 A customer can make a payment either by Card or by Wallet or by Cash or by Net banking.
Q1. Draw a Use Case Diagram
Answer:
· A Use Case Diagram is a visual representation in UML (Unified Modeling Language) that shows the interactions between users (actors) and a system. It describes what the system does (its functionality), not how it does it. Use case diagrams have 4 major elements-> Actors, System boundary, Essential use cases and line that represent relationships.
· Actors represent users or external systems that interact with the system. They can be: Primary actors (who initiate the use case) and Secondary actors (who provide a service to the system)
· System Boundary defines what is inside and outside the system. It is represented by a rectangle enclosing all use cases. Actors are outside the boundary, and use cases are inside.
· Essential Use Cases are high-level, user-goal-driven interactions that are always required for the system to function.
· Include (<<include>>) is used when a use case always uses another use case. It shows mandatory behaviour.
· Extend (<<extend>>) is used when a use case optionally extends another. The base use case can function without the extension.
· Generalization (arrow with hollow triangle is used when an actor or use case inherits the behaviour of another.

 Use case diagram for Payment method

Q2. Derive Boundary Classes, Controller classes, Entity Classes.
Answer:
a) A boundary class represents the interface between the system and external actors like users or other systems. It captures input from users and displays system responses, such as forms, screens, or APIs.
Examples:
· Payment Boundary
· CardPaymentBoundary
· WalletPaymentBoundary
· CashPaymentBoundary
· InternetBankingBoundary

b) A controller class acts as a coordinator that manages the flow of data between boundary and entity classes. It contains the application logic to process user actions and control the sequence of operations.

Examples: BUSINESS LOGIC LAYER

· PaymentController
· CardPaymentController
· WalletPaymentController
· CashPaymentController
· InternetBankingController

c) An entity class represents core business objects and contains the data and rules associated with those objects. It is responsible for storing, retrieving, and maintaining the state of the system’s information.

Example: Customer, Payment, Transaction, Wallet

	

Q3. Place these classes on a three tier Architecture.
Answer:

The 3-tier architecture is a way of designing software that divides an application into three interconnected layers. This method improves flexibility, growth potential, and ease of management.
· The topmost layer of 3-tier architecture known as Presentation/Application layer, where the front-end user interacts with the application.
· The business logic layer manages the logic and rules that define how data is processed and how the application behaves. It acts as a bridge between the user interface and the database, ensuring smooth data flow and proper handling of requests.
· The database layer stores organize, and manages data in databases, ensuring efficient access and retrieval. It enforces rules to maintain data accuracy and consistency while implementing security measures to protect sensitive information.

The Boundary Class, Controller Class and Entity classes are placed in following way in a 3-tier architecture.

Q4. Explain Domain Model for Customer making payment through Net Banking
Answer:

A domain model is a visual representation of real-world entities such as Customer, Payment, and Order, along with their relationships. It focuses on what the system is about, helping developers and stakeholders understand the core business logic without involving technical or UI-specific details.

This domain model breaks down an internet banking system into meaningful components, highlighting how customers interact with services like payments and fund transfers through authentication, and how transactions and account information are managed by the system.

Q5. Draw a sequence diagram for payment done by Customer Net Banking
Answer:
A sequence diagram is used primarily to show the interactions between classes in the sequential order in which those interactions occur. It can map a scenario described by a use case in step-by-step detail, showing how classes collaborate to achieve your application’s goals.

The following diagram represents a payment done by Customer through Internet Banking:

Q6. Explain Conceptual Model for this Case
Answer:
A conceptual model is defined as a model which is made of concepts and their relationships. It helps to understand the entities in the real word and how they interact with each other. It is a high-level representation of the core concepts in a system, focusing on what the system needs to know—not how it works. It shows entities, their attributes, and the relationships between them, without going into technical implementation details.

Elements in the Conceptual Model for Net Banking Payment:

a. Customer
· The person who uses internet banking to make payments.
· Attributes: Customer_id, Customer_name, Cust_address
· Relationship: Owns one or more Accounts

b. Account
· Represents the bank account held by the customer.
· Attributes: Account_no, Account_name, Account_type, Account_balance
· Relationship: Account in bank Used for Payments and Transactions

c. Bank
· The financial institution hosting the customer’s account.
· Attributes: Bank_name, Bank_branch, Bank_branchcode
· Relationship: Financial institution authenticating the payments and transactions.

d. Internet Banking Service
· The digital platform that enables the customer to perform online actions.
· Attributes: Authentication, Fund Transfer, Account Management, Transaction History

e. Authentication
· Used to verify the customer before allowing access to banking services.
· Attributes: username, password, otp

f. Payment
Represents a digital payment made by the customer.
Attributes: Payment_id, Amount, Payment_date, Payment_type, Status
Relies on: Internet Banking Services, Account

g. Transaction
· Logs every financial action done via internet banking.
· Attributes: Transaction_id, Transaction_date, Trans_Amt, Trans_time

Q7. What is MVC architecture? Explain MVC rules to derive classes from use case diagram and guidelines to place classes in 3-tier architecture.

Answer:
a) MVC (Model-View-Controller) architecture is a design pattern used in software engineering to separate concerns in application development. It divides an application into three interconnected components Model, View and Controller.
· View: It displays the data to the user (UI layer). It is passive, meaning it doesn't process data, just presents it.
· Model: It represents the data and the business logic. This layer interacts with the database, processes data, and applies rules.
· Controller: It Acts as an interface between Model and View. It handles user input, manipulates the Model and updates the view.

b) To derive Model, View, and Controller classes from a Use Case Diagram, follow these rules:
 1. Identify Boundary (View) Classes
· Derived from actors and user interfaces shown in use cases.
· Each interface or form in the use case corresponds to a Boundary/View class.
Rule: For each user interaction, create a boundary class.

 2. Identify Controller Classes
· Derived from use cases themselves.
· Represents the coordination of actions, handling inputs, and managing workflows.
Rule: For each use case, create one Controller class (can combine similar ones if needed).
 3. Identify Entity (Model) Classes
· Derived from nouns in use case descriptions or domain models.
· Represents data and business rules.
Rule: For each business object (e.g., Customer, Order, Payment), create one Entity class.

c) The guidelines for 3 tier architecture:

1. Presentation Layer (UI Layer)
· Displays data and collects user input.
· Corresponds to Boundary/View classes.
· E.g., LoginScreen, OrderForm

2. Business Logic Layer (BLL or Application Layer)
· Implements business rules and use case logic.
· Corresponds to Controller classes.
· E.g., LoginController, PaymentProcessor

3. Data Access Layer (DAL)
· Handles interaction with the database.
· Derived from Entity/Model classes and DAO (Data Access Objects).
· E.g., CustomerDAO, OrderDAO

Q8. Explain BA contributions in project (Waterfall Model – all Stages)
Answer:
	 Stage
	 Activities
	 Artifacts & Resources

	 Pre-Project
	Enterprise Analysis: SWOT, GAP, Market Research, Feasibility Study, Root Cause Analysis, Decision/Strategy Analysis, Enterprise Frameworks, Scope and Business Case writing, Risk analysis

	 Business Case
 SOW (Statement of Work)
 PO (Purchase Order)

	
	
	Sr. BA, Business Architects, Presales Consultants

	 Planning & Estimation & Assessment

(Project Kick Off)
	1. Understand assumptions & constraints along with business rules and business goals
2. Plan Packages for big projects
3. Understands project plan from PM
4. Conduct stakeholder analysis
5. Plan BA approach strategy (req. gathering techniques, communication, req. mgmt. documents to follow, tools to use, change request handling methodology.
	

	
	
	PM, Sr. BA

	 Requirement Gathering
	 1. Stakeholder identification and documentation.
2. BRD preparation via client interaction (brainstorming, document analysis interviews, reverse engineering, etc.)
3. Prototyping can be used by BA to make the client to give more specific requirement
4. Sort & group requirements
5. Prioritize requirements (MoSCoW)
6. Validate requirements (FURPS)
	 BRD (Business Requirements Document)

	
	
	BA, PM

	 Requirement Analysis
	 1.Draw UML diagrams (Use case, Activity diagrams)
2. Prepare Functional Requirements from Business requirements
3. SSD preparation by Solution Architects
4. SRS: Functional + Technical
5. Take Signoff on SRS from Client
6. RTM preparation
7. Trace requirements till UAT
	 Functional Requirements
 SSD (Supplementary Support Document)
 SRS (Solution Requirement Specification)
 RTM (Requirement Traceability Matrix)

	
	
	BA, PM, Solution Architect, DB Architect, NW Architect

	 Design
	 1. Prepare Test cases from use case diagram
2. Design communication with client and update status to client.
3. Prepare end-user manuals
4. RTM updates
5. Architecture recommendation is done by Solution Architect based on use case diagram.
6. ER Diagrams and DB Schema are prepared by DB Architect.
7. GUI designer will look after designs and possible screen with boundary classes
	 Solution Document
Design Document – HDD – ADD

	
	
	

	
	
	BA, PM, Solution Architect, DB Architect, GUI Designer, Test Manager

	 Development
	 1. Organizing JAD sessions
2. Clarify queries to technical team during coding
3. Developer refers controller class diagrams and code their unit.
4. End user manual updates
5. RTM updates
6. Conduct status meetings with client and tuning client for participation in UAT
	 LDD – CDD
 Application

	
	
	Development Team, BA, PM

	 Testing
	 1. Prepare test cases from use cases or assist Test Manager
2. Perform high-level testing
3. Prepare client for UAT
4. Request test data
5. Update end user manuals
6. RTM updates
7. Take signoff from client-on-client project acceptance form
	 Test Concerning Documents
 Application with fewer errors

	
	
	Testing Team, BA, PM, Client

	Deployment and Implementation
	1.Forwards RTM to Client or the PM which should be attached to Project Closure Document.
2. Co-ordinates to complete and share End user Manuals
3. Plans and organizes training sessions for end users.
4. Prepares lessons learned from this project (to take precautions for coming projects)
	

Q9. What is conflict management? Explain using Thomas – Kilmann technique.
Answer:
 Conflict Management is the process of identifying and handling conflicts in a sensible, fair, and efficient manner. In projects, especially IT or business environments, conflicts often arise due to differences in opinions, goals, or priorities among team members or stakeholders.

Thomas-Kilmann Conflict Management Technique (TKI)
The Thomas-Kilmann Model identifies five conflict-handling styles based on two dimensions:
· Assertiveness – the extent to which a person tries to satisfy their own needs.
· Cooperativeness – the extent to which a person tries to satisfy the other party’s needs.

Example
In a team project: If two members disagree on a design approach:
· Competing: One insists on their way regardless of others.
· Collaborating: They brainstorm to find a hybrid design.
· Compromising: Each gives up one feature to meet halfway.
· Avoiding: They both ignore the issue and keep working separately.
· Accommodating: One gives in to maintain team harmony.

 Q10. List down the reasons for project failure.
Answer:

1️. Improper Requirement Gathering
The requirements are not gathered correctly at the beginning, the project may end up solving the wrong problem or delivering features that do not meet user needs. It leads to rework and delays and increases project cost.
2. Continuous Change in Requirements (Scope Creep)
Frequent or uncontrolled changes in project scope during execution without adjusting timelines or resources causes instability. It impacts Project timeline and Budget overruns.
3️. Lack of User Involvement
When end users are not actively involved in requirement gathering, design reviews, or testing phases, the delivered system often doesn’t meet their expectations. The Final product may not be user-friendly or relevant
4.Lack of Executive Support
Projects without visible support from senior management often lack resources, direction, or authority to overcome roadblocks.
5. Unrealistic Expectations
Over-promising on delivery dates, budget, or feature scope without proper assessment leads to impossible targets.
6. Improper Planning
 Lack of a detailed project plan including risk management, resource allocation, and milestone tracking causes confusion and chaos during execution. The Tasks are missed or poorly executed due to improper planning.

Q11. List the Challenges faced in projects for BA.
Answer:
1. Unclear or Incomplete Requirements
· Stakeholders may not fully understand what they need.
· Leads to scope creep, rework, or system failure.

2. Frequent Change in Requirements
· Changing business environment or stakeholder priorities can shift requirements.
· Impacts timelines, design, and overall project quality.

3. Lack of Stakeholder Involvement
· Key users may be unavailable or uninterested in discussions.
· Leads to misaligned solutions and low user acceptance.

4. Conflicting Stakeholder Interests
· Different departments may have competing goals or expectations.
· BA must mediate and find a balanced, agreed-upon solution.

5. Inadequate Domain Knowledge
· Without proper understanding of the industry or process, analysis may be flawed.
· Leads to misinterpretation of business needs.

6. Poor Communication
· Miscommunication between BA, developers, testers, and stakeholders.
· Causes misunderstanding of requirements and incorrect outputs.
7. Time Constraint
· Pressure to gather and finalize requirements quickly.
· Risk of missing critical details.

8. Scope Creep
· Additional features or changes requested mid-project without proper impact analysis.
· Can derail timelines and budgets.

9. Tool and Technology Limitations
· Inability to use or access proper requirement management tools.
· Affects documentation, traceability, and collaboration.

10. Resistance to Change
· Users may be unwilling to adopt new systems or processes.
· BA needs to manage change and encourage adoption.
Q12. Write about Document Naming Standards
Answer:

Document Naming Standards are established rules and guidelines used to uniquely name documents within an organization or project. These standards ensure clarity, improve searchability, facilitate collaboration, and reduce confusion when managing files over time.

For example: The project called "Online Food Delivery App" and we are creating a document that contains the business requirements. The document is prepared by the Business Analyst team, the current version is 1.0, the status is Draft, and it was created on 10th June 2025.
Using a naming standard, the file name would look like:
OnlineFoodApp_REQ_BATeam_20250613_v1.0_Draft.docx

Breakdown of the File Name:
· OnlineFoodApp – the name of the project
· REQ – the type of document
· BA Team – the department or team who prepared it
· 20250613 – the date in YYYYMMDD format (13th June 2025)
· v1.0 – version number
· Draft – current document status
· .docx – file extension (Microsoft Word document)

Q13. What are the Do’s and Don’ts of a Business analyst.
Answer:
A) Dos of a Business Analyst
1. Always Listen Actively to the Client
· Approach the client with a plain mind and no assumptions.
· Listen completely and let the client finish before asking your queries.
2. Ask Questions and Clarify Everything
· Question everything — even what the client says may not always be correct.
· Verify all inputs instead of blindly accepting them.
3. Consult SMEs for Requirement Clarification
· When in doubt or confusion, reach out to Subject Matter Experts (SMEs) to clarify business needs.
4. Understand Each Problem as Unique
· Treat every client problem as distinct, considering differences in location, laws, technology, and context.
5. Extract Solutions Through Client Discussion
· Instead of jumping to solutions, guide the client to help you understand the problem deeply.
· Try to extract leads to solutions from the client's inputs.
6. Focus Only on Truly Required Requirements
· Concentrate on what’s important and actually needed, not just flashy features or assumptions.

B) Don’ts of a Business Analyst
1. Never Say “No” to the Client Directly
· Always handle disagreements diplomatically and focus on understanding, not rejecting.
2. Don’t Assume Anything, Especially in GUI
· Never imagine functionalities or design elements unless explicitly discussed.
· Avoid assuming anything as “by default”.

3. Don’t Interrupt the Client During Problem Explanation
· Let them speak freely and only ask questions after they finish explaining the problem.
4. Don’t Offer Pre-Built Solutions from Past Experience
· Each problem is different, so don’t apply old solutions without validating their relevance.
5. Don’t Get Distracted by Add-ons or Fancy Features
· Avoid imagining extra features based on screen-level understanding.
· Stick to actual business needs.

Q14. Write the difference between packages and sub-systems
Answer:
	 Packages
	 Sub-systems

	 A package is a collection of components which are not reusable in nature.
	 A sub-system is a collection of components which are reusable in nature.

	 Packages are mainly used for organizing code or classes into logical groups.
	Sub-systems represent a functionally independent unit that can be used across different projects.

	 Helps in managing complexity but doesn’t encapsulate complete functionality.
	 Encapsulates complete behaviour and interacts through well-defined interfaces.

	 Typically used in Application Development Companies.
	 Commonly used by Product Development Companies.

	 Focuses on code structure, not functional separation.
	 Focuses on functional modularity and reusability.
Top of Form
Bottom of Form

Q15. What is camel-casing and explain where it will be used
Answer:
Camel-casing is a naming convention used in programming where multiple words are joined without spaces, and each word after the first begins with a capital letter. The name "camel-case" comes from the way the capital letters in the middle of the word resemble a camel's humps.
Camel-casing is commonly used in naming variables (especially in JavaScript, Java, and C#), Method or function names, Property names in JSON or classes, Naming identifiers in object-oriented programming.

CamelCase: First word starts with a lowercase letter

Example: userName, calculateSalary

Q16. Illustrate Development server and what are the accesses does business analyst has?
Answer:
A Development Server is a dedicated environment where software developers build and test code before moving it to further stages like testing (QA), staging, or production. It replicates the application environment but is isolated for safe development and experimentation.

A Business Analyst (BA) does not write code but is given limited access to the development server to support requirement validation and progress tracking.

· Read-Only UI Access:
BAs use the application as a test user to verify if features meet the documented requirements.

· Access to Logs/Test Reports
Some teams allow BAs to view logs or reports to understand errors or behaviour.

· View Access to Tools (Jira, Git, Jenkins):
BAs track development progress, sprint status, and raise or monitor issues through these tools.

· Exploratory Testing:
BAs may perform informal testing to validate that development aligns with business needs.

· Raising Issues:
Any mismatches or missing functionality are reported to the development team for correction.

Q17. What is Data Mapping?
Answer:

Data Mapping is the process of matching data fields from one source to another, typically between different databases, systems, or file formats. It defines how data in one structure (source) corresponds to data in another structure (destination) — ensuring that data is correctly transferred, transformed, or integrated.

Data Mapping is used for:
· System Integration: When connecting two systems (e.g., CRM to ERP).

· Data Migration: Moving data from one database to another.

· ETL Processes (Extract, Transform, Load): In data warehousing and reporting.

· API Integration: When sending/receiving data between applications.

Data Mapping is Important for:
· Ensuring data accuracy and consistency across systems.
· Prevents data loss or misinterpretation during transfer.
· Essential for automation, reporting, and analytics.

Q18. What is API. Explain how you would use API integration in the case of your application Date format is dd-mm-yyyy and it is accepting some data from Other Application from US whose Date Format is mm-dd-yyyy.

Answer:
An API (Application Programming Interface) is a set of rules and protocols that allows one software application to communicate or interact with another. APIs are commonly used to exchange data between different systems, applications, or services.

API integration means connecting two applications through their APIs to automatically exchange data in real-time, without manual input.

Scenario: Our application uses date format: **dd-mm-yyyy** (e.g., 13-06-2025). The External US-based application sends data using: **mm-dd-yyyy** (e.g., 06-13-2025).

API Integration performs following steps:

· Receive Data via API
The US application sends date data through an API request (e.g., JSON: "birth_date": "06-13-2025").

· Intercept and Parse the Data
When your app receives the data, it identifies that the format is mm-dd-yyyy.

· Transform the Date Format
Use a backend function (e.g., in Python, Java, or JavaScript) to convert the date from mm-dd-yyyy to dd-mm-yyyy before saving it in your database.

· Store or Display in Correct Format
After conversion, "06-13-2025" becomes "13-06-2025" and can now be stored or displayed in your local format.

image2.emf
PaymentBoundary

CardPaymentBoundary

WalletPaymentBoundary

CashPaymentBoundary

InternetBankingBoundary

PaymentController

CardPaymentController

WalletPaymentController

CashPaymentController

InternetBankingController

Customer

Payment

Transaction

Wallet

DATABASE LAYER

BUSINESS LOGIC

LAYER

APPLICATION LAYER

USER

oleObject2.bin

 PaymentBoundary
 CardPaymentBoundary
 WalletPaymentBoundary
 CashPaymentBoundary
 InternetBankingBoundary

PaymentController
CardPaymentController
WalletPaymentController
CashPaymentController
InternetBankingController

Customer
Payment
Transaction
Wallet

DATABASE LAYER

BUSINESS LOGIC LAYER

APPLICATION LAYER

USER

image3.png

image3.emf
Customer

PK Customer_id

Customer_name

Cust_address

Payment

PK Payment_id

Amount

Payment_date

Payment_type

Status

Transaction

Transaction_id

Transaction_date

Trans_Amt

Trans_time

Bank

Bank_name

Bank_branch

Bank_branchcode

Internet_banking_service

Authentication

Fund Transfer

Account_mgmt

Transaction history

Authentication

username

Password

Otp

Account

Account_no

Account_name

Account_type

Account_balance

oleObject3.bin
text�

�

Table

image4.emf
Customer Internet Banking

Bank

Authentication

Intiate Payment Request Validate Payment details

Deduction of Amount

Process payment to Receipent

Payment Confirmation

Payment Confirmation

oleObject4.bin
Sequence

Customer

Internet Banking

Bank

Authentication

Intiate Payment Request

Validate Payment details

Deduction of Amount

Process payment to Receipent

Payment Confirmation

Payment Confirmation

image1.emf
System

Payment Type

Debit/Credit card

Wallet

Cash

Internet Banking

«inherits»

«inherits»

«inherits»

«inherits»

User

-End1

*

-End2

*

Payment Gateway

-End3

*

-End4

*

System database

-End3

*

-End4

*

oleObject1.bin
System

User

Use Case

Payment Type

Debit/Credit card

Wallet

Cash

Internet Banking

«inherits»

«inherits»

«inherits»

«inherits»

-End1

*

-End2

*

Payment Gateway

-End3

*

-End4

*

System database

-End3

*

-End4

*

