AGILE DOCUMENTS

Document 1: Definition of Done
As Per Agile Extension to the BABOK® Guide v2, Definition of Done is a technique where the team agrees on, and prominently displays, a list of criteria which must be met before a backlog item is considered done.
DOR(Definition Of Ready): when user id done with the development he will pass it to the testers before that developer will check what are the are the areas are covered and ready for the testing is called definition of ready
DOD(Definition of Done):
When user sending user stories to the client you again have checklist what criteria should met in order to say the user stories has been completed
That is the team has to create a well-defined, unambiguous, measurable, agreed-upon, and shared Definition of Done between all team members.

	Criteria Category
	Criteria Description

	Code Completion
	- Code is written, peer-reviewed, and merged to main branch.

	
	- No major bugs or critical issues remain.

	Code Quality
	- Code adheres to agreed coding standards and guidelines.

	
	- Static analysis tools/linting tools show no critical errors.

	Unit Testing
	- Unit tests are written for all new code and pass successfully.

	
	- Minimum 80% test coverage is maintained.

	Integration Testing
	- Service integration tested end-to-end (e.g., MQTT → Kafka → DB → UI).

	
	- Alerts successfully flow through entire pipeline and display correctly.

	UI Functionality
	- Frontend displays data accurately and reflects expected interactions (e.g., Ack/Delete).

	
	- Responsive UI behavior across major screen sizes.

	Security
	- All API endpoints secured with authentication/authorization.

	
	- Sensitive data handling verified.

	Documentation
	- Feature-level documentation updated (Confluence, ReadMe, etc.).

	
	- Code is commented where necessary.

	Validation
	- Business acceptance criteria are met.

	
	- Validated by QA or Product Owner.

	Deployment
	- Feature deployed to staging or QA environment.

	
	- Deployment scripts or CI/CD pipelines updated if needed.

	UX/Accessibility
	- UI reviewed for accessibility and usability (basic keyboard navigation, labels, etc.).

	Alert Specific
	- Alert types match definition/severity logic.

	
	- Templates and notification triggers function as expected.

	Approved by PO
	- Product Owner reviewed and approved the feature/story.

	

	 	
Definition of Done – Alert Management System

	Category
	Criteria Description

	Functionality
	- All 8 core components (MQTT → Kafka → Microservices → UI, Alert Templates, Definitions, Notifications) work end-to-end.

	
	- Admin can view, filter, acknowledge, delete, and configure alerts as per business rules.

	Data Flow Integration
	- MQTT successfully receives and pushes messages when AP issues occur.

	
	- Kafka correctly receives formatted messages from microservice 1.

	
	- Kafka consumer (microservice 2) transforms and persists data into DB.

	UI Verification
	- Alerts are shown with correct metadata (type, severity, timestamp) for last 7 days / 1 month.

	
	- Acknowledge, delete, and filtering by Alert Template function correctly.

	
	- UI displays real-time bell/notification icon for Critical alerts.

	Alert Template
	- Admin can create/update/delete alert templates scoped to organization or site.

	
	- Filtering logic works based on selected templates.

	Alert Definition
	- Every alert type is defined with correct default severity (Critical/Major).

	
	- Admin can override severity level via Definition UI and changes persist.

	Notification System
	- Bell icon/real-time notification triggers for Critical alerts.

	
	- Admin is notified only once per critical alert (no duplication).

	Testing
	- Unit tests cover at least 80% of backend and frontend logic.

	
	- Integration tests confirm data consistency across services (MQTT → Kafka → DB → UI).

	
	- UI automation tested for alert display, template selection, definition editing.

	Security & Roles
	- Admin privileges verified for alert configuration and editing definitions.

	
	- Unauthorized users cannot access sensitive features or endpoints.

	Performance
	- System handles concurrent alerts without significant delay (load-tested).

	
	- UI renders alert history within 2 seconds for 1-month window.

	Documentation
	- Developer documentation updated for microservices and APIs.

	
	- User documentation updated for alert handling, definitions, and templates.

	Deployment
	- Deployed to staging/UAT environments with successful smoke and regression tests.

	
	- CI/CD pipelines updated with necessary scripts for microservices and frontend.

	Acceptance
	- Product Owner/QA has validated acceptance criteria for each module/component.

	Post Conditions
	- Feature flagged or toggle-enabled for phased rollout (if applicable).

Document 2- Product Vision

	Scrum Project
Name:
		

	Access Point Alert Management

	
	

	Venue:
	 Company HQ Meeting Room
	
	

	Date:
	Start time:
	End time:
	Duration:

	Client:
	
	
	

	Stakeholder list:
		- IT Admins

	
	- Network Engineers

	
	- Product Owner

	
	- Support Team

	
	- Security & Compliance Officers

		- IT Admins

	
	- Network Engineers

	
	- Product Owner

	
	- Support Team

	
	- Security &
Compliance
Officers

		- IT Admins

	
	- Network Engineers

	
	- Product Owner

	
	- Support Team

	
	- Security & Compliance
Officers

	
	
	
	

	
	
	
	

	Scrum Team

	Scrum Master:
	 Prem K.
	 Prem K.
	 Prem K.

	Product owner:
	 Anil K.
	 Anil K.
	 Anil K.

	Scrum Developer 1:
	Santhosh S.
	Santhosh S.
	Santhosh S.

	Scrum Developer 2:
	Arjun E.
	Arjun E.
	Arjun E.

	Scrum Developer 3:
	Maheswari K.
	Maheswari K.
	Maheswari K.

	Scrum Developer 4:
	Panneerselvam L.
	Panneerselvam L.
	Panneerselvam L.

	Scrum Developer 5:
	Prabhu R.
	Prabhu R.
	Prabhu R.

[image:]Nurturing Process – Agile Deliverables –V2D2 August 2024

www.coepd.com
nurtureba@coepd.com
CONFIDENTIAL
Page 1 of 9

	Vision: To provide a real-time, intelligent, and customizable alert management system for network administrators, ensuring quick detection, notification, and resolution of issues in Access Points across large enterprise or campus networks.

	Target group

Enterprise IT departments, University Network Admins, Large Office/Corporate Network Teams, Airport Network Managers.

Network administrators, IT support teams, operations engineers, and CIOs responsible for ensuring 24x7 uptime and reliability of WiFi and network access.
	Needs

Difficulty in identifying and reacting to Access Point failures or anomalies in a timely manner; lack of customizable alerts and automation. The system provides real-time detection, intelligent alert filtering, prioritization, and configurable severity levels to ensure focused operational response.
	Product

A backend-driven, microservice-based Alert Management System integrated with MQTT and Kafka, enabling real-time processing of alerts, UI-based alert configuration templates, severity definitions, and visual notifications. The product is unique due to its full-stack integration, admin customization, and real-time scalability. Yes, it is technically feasible due to the use of scalable technologies and standard protocols.
	Value

The product enhances network reliability, reduces downtime, and enables proactive maintenance. Business goals include increased customer satisfaction, reduced incident resolution time (MTTR), and a potential SaaS-based recurring revenue model by offering this as a managed alerting solution for network infrastructure clients. Business model could be subscription-based per site or device.

Document 3: User stories

	[bookmark: _Hlk199500394]User story No: US-001
	Tasks: Build microservice to read MQTT and push to Kafka
	Priority: High

	Value statement:
As a backend service, I want to read from MQTT and push formatted alerts to Kafka topic for further processing.

	BV:100
	CP: 8

	Acceptance criteria:
- MQTT receives alert message when AP fails
- Message format includes alert ID, type, timestamp, severity

	User story No: US-002
	Tasks: Build microservice to read MQTT and push to Kafka
	Priority: High

	Value statement:
As a system, I want to push access point issues to MQTT so that alert data is captured in real-time.

	BV:100
	CP: 5

	Acceptance criteria:
- Microservice subscribes to MQTT and logs messages
- Successfully publishes formatted message to Kafka topic

	User story No: US-003
	Tasks: Implement UI logic to fetch and show alerts
	Priority: Medium

	Value statement:
As a user, I want to view alerts from DB via UI so that I can monitor and manage issues.

	BV:50
	CP: 3

	Acceptance criteria:
- UI fetches and displays alert list
- Alerts are sorted, filterable by date/severity/type

	User story No: US-004
	Tasks: Implement Notification system
	Priority: High

	Value statement:
As an admin, I want to be notified via bell icon for critical alerts so that I can take prompt action.

	BV:100
	CP: 5

	Acceptance criteria:
- Critical alerts trigger bell notification
- Clicking bell shows unread critical alerts
- Alerts marked as read after viewing

	User story No: US-005
	Tasks: Create Alert Display Page
	Priority: High

	Value statement:
As an admin, I want to view alerts by time and severity so that I can acknowledge or delete them.

	BV:100
	CP: 5

	Acceptance criteria:
- Alerts shown with filters: last 7 days, 1 month
- Buttons available: Acknowledge, View, Delete

	User story No: US-006
	Tasks:
	

	Implement UI logic to fetch and show alerts

	Priority: Medium

	Value statement:
As a user, I want to view alerts from DB via UI so that I can monitor and manage issues.

	BV:10
	CP: 3

	Acceptance criteria:
 - UI fetches and displays alert list
- Alerts are sorted, filterable by date/severity/type

			[image:]
[image:]
[image:]

[image:]

	Burn up chart
		[image:]

		Burn Down chart:
		[image:]
		

	Product BurnDown Chart:

		[image:]

Document 4: Agile PO Experience
The Product Owner has a vision of the product keeping the domain/industry experience and the market need.
· Following are the responsibilities of PO in a project
· From this project I have learned how to handle sprint meetings such as

1. Sprint Planning Meeting
Objective: Define the scope of work for the upcoming sprint.
	Area
	Product Owner Responsibility for Alert Management

	Backlog Preparation
	Ensure that user stories related to Alert Ingestion, Alert Display, Alert Definition, Notification, and Alert Templates are well-defined and prioritized.

	Sprint Goal
	Define a clear sprint goal (e.g., “Complete backend pipeline for alert ingestion and display basic alert list on UI”).

	Clarify Requirements
	Provide acceptance criteria for stories like: "As an admin, I want to configure alert templates for my site."

	Define Priorities
	Prioritize critical features like MQTT→Kafka pipeline over less urgent ones like alert template UI.

	Capacity Planning
	Work with Scrum Master to ensure realistic scope based on team's capacity.

 2. Daily Scrum Meeting
Objective: Quick check-in to track progress and surface blockers.
	Area
	Product Owner Participation

	Availability
	Be available to quickly answer questions or clarify requirements from developers.

	Review Progress
	Listen in to hear about progress on Kafka integration, DB schema, or UI template rendering.

	Unblock Issues
	If developer is stuck on alert type definition, you help refine requirement or update backlog.

	Adjust Priorities if Needed
	If there's a blocker in ingestion microservice, reprioritize downstream UI tasks.

 3. Sprint Review Meeting
Objective: Demonstrate what has been built and get feedback.
	Area
	Product Owner Role

	Demo Participation
	Evaluate completed work: e.g., "Show me how MQTT pushes alert and it appears in DB."

	Validate Against Criteria
	Ensure stories like "Admin can delete alerts" meet the acceptance criteria.

	Collect Feedback
	Ask stakeholder (e.g., IT Manager) for input on usability of Alert Display page.

	Decide on Release
	If features like alert templates and definitions are stable, approve them for production release.

 4. Sprint Retrospective Meeting
Objective: Improve team processes and performance.
	Area
	Product Owner Contribution

	Give Feedback
	Provide input on what went well (e.g., fast Kafka implementation) and what didn’t (e.g., unclear alert severity rules).

	Listen to Team
	Understand developers’ pain points, such as ambiguous user stories or frequent requirement changes.

	Actionable Improvements
	Suggest writing sample JSON alert messages to help devs test alert pipeline better next sprint.

 5. Backlog Refinement Meeting
Objective: Continuously groom and prioritize the product backlog.
	Area
	Product Owner Activities

	Decompose Epics
	Break large stories like “Alert Notification System” into smaller stories: UI bell icon, backend notification logic, severity filters.

	Clarify Requirements
	Provide exact rules for alert severity (Major vs Critical) based on alert definitions.

	Estimate Effort
	Collaborate with team to estimate complexity using story points.

	Reprioritize
	Move urgent alert types (e.g., AP offline alert) up in priority based on user feedback.

	Ensure DoR
	Make sure stories are "Ready" with clear acceptance criteria before sprint starts.

	Also, User stories creation and what things will be included in user stories such as
· Story no
· Tasks
· Priority
· Acceptance criteria
· BV & CP value
· In Scrum, a product owner serves as the liaison between multiple areas of an organization. This person communicates with business stakeholders and collaborates closely with Scrum teams to keep all areas of the business informed on a project's development.
· The product owner develops a vision of a product's function and operation, which in turn allows this Scrum team member to define product features and break those features into product backlog items.

1. Market Analysis
	Area
	Analysis

	Target Audience
	IT Network Administrators, Network Engineers, NOC teams in enterprises, universities, airports, etc.

	Market Need
	Need for real-time monitoring, proactive alerts, issue identification and resolution for wireless infrastructure.

	Competitor Landscape
	Competing with enterprise network management tools like Cisco DNA Center, Aruba AirWave, PRTG, etc.

	Opportunity
	Provide a lightweight, modular, scalable solution with customizable alert templates and real-time MQTT/Kafka support.

2. Enterprise Analysis
	Area
	Analysis

	Business Drivers
	Minimize network downtime, increase visibility of network issues, enable quicker response time.

	Stakeholders
	Network Admins, IT Managers, DevOps Teams, CIO/CTO, Security teams.

	Business Objectives
	- Ensure SLA compliance
- Reduce network issue resolution time
- Enable centralized monitoring

	Constraints
	Scalability, real-time processing requirement, data privacy, cross-site compatibility.

 3. Product Vision & Roadmap
	Area
	Analysis

	Vision Statement
	To deliver a scalable and customizable alert management system that enables real-time visibility, prioritization, and resolution of network access point issues.

	Short-Term Goals (0–3 months)
	- Build MQTT → Kafka → DB pipeline
- UI alert display with filtering
- Define alert templates

	Medium-Term Goals (3–6 months)
	- Implement alert severity definition
- Create notification mechanism
- Multi-org/site customization

	Long-Term Goals (6–12 months)
	- Advanced analytics
- Machine learning based alert predictions
- Third-party system integrations (email, Slack, Jira)

 4. Managing Product Features
	Step
	Activity

	Feature Breakdown
	Break alert lifecycle into atomic features: Ingestion, Storage, Display, Filtering, Definition, Notification.

	Prioritization Model
	MoSCoW (Must Have, Should Have, Could Have, Won’t Have) or WSJF (Weighted Shortest Job First)

	Traceability
	Map each feature to business goal or user need for traceability.

	Dependencies
	Align Kafka/DB microservices before UI alert pages or templates.

 5. Managing Product Backlog
	Step
	Activity

	Epic/User Story Creation
	Write epics per major module (e.g., Alert Ingestion, Display, Templates, Notifications). Decompose into user stories with BV/CP and acceptance criteria.

	Backlog Grooming
	Weekly refinement with Scrum Team to ensure clarity, split large stories, remove stale items.

	Prioritization
	Use stakeholder inputs, urgency of monitoring capabilities, and delivery impact to prioritize.

	Definition of Ready/Done
	Clearly define DoR/DoD to ensure development readiness and completion quality.

📈 6. Managing Overall Iteration Progress
	Tool
	Activity

	Sprint Planning
	Select stories that match team capacity and align with iteration goals.

	Daily Scrum Participation
	Collaborate with Scrum Master and developers to clarify requirements, unblock tasks.

	Review & Demo
	Review sprint deliverables, validate against acceptance criteria, collect stakeholder feedback.

	Burndown Tracking
	Monitor velocity and sprint burndown charts to track progress.

	Adjustments
	If scope/priority changes, replan upcoming sprints or adjust backlog priorities.

Document 5: Product and sprint backlog and product and sprint burndown charts

Based on your Alert Management System requirements, here's a complete Product Backlog and Sprint Backlog following agile methodology.

 	Product Backlog
	ID
	User Story
	Priority
	Est. Story Points (SP)
	Acceptance Criteria

	PB-01
	As a system, I want to publish alert messages to MQTT when AP fails
	High
	5
	MQTT receives alert message immediately after an AP failure

	PB-02
	As a backend service, I want to read from MQTT and push formatted data to Kafka
	High
	8
	Correctly formatted data appears in Kafka topic

	PB-03
	As a backend service, I want to convert Kafka data and store alerts in the DB
	High
	8
	Data is persisted in the alerts DB in proper structure

	PB-04
	As a UI, I want to fetch and display alert info from DB
	High
	5
	Alerts are shown on UI with correct filtering

	PB-05
	As an admin, I want to filter alerts by last 7 days / 1 month
	Medium
	3
	Date filters work correctly on alert display page

	PB-06
	As an admin, I want to acknowledge or delete alerts from display
	Medium
	3
	Acknowledge/delete actions reflect in DB

	PB-07
	As an admin, I want to define templates with selected alert types
	High
	5
	Admin can create and save alert templates

	PB-08
	As an admin, I want to assign templates to organization or site level
	Medium
	3
	Template scope is saved and applied appropriately

	PB-09
	As an admin, I want to define the severity of alert types (Major/Critical)
	High
	4
	Alert definitions are editable and stored

	PB-10
	As an admin, I want to change severity of a specific alert type
	Medium
	2
	Updated severity reflects for future alerts

	PB-11
	As an admin, I want to receive bell icon notifications for Critical alerts
	High
	4
	Notification shown in UI on critical alert

	PB-12
	As a QA/Dev, I want to simulate alert generation for system testing
	Low
	2
	Simulated alerts flow through entire pipeline

	
	As a system, I want real-time updates of alerts via websockets or polling
	Medium
	5
	UI gets real-time or near-real-time alert updates

 Sprint Backlog (Sprint 1: Foundation - 2 Weeks)

	Sprint ID
	From Product
Backlog
	Task
	Est. SP
	Owner
	Status

	SB-01
	PB-01
	Implement MQTT publishing on AP failure
	5
	Backend Dev
	To Do

	SB-02
	PB-02
	Consume MQTT, process message, and push to Kafka
	8
	Backend Dev
	To Do

	SB-03
	PB-03
	Consume Kafka and store alert in DB
	8
	Backend Dev
	To Do

	SB-04
	PB-04
	Create API to fetch alerts from DB for UI
	5
	API Dev
	To Do

	SB-05
	PB-12
	Build alert simulation tool for end-to-end testing
	2
	QA/Dev
	To Do

Total Story Points for Sprint 1: 28 (Ideal for a team of 3–5 over a 2-week sprint)

 Sprint Goals
· Establish the core ingestion pipeline: MQTT → Kafka → DB
· Enable end-to-end testing with simulated alerts
· Backend APIs ready for UI integration

Upcoming Sprints (Outline)
Sprint 2: UI, Alert Templates & Filtering
· Implement alert display UI (PB-04, PB-05)
· Filtering logic (last 7 days / 1 month)
· Build alert templates (PB-07, PB-08)
Sprint 3: Definitions, Notifications & Severity
· Alert definition editing (PB-09, PB-10)
· Notification system (PB-11)
· Real-time update support (PB-13)

 		Document 6: Sprint meetings

Meeting Type 1: Sprint Planning meeting

	Date
	 03-06-2025

	Time
	7:00Pm -8:30 PM

	Location
	Meeting Room

	Prepared By
	Sapna K.

	Attendees
	Product Owner
Scrum Master
Development Team Members (Developers, QA, etc.)
UX/UI Designer (if involved in the sprint)
DevOps/Infrastructure Engineer (optional, if deployment or backend setup needed)
Stakeholders or Business Analysts (optional, if deeper clarifications needed)

Agenda Topics

Sprint Planning Meeting Agenda
	Topic
	Presenter
	Time Allotted

	1. Welcome & Objective of Sprint
	Scrum Master
	5 minutes

	2. Review of Product Vision & Goal
	Product Owner
	5 minutes

	3. Review of High-Priority Product Backlog Items
	Product Owner
	10 minutes

	4. Discussion on Sprint Goal
	Team + Product Owner
	10 minutes

	5. Detailed Review of User Stories for Sprint
	Scrum Master / Dev Team
	15 minutes

	6. Technical Discussion & Task Breakdown
	Developers / Tech Lead
	15 minutes

	7. Estimation of User Stories (if not done)
	Dev Team + Scrum Master
	10 minutes

	8. Capacity Planning
	Scrum Master
	5 minutes

	9. Finalizing Sprint Backlog
	Scrum Master + Team
	10 minutes

	10. Q&A, Risks, and Impediments
	Entire Team
	10 minutes

	11. Wrap-up and Action Items
	Scrum Master
	5 minutes

Meeting Type 2: Sprint review meeting

	Date
	 31-05-2025

	Time
	4:30

	Location
	Meeting Room

	Prepared By
	Prem K.

	Attendees
	· Product Owner
· Scrum Master
· Dev Team
· QA/Testing Team
· UX Designer
· Stakeholders (optional)

	Sprint status
	Things to demo
	Quick updates
	What’s next

	- Sprint Duration: 2 weeks
- Sprint Goal: Implement core alert lifecycle from data ingestion to alert display & customization
- Completion: 85% of sprint backlog stories delivered successfully
- Pending: Notification bell integration, edit severity persistence logic
	1. MQTT Integration – Access point pushing alert to MQTT
2. Kafka Pipeline – Microservice reads MQTT → formats → sends to Kafka
3. Kafka Consumer – Backend service stores alert into database
4. Alert Display Page – Admin UI with filters (7 days/30 days, severity, type)
5. Alert Template Config – Admin defines custom alert sets by site/org
6. Definition Page – Admin reclassifies alert severity
7. Data Fetching UI – UI pulls alert data dynamically from DB
	- Backend integration tested with mock alerts
- Kafka throughput optimized for multiple alert types
- UI responsive for alert viewing & filtering
- Alert template feature tested at org and site level
- Issue: Notification bell API partially implemented
	- Complete and deploy Notification bell icon with push alerts for critical events
- Implement acknowledge/delete audit logging for alerts
- Add role-based access control (RBAC) for alert actions
- Performance testing with bulk alert ingestion & UI pagination
- Begin work on email/SMS notifications for critical alerts

 Meeting Type 3: Sprint retrospective meeting

	Date
	

	Time
	3:00PM to 3:30 Pm

	Location
	Meeting Room

	Prepared By
	Sapna K.

	Attendees
	- Senior Stakeholders (if requested to observe improvement)
- Support or Operations Teams (especially for Alert Management domain)

 	
	Agenda
	What Went Well
	What Didn’t Go Well
	Questions
	Reference

	MQTT Data Ingestion
	Successfully integrated MQTT with Access Points for real-time alert pushing
	Lack of proper mocking tool caused delays in MQTT simulation
	Can we add MQTT test harness for quicker dev validation?
	Point 1

	Kafka Integration Pipeline
	Kafka message flow was robust with retry logic
	Initial confusion over topic structure and partitioning
	Should we document Kafka topic schema for all consumers?
	Point 2

	Alert Processing & DB Sync
	Microservice properly parsed and stored alerts in application DB
	Some alerts were malformed due to edge case in parsing
	Do we need a validation layer before DB insert?
	Point 3

	UI Alert Fetching & Display
	Alert UI could fetch and render based on time filters and type
	Performance degraded with large volume of alerts (>10,000)
	Should we implement server-side pagination or lazy loading?
	Point 4 & 6

	Alert Template Configuration
	Admin can now save & apply alert templates per site/org
	UI template form validation needs improvement
	Can we enforce unique template names across org/site combinations?
	Point 5

	Alert Definition & Severity Edit
	Admin can reclassify alert types from Major to Critical
	Updated severity wasn't always reflected immediately in UI
	Can we apply caching or refresh indicators for updated definitions?
	Point 7

	Notification Bell for Criticals
	Basic bell icon functionality demoed
	Real-time push not working consistently due to WebSocket disconnection
	Do we want fallback polling for critical alerts in case of WebSocket failure?
	Point 8

	Team Collaboration & Velocity
	Cross-functional team helped backend and frontend align quickly
	Dependencies between teams sometimes not highlighted early
	Can we improve grooming to surface inter-team dependencies earlier?
	General

Meeting Type 4: Daily Stand-up meeting

	Question
	Name / Role
	Week “X” (from 03-06-2025 to 09-06-2025)
	Monday
	Tuesday
	Wednesday
	Thursday
	Friday
	Saturday
	Sunday

	What did you do yesterday?
	Developer 1
	
	Set up MQTT listener and test topic messages
	Fixed parsing logic for Kafka producer
	Improved Kafka schema validation
	Added logging for message pipeline
	Refactored service error handling
	–
	–

	
	Developer 2
	
	Created basic DB schema for alert storage
	Integrated DB insert with Kafka consumer
	Optimized alert fetch queries
	Built query filters for org/site config
	Unit tested DB read/write APIs
	–
	–

	
	Developer 3
	
	Built initial UI for alert display
	Hooked UI to backend DB
	Worked on filtering alerts by severity
	UI: Implemented acknowledge/delete buttons
	UI: Style & Bell notification icon
	–
	–

	What will you do today?
	Developer 1
	
	Kafka producer service
	Kafka retry mechanism
	Push-to-Kafka error handling
	Message validation logic
	Finalize service & doc
	–
	–

	
	Developer 2
	
	Kafka consumer store to DB
	Add alert type config
	Alert definition handling
	Admin config settings
	DB API testing & cleanup
	–
	–

	
	Developer 3
	
	Alert list pagination
	Alert definition editor
	UI config for alert template
	Notification alert trigger UI
	Bell icon notification test
	–
	–

	What (if any) is blocking you?
	Developer 1
	
	No blockers
	Schema changes delayed
	Kafka retry strategy unclear
	None
	None
	–
	–

	
	Developer 2
	
	Waiting for alert type list
	DB indexing delays
	Need final API contract
	None
	None
	–
	–

	
	Developer 3
	
	Backend not fully ready
	UI alert severity map pending
	UI freeze on large alert sets
	None
	None
	–
	–

image2.png
[Addepic / [AM-2

As a backend service, | want to read from MQTT and push
formatted alerts to Kafka topic for further processing.

+ Add ® Apps Details

Description Assignee o Sapna Kadam
Acceptance criteria:

)) Labels None
« Critical alerts trigger bell notification

« Clicking bell shows unread critical alerts Parent None

o Alerts marked as read after viewing
Due date None

Confluence content @
Team None

B Product requirements TRY TEMPLATE

Start date None

Sprint AM Sprint 1
© | asdacomment.

Story point
¥ Looksgood! & Needhelp? @ Thisisblocked.. @ Can you clarify..? This > estimate

l 3
Pro tip: press| M | to comment Development ¥ Create branch

image3.png
& am7 /7 Q AM-1

As a user, | want to view alerts from DB via Ul so that | can monitor
and manage issues.

+ Add @ Apps

Description
Acceptance criteria:

« Ul fetches and displays alert list
« Alerts are sorted, filterable by date/severity/type

Confluence content @
B Product requirements

Activity
Comments History ~ Work log

Sapna Kadam updated the Description

4 minutes ago

[HisTORY |

TRY TEMPLATE

Assignee

Labels

Parent

Due date

Team

Start date

Sprint

Story point
estimate

& Unassigned

Assign to me

None
<% AM-7 Notification icon
None
None
None

AM Sprint 1

image4.png
[Addepic / [AM-2

a
As a backend service, | want to read from MQTT and push ToDov 4
formatted alerts to Kafka topic for further processing.
+ Add ® Apps Details
Description Assignee e Sapna Kadam
Acceptance criteria:
)) Labels None
+ Critical alerts trigger bell notification
+ Clicking bell shows unread critical alerts Parent None
+ Alerts marked as read after viewing
Due date None
Confluence content @
Team None
® Product requirements
Start date None
Sprint ® AM Sprint 1
(- JTF——
Story point 5
Looksgood! & Needhelp? @ Thisis blocked.. @ Can you clarify..? This > estimate
Pro tip: press [M] to comment Development ¥ Create branch

image5.png
Projects

Alert management - PR 4

@ Ssummary S Timeline B Backlog (D Board [Calendar 3 List = Forms © Goals & Allwork <> Code © Archived workitems More 2+

Q search board A® fpicv Typev Complete spri

S Gowv B % e

ToDO |2 IN PROGRESS DONE(3 +
As an admin, | want to be As a user, | want to view alerts
notified via bell icon for critical from DB via Ul so that | can
alerts so that | can take prompt monitor and manage issues.
action. NOTIFICATION ICON
0 AM-3 9 [AM- vis &
As a user, | want to view alerts As an admin, | want to be
from DB via Ul so that | can notified via bell icon for critical
‘monitor and manage issues. alerts so that | can take prompt
action.
AM-4 2
AM-5 v &
+ Create

As a backend service, | want to
read from MQTT and push
formatted alerts to Kafka topic
for further processing.

[AM-2 «5@

image6.png
Sprint Estimation field

AM Sprint 1 v ‘ ‘ Story points v

Date - June 2nd, 2025 - June 16th, 2025

Sprint goal - Alert Notification feature must e done

. Completed work e Guideline e Work Scope

Number of story points completed this sprint Ideal burn rate Number of story points to be completed this sprint

15

12

Story points

Jun 03 Jun 05 Jun 07 Jun 09 Jun 11 Jun 13 Jun1s

image7.png
Sprint

Estimation field

FD Sprint 1 v ‘ ‘ Story points

Date - April 13th, 2025 - April 20th, 2025

Story points

20

15

10

—— Remaining work — Guideline

Number of story points left to complete this sprint Ideal burn rate

Today

Apr 14 Apr 15 Apri6

Apr17

Apr 18

Apr19

Apr 20

image8.png
Product Burn Down Chart

300

250

»
S
8

100

Reinaining Story Points
@
g

50

Sprints

image1.jpeg

