy System
	The old software or system currently being used before the new solution is implemented.

	Requirement
	A feature or condition that must be met by the system.

	Prototype
	A sample version of the application to test fu
nctionality before final development.

	Traceability Matrix
	A document that links requirements with their corresponding design, development, and testing status.

	Sprint
	A set time period in agile development, but used here to explain iteration in testing under Waterfall.

	Functional Requirement
	Specific actions or tasks the system must be able to perform.

	Non-Functional Requirement
	The system's quality attributes like performance, security, usability, etc.

10.3. Related Documents
	Document Name
	Description

	Business Requirements Document (BRD)
	Detailed requirements for the CodeBuddy project

	Use Case Specification Document
	Use cases defining interactions between users and the system

	Requirement Traceability Matrix
	Maps business and functional requirements to design and testing

	Project Charter
	High-level summary of the project's purpose, goals, and scope

	Functional Specification Document
	Detailed description of each functional feature

	UI Mock-ups and Wireframes
	Screens and navigation design layouts

	Risk Management Document
	Identifies potential risks and their mitigation plans

image1.png
Faculty Designs
Assighment
- J
Shares via
Email/WhatsApp
Student Codes
Separately
- J

-

Submits Screenshot/
PDF

e

Manual Evaluation
by Faculty

. J/

Legacy (AS-IS) Process Flow

