Capstone Project Prep 3 Part 1

Prepared by Mayur Mange
Batch 12th April, 2025

Case Study 1
A Customer can make a payment either by card or by cash or by Netbanking
1. Draw Use Case Diagram

[image:]
2. Derive Boundary Classes, Controller Classes, Entity Classes

Answer :
Boundary classes represent interfaces between the system and the external actors, Customer in our case
The Following are the features of the Boundary Class
1. The class is easier to change to than the entity and controller class
2. The attribute of this class and screen layout are defined at the basic design
3. In a class diagram, there are cases where the stereotype Boundary is added
4. In a class diagram, there are cases that are shown by the following icon

Class 2

Controller Classes
 The following are the features of the controller class, This class has few attributes.
In a class diagram, there are cases that the stereotypes CONTROL is added
This class is a class to achive use cases in the use case diagram
In a class diagram, there are cases that are shown by the following icon

Class 3.

Entity Classes
 The Entity Class is a class that has data, The E of the ER Diagram means Entity
The following are the features of the entity class.
There are many cases that these objects of this class are perpetuated in DB.
The Extraction of the class is like ER Diagrtam2
This class is related to the DOA (Data Oriented Approach)
The Module class is high and is not easy to be changed
In a class diagram, there are cases that the stereotype ENTITY is added
In a class diagram, there are cases that are shown by the following icon

Class 1

Deriving Classes from Use case

Boundary class
1. PaymentUI- Interface where customer selects Payment type.
2. CardPaymentUI – Form for card details (number, expiry, CVV).
3. CashPaymentUI – Interface to confirm cash collection.
4. NetBankingUI – Screen for selecting bank and entering credentials.

Controller classes – Workflow
1. PaymentController – Manages overall payment process.
2. CardPaymentController – Validates card details, sends to bank API.
3. CashPaymentController – Confirms and records cash transaction.
4. NetBankingController – Handles redirection to bank, OTP validation, and confirmation.

Entity Classes (Business Data / Storage):
1. Customer – Stores customer details (ID, name, contact).
2. Payment – Generic entity with paymentId, amount, status, date.
3.CardDetails – Card number, expiry date, CVV.
4. BankAccount – BankName, AccountNo, IFSC.
5. Transaction – TransactionId, timestamp, paymentMode, status.

3. Place these classes on a three tier Architecture
Ans : The Three Tier Architecture is a software design pattern that separates an application into three logical layers
1. Presentation Layer - The topmost layer where the user interacts with the system.
Handles input/output and communicates with the business logic.
Example: Web forms, mobile app screens.
2. Business Logic Layer - The brain of the system.
Contains controllers and logic for processing user inputs, enforcing rules, and coordinating between UI and data.
3. Data Layer : Deals with storing and retrieving data from databases.
Contains entities (tables/objects) and data access methods.

Placement of Classes into the three tier Architecture
1. Presentation Layer – Boundary Classes – These will be the Interface layer with which the customer will Interact, Payment UI, Cash payment, Card Payment and Net banking Portal
· Payment UI – Main Payment Screen
· Cardpayment UI – UI for card Payment
· Cash Payment UI- Cash on Delivery Screen Confirmation
· Netbanking UI – UI for bank selection and credentials

2. Business Logic Layer/Application Layer – Controller Class – These layer will handle the logic and process requests from the UI, Payment controller, Card Payment Controller, Cash Payment Controller, Net Banking Controller
· PaymentController – Manages payment flow.
· CardPaymentController – Validates card and interacts with bank API.
· CashPaymentController – Confirms and records cash transactions.
· NetBankingController – Handles bank redirection and OTP validation.

3. Data Layer- Entity Class – These represent the data stored in the Date Base, - Customer, Payment, Card Details, Transaction, Bank Account
· Customer – Customer details.
· Payment – Generic payment record.
· CardDetails – Card info (card no, expiry, CVV).
· BankAccount – Net Banking account details.
· Transaction – Transaction record (id, timestamp, status, mode).
4. Explain Domain Model for Customer making Payment through Net banking

Ans : A domain Model is a conceptual model of the domain that incorporates both behavior and data. It is a system of abstractions that describes selected aspects of a sphere of knowledge, influence or activity. The model that can be used to resolve problems related to that domain.

The domain model is represented of meaningful real- world concepts pertinent to the domain that need to be modeled in software, the concepts include data involved in business and rules the business uses in relation to that data.

A domain model leverages natural language of the domain, it generally uses the vocabulary of the domain. Thus allowing a representation of the model to be communicated to non technical stakeholders. It should not refer to any technical implementations such as database or software components that are being designed.

Key Entities and Attributes

1. Customer
Attributes: CustomerID, Name, Contact, Email.
Role: Initiates the payment.
2. Payment
Attributes: PaymentID, Amount, Date, Status, Mode.
Role: Generic payment record for the transaction.
3. BankAccount
Attributes: AccountNo, BankName, IFSC, Balance.
Role: Represents the customer’s net banking account.
4. NetBankingDetails
Attributes: UserID, Password/OTP, TransactionPassword.
Role: Provides credentials for authentication with the bank.
5. Transaction
Attributes: TransactionID, Timestamp, Status, PaymentRef.
Role: Tracks the result of the payment.

5. Draw a Sequence Diagram for payment done by customer Net banking
Ans :
A Sequence Diagram shows the interaction between objects in the system over time.
It highlights message flow from one object to another in the order they occur.
It shows how the objects in the system interact and communicate with each other with time to achieve specific task
Developer will draw this . It is used to show the flow of messages, events or actions between objects of the system.
This diagram helps to visualize the behavior of the system
This diagram shows the process in details
Customer
PaymentUI
Payment
Controller
Netbanking
Bank Server
Initiate
Send Request
Validate
Authenticate
Auth result
Auth result
Notify
Confirm
Update
Transaction DB

	

6. Explain Conceptual Model for this case

Ans: A Conceptual Model is a high-level representation of the system that shows key entities, their relationships, and processes, without going into technical details.

It helps stakeholders (non-technical as well) understand what the system does, not how it does it.

Core Elements (Entities & Actors)
1. Customer – Initiates the payment request.
2. Payment – The main process, contains amount, mode, and status.
3. Payment Methods
Card Payment (Debit/Credit card details)
Cash Payment (Direct cash at counter/agent)
Net Banking (Bank account, credentials, OTP).
4. Bank/Payment Gateway – Validates and processes electronic transactions.
5. Transaction Record – Stores details of completed payments (status: success/failure).
Relationships
Customer makes a Payment.
Payment can be made using Card / Cash / Net Banking (specializations).
Net Banking requires Bank Validation.
Each Payment generates a Transaction Record.

7. What is MVC Architecture? Explain MVC rules to derive classes from use case diagram and guidelines to place classes in 3 tier architecture?

Ans : MVC (Model–View–Controller) is a design pattern that separates an application into three main components:

Model
Represents data and business logic.
Example: Payment details, customer account, transaction history.

View
Handles the UI (User Interface) part.
Example: Payment form, confirmation page, error message screen.

Controller
Acts as a mediator between Model and View.
Accepts user input, processes it, and updates the model or view accordingly.
Example: Payment Controller that takes customer input and triggers payment validation.
This separation improves modularity, reusability, and maintainability of software.

MVC Architecture Rules:
· Combination of one actor and a use case results in one boundary classå
· Combination of two actors and a use case results in two boundary class
· Combination of three actors and a use case results in three boundary class
Note only One Primary actor is to be considered with a use case
· Use case will result in a controller class
· Each Actor will result in one entity class

Guidelines to place identified MVC Classes in a 3 Tier Architecture
· Place all entity classes in DB Layer
· Place Primary actor associated boundary class in application layer
· Place Controller class in Application Layer
· If Governing Body Influence or reusability is there with any of the remaining boundary class place them in business logic layer or else Place them in application layer.

8. Explain BA Contribution in Project (Waterfall Model – All Stages)
Ans :
· Waterfall Model is useful in the situation where the project requirements are well defined and the project goals are clear.
· Waterfall model follows sequential approach
· In this model each phase is completed entirely and then only moved to the next phase
· Waterfall model relies on documentation to ensure that the project is well defined and project team is working towards clear goals
· Ones that particular phase has been completed and ones we move to the next phase, we cannot go back to the previous phase to
Make changes.
· This mode is stable for projects when the requirements are clear

Stages in Waterfall Model are as follows
Requirements Gathering and analysis
Designing
Coding
Development
Testing
Deployment
Maintenance

The Waterfall Model is a sequential SDLC approach, where each phase must be completed before the next begins.

A Business Analyst (BA) plays a crucial role in every stage:

1. Requirement Gathering and Analysis Stage
BA interacts with stakeholders, customers, and business users to elicit requirements.
Conducts interviews, workshops, surveys to understand needs.
Prepares BRD (Business Requirement Document) and SRS (Software Requirement Specification).
Ensures requirements are clear, complete, and testable.
BA ensures that the "what is needed" is correctly captured.

2. System Design Stage
BA collaborates with the System Architect and Design team to translate business requirements into functional specifications.
Validates whether the design aligns with business needs.
Creates use case diagrams, process models, and data flow diagrams to support design.
Acts as a bridge between business and technical teams.
BA ensures the solution design supports business goals.

3. Implementation (Development) Stage
Although coding is done by developers, BA:
Provides clarifications to the development team.
Ensures requirements traceability using RTM (Requirement Traceability Matrix).
Manages change requests (if any arise).
BA ensures developers implement as per requirements.
BA maintains requirement integrity during coding.

4. Testing Stage
BA helps the QA/Test team understand requirements.
Reviews test cases to check if all requirements are covered.
Participates in User Acceptance Testing (UAT) with end-users.
Validates that the final product meets business expectations.
BA ensures "built product = required product".

5. Deployment Stage
BA supports in training end-users and preparing user manuals.
Coordinates between stakeholders for a smooth rollout.
Ensures all business processes are ready for production use.
BA ensures successful transition from development to operations.

6. Maintenance Stage
BA monitors post-deployment issues and user feedback.
Analyzes defects to see if they are due to missed requirements or new enhancements.
Works on change requests and ensures documentation updates.
BA ensures the system remains aligned with evolving business needs.
BA contributes at all stages of Waterfall:

Requirement gathering: Capture and document needs.
Design: Validate and align with business objectives.
Implementation: Clarify, trace, and manage changes.
Testing: Ensure coverage and support UAT.
Deployment: Train and support rollout.
Maintenance: Handle change requests and monitor alignment.

9. What is Conflict Management? Explain Thomas Killmann Technique
Ans :
Conflict Management is the process of identifying, addressing, and resolving conflicts between stakeholders, team members, or departments in a project.
The goal is to minimize negative impact and ensure smooth progress while maintaining healthy professional relationships.
For a Business Analyst, conflict management is crucial because they act as a bridge between business users, developers, and management.
Thomas–Kilmann Conflict Management Technique

The Thomas–Kilmann Model (TKI) identifies five conflict-handling styles, based on two dimensions:
· Assertiveness (the extent to which a person tries to satisfy their own concerns).
· Cooperativeness (the extent to which a person tries to satisfy others’ concerns).

Five Styles of Conflict Management
1. Competing (High Assertiveness, Low Cooperativeness)
"I win, you lose" approach.
Useful when quick, decisive action is required (e.g., meeting deadlines).
2. Collaborating (High Assertiveness, High Cooperativeness)
"Win–Win" approach.
Both sides work together to find a solution that satisfies everyone.
Best for complex problems requiring creative solutions.
3. Compromising (Moderate Assertiveness, Moderate Cooperativeness)
"Give and take" approach.
Each side gives up something to reach a middle ground.
Useful when time is limited, and both parties have equal power.
4. Avoiding (Low Assertiveness, Low Cooperativeness)
"I lose, you lose" approach.
Conflict is ignored or postponed.
Useful when the issue is trivial or when emotions need to cool down.
5. Accommodating (Low Assertiveness, High Cooperativeness)
"I lose, you win" approach.
One party gives in to preserve harmony.
Useful when the issue matters more to the other party.
Conflict management ensures smooth communication and progress in projects.
Thomas–Kilmann technique defines five conflict resolution styles:
Competing, Collaborating, Compromising, Avoiding, Accommodating.
BA should choose the style based on situation, urgency, and stakeholder relationship.

Cooperativeness (Others Concern)
Assertiveness (Own Concern)
Avoiding
(I Lose, You Lose)
Accommodating
(I Lose, You Win)
Collaborating (Win-Win
Competing
(I Win, You Lose)
Compromising
(Give and Take)

	

10. List down the reasons for Project Failure
Ans :
Reasons for Project Failure
1. Unclear or Incomplete Requirements
If requirements are not properly gathered or documented, the final product may not meet stakeholder needs.
2. Poor Communication
Lack of coordination between stakeholders, business analysts, developers, and testers causes misunderstandings.
3. Scope Creep
Continuous, uncontrolled changes or additions to project scope without proper impact analysis.
4. Inadequate Planning
Poor scheduling, unrealistic timelines, or ignoring resource constraints leads to missed deadlines and overruns.
5. Lack of Stakeholder Involvement
If stakeholders are not actively engaged, the project may drift away from actual business needs.
6. Insufficient Risk Management
Failure to identify and mitigate risks (technical, financial, or organizational) early in the project lifecycle.
7. Poor Project Management
Weak leadership, ineffective monitoring, or lack of accountability results in disorganized execution.
8. Budget Overruns
Costs exceed estimates due to poor forecasting, changing requirements, or delays.
9. Technical Failures
Issues with chosen technology, lack of skilled resources, or integration failures with existing systems.
10. Lack of User Training and Adoption
Even a technically successful project may fail if end-users are not trained or resistant to using the new system.
Major reasons for project failure include unclear requirements, poor communication, scope creep, inadequate planning, lack of stakeholder involvement, insufficient risk management, weak project management, budget overruns, technical issues, and lack of user adoption.

11. List the challenges faced in Project by a BA
Ans :
Challenges Faced in Projects by a Business Analyst
1. Unclear or Changing Requirements
Stakeholders often provide vague inputs, or requirements change frequently, making it hard to finalize scope.
2. Managing Stakeholder Expectations
Different stakeholders may have conflicting priorities; BA has to balance and negotiate effectively.
3. Communication Gaps
Misunderstanding between technical teams and business users due to different terminologies and perspectives.
4. Scope Creep
Additional features requested without proper change management cause delays and cost overruns.
5. Time Constraints
BA is expected to gather and document requirements quickly while ensuring accuracy and completeness.
6. Resistance to Change
End-users may be reluctant to adopt new processes or systems, creating barriers during implementation.
7. Incomplete Documentation
If BA fails to maintain updated documents (BRD, SRS, RTM), confusion arises in later phases.
8. Technical Limitations
Sometimes business requirements are not feasible due to system, budget, or resource constraints.
9. Conflict Management
BA often faces conflicts between business and technical teams and must resolve them diplomatically.
10. Ensuring Traceability
BA must ensure every requirement is mapped to design, development, and testing — which is often challenging in large projects.

12. Write about document Naming Standards
Ans :
Document Naming Standards are rules and conventions defined in an organization to ensure that all project documents are consistent, easily identifiable, and traceable.
Key Points about Naming Standards:
1. Consistency
All documents should follow the same format so anyone in the team can easily recognize and retrieve them.
1. Clarity
Names must clearly indicate the content, version, and purpose of the document.
1. Version Control
Include version numbers or dates to track updates (e.g., v1.0, v1.1).
1. Avoid Ambiguity
Avoid vague names like “Doc1” or “FinalDoc”. Use descriptive titles.

Common Naming Convention Format
[ProjectID][DocumentType][Version][Date]

Example:
AgriStore_BRD_v1.0_03-09-2025.docx
AgriStore_SRS_v2.1_15-08-2025.pdf
Where:

ProjectID = Name of project or Unique ID Given to the project
DocumentType = BRD, SRS, RTM, TestCase, etc.
Version = v1.0, v2.0 (to track changes)
Date = dd-mm-yyyy (to know last updated date)

13. What are the Do’s and Don’ts of a Business Analyst
Ans :
Do’s of a Business Analyst
1. Elicit Clear Requirements
Always use interviews, workshops, and surveys to gather accurate and complete requirements.
2. Maintain Effective Communication
1. Act as a bridge between business stakeholders and technical teams.
2. Use simple, clear, and non-technical language with business users.
3. Document Properly
Keep BRD, SRS, RTM, and meeting minutes well-organized and updated.
4. Ensure Requirement Traceability
Map requirements to design, development, and test cases to avoid gaps.
5. Engage Stakeholders Actively
Involve them in reviews, validations, and decision-making to avoid misunderstandings.
6. Think from End-User Perspective
Ensure the solution meets actual business needs, not just technical feasibility.
7. Be Neutral and Professional
Handle conflicts diplomatically without taking sides.

Don’ts of a Business Analyst
1. Do Not Assume Requirements
Never make assumptions; always confirm with stakeholders.
2. Avoid Using Too Much Jargon
Overly technical terms may confuse business users.
3. Don’t Ignore Change Requests
Every change should be analyzed and documented through formal process.
4. Do Not Skip Validation
Requirements must always be reviewed and signed off by stakeholders.
5. Don’t Neglect Communication
Failing to update teams can lead to misunderstandings and project delays.
6. Do Not Focus Only on Documentation
A BA must also ensure requirements are implemented and tested correctly.

14. Write the Difference between packages and Subsystems
Ans:
A Package is a collection of headers and source files that provide related functionality.
A Subsystem is a collection of one or more packages. For Example, the foundation subsystem contains packages such as layout, MVC, events, Properties, Image and Print.
Package : In UML models and Object Oriented Analysis. A package is a organized group of elements. It can be termed as the UML Mechanism for grouping things. It may contain many structural things like classes, components and other packages in it
It can be used to :
· Group semantically related elements
· Define a semantic boundary in the model
· Provide units for parallel working and configuration management
· It is used to provide encapsulated namespace within which all names must be unique
Subsystem : In UML Models, Subsystems are a type of stereotypes components that represent independent, behavioral units of a system. They are widely used in class, component, and use case diagrams to represent large scale components that are to be modelled.
An entire system can be modelled by hierarchy of subsystems. The behavior of each subsystem can be defined by specifying the interfaces and operations that support interfaces in accordance with subsystems.

	Aspect
	Package
	Subsystem

	Definition
	A logical grouping of related classes, interfaces, or components mainly for organization.
	A semi-independent module of the system that represents a functional unit.

	Purpose
	Used to simplify the structure and manage complexity by grouping related elements.
	Used to divide a large system into smaller, manageable, functional parts.

	Scope
	Limited to organizing code and modeling elements (like UML classes).
	Broader; contains multiple packages, classes, and interfaces that work together.

	Dependency
	Usually dependent on other packages; not standalone.
	Can function independently to some extent; interacts with other subsystems.

	Example
	In an e-commerce app, a package named “PaymentPackage” may contain CardPayment, WalletPayment, NetBanking.
	A Payment Subsystem would include payment logic, error handling, security, and integration with banks.

	
	Application Development companies work on packages
	Product Development companies work on Subsystems

15. What is Camel – Casing and Explain where it will be used ?

Ans: Camel-casing is a naming convention where words are joined without spaces and each word after the first begins with a capital letter. It is widely used in programming (variables, methods, classes), databases, APIs, and UML models to maintain readability and consistency.
· Camel-casing is a naming convention in which multiple words are written together without spaces, and the first letter of each word (except the first one) is capitalized.
· It looks like the humps of a camel, hence the name.
Example:
· customerName
· paymentMethod
· transactionId

In Camel Casing, the starting letter of the word starts with small letter and other words first letter starts with capital letters.

In BA, Camel-casing is used in requirements documentation.
In requirement documentation, BA often use camel casing to name entities like use case, features, user stories like validateCustomerDetails, calculateInterestRate, etc
Business rules, which should be satisfied by the system use camel-casing.
While documenting business process or workflows, camel casing can be used to individual in steps, this will help maintain consistency in the document.
The database tables name also use camel-casing
Requirement naming- camel casing is used in requirement document also, to name the functional and non functional requirements.
By using camel casing in the documents, it helps to maintain consistency in the entire document and also increases readability.

Where is it Used?
Programming Languages – In Java, C#, JavaScript, Python (conventions) for naming identifiers.
Variables: totalAmount, userId
Methods: makePayment(), validateLogin()
Classes: PaymentService, CustomerAccount

Database Design – For column names when spaces or special characters are not allowed.
Example: customerAddress, orderDate

API Development – JSON or XML field naming for consistency between systems.
Example:
{ "customerId": 101, "paymentStatus": "Success" }

UML Modeling – When naming attributes and operations in diagrams.

16. Illustrate Development Server and what are the accesses does business analyst has?
Ans :
A Development Server is an environment where developers build, test, and integrate code before moving it to testing (QA) or production.
It is isolated from the live system so that changes, errors, or experiments do not affect actual users.
It Provides a runtime environment, as well as all hardware/software utilities that are essential to program debugging and development
It generally includes:
· Application server
· Database server
· Middleware and APIs
· Testing tools and logs
Accesses for a Business Analyst in Development Server
A Business Analyst (BA) is not a developer, so their access is limited and controlled. Common accesses include:
1. Read-Only Access to Application
BA can log into the dev environment to review functionality, UI changes, and workflows.
Example: Checking if the Net Banking option appears correctly on the payment screen.
2. Test Data Entry Access
BA may be allowed to enter dummy/test data to simulate business scenarios.
Example: Creating a test transaction with wallet payment to validate requirement implementation.
3. Log / Error Monitoring Access (Read-Only)
Can view error logs or system messages to confirm issues raised by QA/testing teams.
4. Database Query Access (Optional, Read-Only)
Sometimes BA gets read-only DB access to verify data mapping or to validate reports.
5. No Deployment / Code Change Rights
A BA cannot modify code, deploy releases, or make configuration changes. Those are strictly developer/admin responsibilities.
Tools a BA will be accessing
1. Requirements management
2. Project Management
3. Enterprise Resource Planning
4. Modelling/Diagramming
5. Wire framing
6. Collaboration/ communication
7. Customer Relationship Management CRM
8. Data Visualization

17. What is Data Mapping?
Ans : For a Business Analyst, Data Mapping is the process of creating relationships between data fields from a source system or dataset to a target system or dataset, ensuring data is accurately and consistently transferred, integrated, or transformed. It involves defining rules for how data from different formats and sources will be matched, reformatted, and moved into a unified structure, which is crucial for data migration, integration, and analysis to support business decisions and ensure data accuracy and compliance.
Why Data Mapping is Important for Business Analysts
Enables Data Integration:
It allows for the seamless combination of data from various, disparate systems into a single, unified repository or database.
Supports Data Migration:
Data mapping is a key step when moving data from one system to another, ensuring that the data is accurately converted to the new system's format.
Facilitates Data Transformation:
It defines the rules for converting data from its original format to the required format of the target system.
Ensures Data Accuracy and Consistency:
By establishing clear relationships and rules, data mapping helps to prevent errors and maintain the accuracy of data as it moves between systems.
Improves Decision-Making:
Accurate and consistent data, derived through effective mapping, provides reliable insights that business analysts use for better forecasting and decision-making.
Aids in Regulatory Compliance:
Data mapping helps track the journey of data, ensuring sensitive information is handled correctly and that regulatory requirements (like GDPR or PCI DSS) are met.
What Business Analysts Do with Data Mapping ?
Identify Data Sources and Targets:
They identify the various systems and datasets that contain the relevant information.
Define Data Relationships:
They map the specific fields from the source to their equivalent fields in the target system.
Specify Transformations:
They determine if and how data needs to be reformatted, combined, or transformed to meet the destination's requirements.
Create Data Maps:
Business analysts create high-level and detailed visual representations (data maps) of these relationships and transformations, which serve as a blueprint for developers or data engineers.
Bridge Gaps Between Systems:
They ensure that the data flow between different information systems is seamless, preventing data inconsistencies and system errors.

18. What is API. Explain how you would use API Integration in the case of your application Date format is dd-mm-yyyy and it is accepting some date from other application from US whose date format is mm-dd-yyyy

Ans :

Api stands for Application Programming Interface. It is a software intermediary that allows the two applications to communicate with each other.it is the set of rules, protocols and tools that define how different software application should interact with each other.
API allows sharing of only necessary information and keeps the internal system details hidden, which helps the system security.
It is a set of rules and protocols that allows different software applications to communicate and exchange data with each other. It defines the methods and data formats that applications can use to request and offer services.
In the case of your application, which uses the dd-mm-yyyy date format and accepts dates from a US application using mm-dd-yyyy, API integration would involve the following steps:

Define the API Endpoint:
The US application would send date data to a specific API endpoint exposed by your application. This endpoint would be designed to receive the date string in the mm-dd-yyyy format.

Receive the Data:
When your application receives a request at this endpoint, it would extract the date string from the incoming data.

Parse the Incoming Date:
The received date string, which is in mm-dd-yyyy format, needs to be parsed into a date object within your application. This involves interpreting the month, day, and year components correctly.

Format for Internal Use: Once parsed, the date object can then be formatted into your application's preferred dd-mm-yyyy format for storage or further processing.

Process and Respond: Your application would then process this correctly formatted date and send a response back to the US application, potentially acknowledging receipt or providing further data.
This process ensures that despite the differing date formats, the two applications can seamlessly exchange and understand date information through a well-defined API.

image1.png
Payment Page

Endz “End1

