Case Study 1 (Q1-Q6 24 Marks)
A customer can make a payment either by Card or by Wallet or by Cash or by Net banking.

Q1. Draw a Use Case Diagram - 4 Marks

Answer 1. Use Case Diagram
[image:]
1. Actors
	Actor
	Description

	Customer
	End-user who registers, searches, and purchases products.

	Manufacturer
	Adds products, updates stock, and uploads product details.

	Admin
	Approves uploaded products, manages platform settings.

	Bank
	Handles net banking/UPI/debit-credit/wallet transactions.

2. Essential Use Cases (With Basic Flow)
	Use Case
	Actor(s)
	Description

	Register
	Customer, Manufacturer
	Collects name, email, mobile number, password to create a new user.

	Login
	All users
	Authenticates user credentials.

	Forgot Password
	All users
	Helps user reset password via email/mobile.

	Search Products
	Customer
	User filters/searches product by name, category, or keywords.

	View Product
	Customer
	Displays selected product details.

	Add to Cart/Wishlist
	Customer
	Customer saves a product for future purchase or immediate checkout.

	Make Payment
	Customer
	Performs payment via COD, UPI, Card, Wallet, etc.

	Upload Products
	Manufacturer
	Manufacturer uploads product name, details, stock, and price.

	Approve Products
	Admin
	Admin validates and approves product listings before publishing.

3. Extended and Included Use Cases
	Base Use Case
	<<include>>
	<<extend>>

	Register
	Name, Mobile No, Email ID, Password
	—

	Login
	Email ID, Password
	Forgot Password

	Upload Products
	Product Details, Price, Stock Update
	—

	Make Payment
	COD, UPI, Debit/Credit, Wallet
	—

4. System Boundary
Label: Order Payment
Includes all internal use cases like registration, login, product handling, payment, etc.

5. Use Case Descriptions
a) Use Case: Register
	Field
	Details

	Actor
	Customer / Manufacturer

	Pre-condition
	User is not registered yet.

	Post-condition
	New user profile created, redirected to login.

	Basic Flow
	1. Enter name, email, mobile number, and password
2. Submit form
3. System saves the data and creates account

	Alternative Flow
	1. Email already exists → error message.

b) Use Case: Make Payment
	Field
	Details

	Actor
	Customer

	Pre-condition
	Product is in cart.

	Post-condition
	Payment confirmed and order placed.

	Basic Flow
	1. Choose payment mode (COD, UPI, Card, Wallet)
2. Enter details
3. Complete transaction

	Alternative Flow
	1. Payment fails → Retry or choose another method.

Q2. Derive Boundary Classes, Controller classes, Entity Classes. - 4 Marks

Answer 2. Boundary Classes (UI interaction – what the user sees/interacts with):
These are the entry points of the system where the customer interacts with the application.

	Class Name
	Role

	PaymentPageUI
	Interface to select payment method (Card, Wallet, Cash, Net Banking)

	NetBankingFormUI
	UI for entering net banking credentials

	CardPaymentUI
	UI for entering card details

	WalletSelectionUI
	UI for choosing digital wallet

	CashPaymentNoteUI
	UI to confirm COD option

	PaymentSuccessPage
	Shows payment success/failure message

Controller Classes (Business logic – how the system processes user actions):
Controllers coordinate between UI and the data layer. They interpret actions from the UI and process them accordingly.

	Class Name
	Role

	PaymentController
	Central class managing all payment modes

	CardPaymentController
	Handles card validations and payment processing

	WalletPaymentController
	Manages wallet login and fund transfer

	CashPaymentController
	Confirms COD option and order placement

	NetBankingController
	Authenticates net banking details and initiates transaction

	TransactionService
	Shared service to log and confirm payment transactions

Entity Classes (Data layer – core business objects stored in DB):
These represent persistent data and business rules.

	Class Name
	Attributes
	Role

	Customer
	customerID, name, email, mobile
	Stores customer details

	Payment
	paymentID, amount, paymentDate, paymentMode, status
	Represents each payment

	Transaction
	transactionID, referenceNo, timestamp, amount, status
	Tracks payment result

	BankAccount
	bankName, accountNo, IFSC, linkedCustomerID
	Used for Net Banking

	Card
	cardNo, expiryDate, CVV, cardHolderName
	Used for Card Payments

	Wallet
	walletID, type, balance
	Represents digital wallets like Paytm, PhonePe

Class Relationships Summary:
· PaymentController interacts with multiple controllers depending on payment mode.
· All Controllers talk to corresponding entity classes to retrieve and save data.
· TransactionService helps log and confirm transactions from any mode.

Q3. Place these classes on a three tier Architecture. - 4 Marks
Answer 3. Three-Tier Architecture Overview:
A 3-tier architecture separates the system into three layers:
Presentation Layer (UI)
Business Logic Layer (BLL)
Data Access Layer (DAL)

This improves scalability, maintainability, and separation of concerns.

Mapping Classes to Each Layer:
	Tier
	Classes
	Responsibility

	Presentation Layer (Boundary Classes)
	PaymentPageUI
	User interface, Display output/messages, Capture user input

	
	NetBankingFormUI
	

	
	CardPaymentUI
	

	
	WalletSelectionUI
	

	
	CashPaymentNoteUI
	

	
	PaymentSuccessPage
	

	
	
	

	 Business Logic Layer (Controller Classes) |
	PaymentController
	Process user input, Coordinate between UI & database, Apply business rules

	
	CardPaymentController
	

	
	WalletPaymentController
	

	
	CashPaymentController
	

	
	NetBankingController
	

	
	TransactionService
	

	
	
	

	Data Access Layer (Entity Classes) |
	Customer
	Store and retrieve data, Represent real-world entities

	
	Payment
	

	
	Transaction
	

	
	BankAccount
	

	
	Card
	

	
	Wallet
	

Q4. Explain Domain Model for Customer making payment through Net Banking - 4 Marks

Answer 4. Domain Model : A Domain Model is a conceptual representation of real-world entities, their attributes, and the relationships between them. It helps Business Analysts, Developers, and Stakeholders visualize how the business objects interact in a given business context.

Scenario:
A customer purchases a product and chooses Net Banking as the payment method.
Key Entities and Their Attributes
	Entity
	Attributes
	Description

	Customer
	customerID, name, email, phone
	Initiates the purchase and selects Net Banking

	Order
	orderID, orderDate, totalAmount, status
	Represents the order placed by the customer

	Payment
	paymentID, paymentMode (Net Banking), paymentStatus, amount
	Tracks payment details

	BankAccount
	bankName, accountNumber, IFSC, accountHolderName
	Used to authenticate Net Banking transaction

	Transaction
	transactionID, timestamp, status, referenceNo
	Logs the actual transfer of money

	Product
	productID, name, price, quantity
	Items included in the order

Relationships Between Entities
· A Customer places an Order
· An Order is linked to a Payment
· The Payment is done via Net Banking using a BankAccount
· A Transaction is generated for the Payment
· An Order contains one or more Products

Domain Model Diagram – Textual View
Sql

Customer
 └── places → Order
 └── contains → Product
 └── has → Payment
 └── via → BankAccount
 └── generates → Transaction

Summary (as a BA):
· The Domain Model captures the real-world flow of a Net Banking payment scenario.
· It clarifies how Customer, Order, Payment, Transaction, and Bank Account relate.
· Helps developers understand the data structure, flow, and system behaviour.
· This is used during Requirement Analysis, Design, and Documentation phases.

Q5. Draw a sequence diagram for payment done by Customer Net Banking - 4 Marks
Answer 5. Sequence Diagram -
[image:]
Components of a Sequence Diagram:

[image:]

	Element
	Description

	Actors
	Users or external systems interacting with the application

	Objects/Classes
	Internal modules/components of the system (e.g., UI, Controller, DB)

	Lifelines
	Vertical dashed lines showing the object's life over time

	Messages
	Horizontal arrows showing interactions/messages passed between components

	Activation bars
	Thin rectangles over lifelines showing when an object is active

Q6. Explain Conceptual Model for this Case - 4 Marks

Answer 6. A Conceptual Model is a high-level representation of the core business entities, their attributes, and relationships.
· It is technology-independent
· Used in early analysis phase
· Focuses on what the system must do, not how it will be implemented
· Helps stakeholders understand the business domain clearly

Scenario:
A Customer makes a Payment for an Order using Card, Wallet, Cash, or Net Banking.

Key Entities in the Conceptual Model:
	Entity
	Description

	Customer
	The user who places an order and makes the payment.

	Order
	The order created by the customer for the products selected.

	Payment
	The payment information including amount, mode, and status.

	Payment Mode
	An abstract classification for Card, Wallet, Cash, Net Banking.

	Transaction
	Logs the final confirmation with transaction ID and status.

	Product
	The items purchased in the order.

Relationships Between Entities:
· A Customer can place multiple Orders
· Each Order is associated with one Payment
· A Payment is made using one Payment Mode
· A Payment generates a Transaction
· An Order contains one or more Products

Conceptual Model – Textual Diagram:
Customer
 └── places → Order
 └── contains → Product
 └── has → Payment
 └── uses → Payment Mode (Card, Wallet, Cash, NetBanking)
 └── logs → Transaction

Characteristics of the Conceptual Model:
· No UI, no technology or database tables involved
· Only business domain understanding
· Used to validate requirements with stakeholders

Sample Attributes (Not Detailed Classes Yet):
	Entity
	Sample Attributes

	Customer
	customerID, name, email

	Order
	orderID, date, totalAmount

	Product
	productID, name, quantity, price

	Payment
	paymentID, amount, paymentStatus

	PaymentMode
	modeType (Card, Wallet, etc.)

	Transaction
	transactionID, status, timestamp

Summary:
· A conceptual model gives a simplified view of how business objects relate.
· It helps teams align on what the system needs to represent before moving to design.
· Perfect for stakeholder reviews and requirement validation.

Q7. What is MVC architecture? Explain MVC rules to derive classes from use case diagram and guidelines to place classes in 3-tier architecture - 8 Marks

Answer 7 MVC (Model–View–Controller) is a software architectural pattern used for developing user interfaces by separating the application into three interconnected components:

MVC Components
	Component
	Description

	Model
	Manages the data, business rules, and logic of the application.

	View
	Represents the UI — what the user sees and interacts with.

	Controller
	Acts as an intermediary between View and Model, processing user input.

MVC Workflow
1. User interacts with the View (UI).
2. Controller handles the input, processes it, and calls the Model.
3. Model updates data/business logic.
4. Updated data is returned to the View for display.

Rules to Derive Classes from Use Case Diagram
To map your use case into classes using MVC, follow these rules:

1. From Use Case Actors ➝ Boundary Classes
Represent UI Screens or interfaces users interact with.
Example: LoginPageUI, PaymentForm, OrderPage

2. From Use Case System Events ➝ Controller Classes
Represent logic to control flow of data between UI and business logic.
Example: PaymentController, OrderController, LoginController

3. From Use Case Data Objects ➝ Entity Classes
Represent business data and rules, persistent in database.
Example: Customer, Order, Product, Transaction

3-Tier Architecture & Class Placement
The 3-tier architecture separates the application into:

	Layer
	Includes (MVC Part)
	Responsibilities

	Presentation Layer
	Boundary Classes (View)
	UI components, User interaction

	Application Layer
	Controller Classes (Controller)
	Request handling, coordination between UI and business

	Business/Data Layer
	Entity Classes (Model)
	Business logic, data processing, validation, DB access

Example Mapping (Payment Use Case)
	Use Case Element
	Class Type
	Placed In

	Customer UI
	Boundary Class
	Presentation Layer

	Pay with Net Banking
	Controller Class
	Application Layer

	Payment / Transaction
	Entity Class
	Business/Data Layer

Summary
· MVC = Model (Data) + View (UI) + Controller (Logic)
· Derive:
· Boundary Classes from actors/screens
· Controller Classes from actions
· Entity Classes from business objects
· Place classes in 3-Tier Architecture for separation of concerns, better maintenance, and scalability.

Q8. Explain BA contributions in project (Waterfall Model – all Stages) – 8 Marks

Answer 8. BA Contributions in Project (Waterfall Model – All Stages)
In the Waterfall Model, development flows sequentially through distinct phases. As a Business Analyst (BA), you play a key role in each phase, ensuring business needs are captured, documented, and delivered accurately.

1. Requirement Gathering & Analysis Stage
BA Contributions:
· Conduct stakeholder meetings to gather business needs.
· Perform feasibility analysis.
· Document:
· Business Requirement Document (BRD)
· Functional Requirement Document (FRD)
· Create use case diagrams, process flowcharts, and business models.
· Clarify assumptions, constraints, and business rules.
Outcome: Clear and validated requirements that guide the entire project.

2. System Design Stage
BA Contributions:
· Support the design team in understanding the business logic.
· Review system design documents (HLD/LLD) to ensure alignment with requirements.
· Validate user interface wireframes/prototypes.
Outcome: BA ensures design adheres to business expectations and requirements.

3. Implementation (Development) Stage
BA Contributions:
· Act as a bridge between developers and stakeholders.
· Clarify functional doubts of developers.
· Update requirement documents if minor functional changes arise.
· Attend sprint planning (if hybrid waterfall/agile is followed).
Outcome: Smooth handoff and continuous support to the development team.

4. Testing Stage
BA Contributions:
· Prepare/review test cases from a requirement perspective.
· Conduct Requirement Traceability Matrix (RTM).
· Perform Functional Testing or User Acceptance Testing (UAT) support.
· Ensure all requirements are tested and working.
Outcome: BA ensures product meets business needs before delivery.

5. Deployment Stage
BA Contributions:
· Support during final production release.
· Ensure all dependencies are completed.
· Confirm that all change requests have been implemented.
Outcome: Smooth release and transition into production environment.

6. Maintenance Stage
BA Contributions:
· Log and analyze post-deployment issues/bugs.
· Raise Change Requests (CRs) for enhancements.
· Conduct impact analysis for requested changes.
· Coordinate with client and tech teams for continuous improvements.
Outcome: BA ensures product evolves with business needs and functions reliably.

Summary Table: BA Activities per Waterfall Stage
	Stage
	BA Responsibilities

	Requirements
	Elicit, analyze, document & validate requirements

	Design
	Review designs, ensure alignment with requirements

	Development
	Clarify requirements, support dev team

	Testing
	Review test plans, validate RTM, support UAT

	Deployment
	Ensure readiness, track requirement completion

	Maintenance
	Handle CRs, post-live support, issue logging

Q9. What is conflict management? Explain using Thomas – Kilmann technique – 6 Marks

Answer 9. Conflict Management is the process of identifying and handling conflicts in a constructive and efficient manner. In a project, conflicts may arise due to differing goals, opinions, resource constraints, or priorities among stakeholders, team members, or departments.
The goal of conflict management is to minimize negative impact and maximize collaboration and productivity.

Thomas-Kilmann Conflict Management Technique
The Thomas-Kilmann Conflict Mode Instrument (TKI) is a widely used framework to understand conflict resolution behavior. It categorizes conflict-handling styles based on two dimensions:
· Assertiveness (concern for self)
· Cooperativeness (concern for others)

5 Conflict Management Styles in Thomas-Kilmann Model:
	Conflict Style
	Description
	When to Use

	Competing (High Assertiveness, Low Cooperation)
	“Win-Lose” approach. One party pursues their own concerns at the expense of others.
	Useful in emergencies or quick, decisive actions (e.g., enforcing rules).

	Collaborating (High Assertiveness, High Cooperation)
	“Win-Win” approach. Both parties work together to find a mutually beneficial solution.
	Best when long-term relationships and commitment are important.

	Compromising (Moderate Assertiveness and Cooperation)
	“Give and Take”. Each side gives up something to reach a solution.
	Use when time is limited or a temporary solution is acceptable.

	Avoiding (Low Assertiveness, Low Cooperation)
	“Withdraw and postpone”. Conflict is ignored or postponed.
	Suitable when the issue is trivial or emotions need to cool down.

	Accommodating (Low Assertiveness, High Cooperation)
	“Self-sacrifice”. One party yields to the other's needs.
	Works well when preserving harmony or the issue matters more to one party.

Visual Matrix
 Cooperativeness ↑
 		 |
 Accommodating | Collaborating
 |
Assertiveness <-----------|----------------->
 	 |
 Avoiding		 	 |Competing
 	 |
 	 ↓

Example in a BA Project Context
· A BA might collaborate with both business and tech teams to resolve conflicting priorities.
· If a stakeholder is insisting on a non-feasible feature, the BA may compromise by suggesting a partial feature in the next release.
· When there's too much tension in a meeting, the BA may avoid immediate escalation and address the issue later.

Summary
· Conflict is natural in project environments.
· The Thomas-Kilmann technique helps understand different ways of managing it.
· As a Business Analyst, choosing the right style based on the situation ensures smoother project execution and stakeholder relationships.

Q10. List down the reasons for project failure – 6 Marks

Answer 10. Top Reasons for Project Failure
1. Unclear or Incomplete Requirements
· Poorly defined or missing requirements can lead to misaligned outcomes.
· Lack of stakeholder involvement during requirement gathering.
2. Scope Creep
· Continuous, uncontrolled addition of features without proper change control.
· Often caused by poor requirement management or weak stakeholder discipline.
3. Lack of Stakeholder Engagement
· Key users or sponsors are not actively involved.
· Delays in decision-making and feedback.
4. Poor Communication
· Inadequate or inconsistent communication between stakeholders, developers, testers, and clients.
· Misunderstanding of expectations and priorities.
5. Inadequate Planning
· No proper risk analysis, resource planning, or milestone planning.
· Unrealistic timelines or budget estimates.
6. Lack of Risk Management
· Not identifying, documenting, or mitigating risks leads to surprises that derail the project.
7. Insufficient Testing
· Skipping or rushing QA/UAT phases.
· Bugs discovered post-deployment affecting performance and trust.
8. Inexperienced or Under-resourced Team
· Lack of skilled personnel or overburdened teams lead to poor output.
· High attrition or team conflicts.
9. Ineffective Project Management
· Weak leadership, poor task tracking, or inability to manage change.
· No use of structured project management methodologies.
10. Technology Failures
· Chosen technologies don’t align with business needs.
· Integration issues or performance bottlenecks.
11. Budget Overruns
· Cost estimates not realistic or budget not tracked properly.
· Changes not assessed for financial impact.
12. Lack of User Training or Adoption
· Users are not prepared to use the system effectively after deployment.
· Resistance to change or usability issues.

Q11. List the Challenges faced in projects for BA – 6 Marks
Answer 11. Challenges Faced in Projects by a Business Analyst
1. Unclear or Evolving Requirements
· Stakeholders often don’t know exactly what they want.
· Requirements change frequently during the project lifecycle, especially in Agile.
2. Lack of Stakeholder Engagement
· Difficulty in scheduling meetings or getting timely feedback.
· Passive stakeholders lead to missed expectations or last-minute changes.
3. Conflicting Stakeholder Interests
· Different departments or users may have competing priorities.
· BA must manage and negotiate to balance business value and feasibility.
4. Communication Gaps
· Misunderstandings between technical and non-technical teams.
· Misinterpretation of business needs by development or testing teams.
5. Incomplete or Inadequate Documentation
· Tight deadlines often lead to poorly written BRDs/FRDs/User Stories.
· Missing business rules, edge cases, or assumptions.
6. Resistance to Change
· End users or departments resist new processes or systems.
· Lack of change management planning can cause poor adoption.
7. Scope Creep
· Stakeholders may request continuous additions outside of original scope.
· BA must control this through proper change request processes.
8. Time Constraints
· Pressure to deliver analysis quickly, especially in fast-paced environments.
· BA may not get enough time for thorough validation, testing, or documentation.
9. Lack of Domain Knowledge
· Without deep understanding of business domain, BAs may miss critical requirements.
· BAs must rapidly learn business processes and regulations.
10. Tool & Technology Constraints
· Limited access to BA tools (JIRA, Visio, Balsamiq, etc.) or no training provided.
· Outdated systems make analysis and automation difficult.
 11. Poor Requirement Traceability
· Hard to track which requirement is implemented/tested.
· Leads to gaps between development output and business needs.
12. Ineffective Collaboration with Technical Teams
· Developers may not consult BAs for clarifications.
· Lack of sync between development, QA, and business analysis.

How to Overcome These Challenges
	Challenge
	BA Strategy

	Unclear Requirements
	Use prototyping, brainstorming, interviews, and user stories

	Stakeholder Conflicts
	Conduct prioritization workshops, use MoSCoW or value-based techniques

	Communication Gaps
	Maintain regular stand-ups, updates, and walkthroughs

	Scope Creep
	Enforce a formal Change Request process

	Resistance to Change
	Involve users early and conduct training + UAT

	Time & Documentation Issues
	Use templates, checklists, and iterative refinement

Q12. Write about Document Naming Standards – 4 Marks

Answer 12. Document Naming Standards
Document Naming Standards refer to a structured and consistent way of naming project documents to ensure easy identification, retrieval, version control, and collaboration across teams.
These standards help in improving communication, reducing errors, and maintaining organized project documentation — especially in large or multi-phase projects.

Key Elements of a Good Naming Convention
1. Project/Client Name or Code
Example: AgriEco or AGC001
2. Document Type/Title
Examples:
· BRD – Business Requirement Document
· FRD – Functional Requirement Document
· UAT – User Acceptance Test Plan
· MoM – Minutes of Meeting
· ChangeRequest, Estimation, TestCase, etc.
3. Module or Feature Name (optional)
Example: Login, Payment, CropUpload
4. Version Number
Format: v1.0, v1.1, v2.0, etc.
5. Date (optional but helpful)
Format: YYYYMMDD for consistency
Example: 20250614 for 14th June 2025
6. Author Initials or Department Code (optional)
Example: BS (for Bhumika Sahu), BA, DEV, etc.

Example Document Names
	Document Purpose
	Recommended Name

	Business Requirements
	AgriEco_BRD_v1.0_20250614.docx

	Functional Spec
	AgriEco_FRD_PaymentModule_v1.1.docx

	Test Cases
	AgriEco_TestCases_CropUpload_v2.0.xlsx

	UAT Sign-off
	AgriEco_UATReport_v1.0_20250620.pdf

	Change Request
	AgriEco_ChangeRequest_TaxUpdate_v1.0.docx

Benefits of Document Naming Standards
· Easy to locate and identify the correct document
· Reduces duplication and confusion
· Simplifies version tracking and control
· Facilitates team collaboration across teams, especially offshore/onshore
· Improves audit readiness and compliance

Tips for Implementation
· Define and share naming standards in a Project Kickoff or Documentation Guideline.
· Use shared folders or version-controlled tools (e.g., SharePoint, Confluence, Git) that follow the same naming scheme.
· Include a version history or changelog inside each document for added traceability.

Q13. What are the Do’s and Don’ts of a Business analyst – 6 Marks

Answer 13. Do’s of a Business Analyst
1. Engage Stakeholders Early and Often
Build strong relationships with business users, sponsors, developers, and testers.
Schedule regular meetings to gather inputs and feedback.

2. Ask the Right Questions
Clarify ambiguous requirements.
Use open-ended questions to understand true business needs.

3. Document Clearly and Completely
Prepare thorough BRDs, FRDs, use cases, and user stories.
Ensure documentation is versioned and traceable.

4. Focus on Business Value
Prioritize features based on ROI, risk, and urgency.
Ensure each requirement aligns with business goals.

5. Validate and Verify Requirements
Confirm with stakeholders that the documented requirements are accurate (Validation).
Ensure the solution meets the requirements after development (Verification).

6. Be Detail-Oriented Yet Business-Focused
Bridge the gap between technical teams and business users.
Translate business language to technical specs and vice versa.

7. Stay Curious and Keep Learning
Stay updated with tools (like JIRA, Visio, SQL), techniques (Agile, UML), and domains.
Learn from peer reviews, retrospectives, and user feedback.

8. Adapt to Methodologies
Be flexible with Agile, Waterfall, or Hybrid models.
Adjust techniques like backlog grooming, sprint planning, or CR management accordingly.

Don’ts of a Business Analyst
1. Don’t Make Assumptions
Always confirm unclear information.
Assumptions without validation lead to incorrect solutions.

2. Don’t Ignore Stakeholder Feedback
All inputs, even minor ones, could have a significant impact.
Ignoring feedback damages trust.

3. Don’t Write Vague Requirements
Avoid terms like “etc.” or “user-friendly” without defining them.
Lack of clarity leads to development mismatches.

4. Don’t Skip Impact Analysis
Before accepting a change, analyze how it affects scope, budget, and timeline.
Use impact assessment tools or traceability matrices.

5. Don’t Work in Isolation
Collaborate with QA, dev, product owner, and other teams.
Isolated work often leads to misaligned deliverables.

6. Don’t Overpromise
Manage stakeholder expectations realistically.
Be honest about risks, limitations, and timelines.

7. Don’t Delay Documentation
Document during analysis—not weeks later.
Delays reduce accuracy and relevance.

8. Don’t Resist Change
Be open to evolving business processes or tech tools.
A BA must be a change enabler, not a blocker.

Conclusion:
Be the voice of the customer, not just the note-taker.
BAs should advocate for user needs, system usability, and overall process improvement.

Q14. Write the difference between packages and sub-systems – 4 Marks

Answer 14. Packages - A Package is a logical container or grouping mechanism used to organize related model elements in UML diagrams.
It helps in breaking down large systems into smaller, manageable sections for better readability and structure.

Sub-Systems - A Sub-system is a semi-independent unit of a system that provides a set of related functions and can be developed and tested separately.
It represents a functionally complete part of the system with defined inputs and outputs.

Difference Between Packages and Sub-systems
	Feature
	Package
	Sub-system

	Definition
	A Package is a grouping mechanism used to organize related elements such as classes, use cases, or components.
	A Sub-system is a self-contained module or component that represents a part of the entire system’s functionality.

	Purpose
	To logically organize model elements for better readability and manageability.
	To define a complete functional unit of the system that can perform independently.

	Scope
	Mainly used for categorization and modularization of design elements.
	Represents a working portion of the system with clearly defined interfaces.

	Containment
	Contains model elements (e.g., classes, use cases, diagrams).
	Contains packages, classes, components, or other subsystems.

	Execution
	Cannot execute or run; purely a logical grouping.
	Can be independently executed or deployed.

	Use in UML
	Represented as a tabbed folder icon in UML diagrams.
	Represented similar to components with a stereotype <<subsystem>>.

	Examples
	PaymentPackage, UserManagementPackage
	BillingSubsystem, OrderManagementSubsystem

	Dependency
	Shows dependency between elements using arrows.
	Subsystems can interact via interfaces or messages.

	Visibility Control
	Supports namespace control (public/private elements).
	Includes well-defined interfaces for communication with other parts.

Q15. What is camel-casing and explain where it will be used- 6 Marks

Answer 15. What is Camel-Casing?
Camel-casing (or camelCase) is a naming convention where:
· The first word starts in lowercase, and
· Each subsequent word starts with an uppercase letter,
with no spaces or underscores between words.

Example:
	Words
	Camel Case

	user name
	userName

	order id
	orderId

	product price
	productPrice

Where is Camel-Casing Used?
Camel-casing is commonly used in programming, scripting, and modeling, especially in the following contexts:
1. Variable Names
2. Function or Method Names
3. Class Attributes in UML or Object Models
In UML class diagrams:
· Attributes: productName, stockQuantity
· Operations: placeOrder(), updateInventory()
4. JSON or API Field Naming
5. Front-End Development (JavaScript, React, Angular)
Used in naming variables, function handlers, or states:

Why Use Camel-Casing?
· Improves readability without using underscores.
· Widely accepted in most coding standards (especially in JavaScript, Java, TypeScript, etc.).
· Makes variable and method names self-explanatory.

Types of Camel-Casing:
	Type
	Example
	Usage

	camelCase (lower camel case)
	orderDetails
	Variables, functions

	PascalCase (Upper camel case)
	OrderDetails
	Class names, models

Q16. Illustrate Development server and what are the accesses does business analyst has? -6 marks

Answer 16. What is a Development Server?
A Development Server is an environment where software applications are:
· Developed
· Built
· Unit tested by developers
before moving to other environments like QA, UAT, or Production.
Key Characteristics:
· Contains in-progress code
· May change frequently
· Usually has debugging tools and logs
· Data is often dummy/test data
· Not accessible to end-users

Illustration: Environments in SDLC
+-------------------+ +---------------+ +------------+ +---------------+
| Development Server| --> | QA/Testing | --> | UAT Server | --> | Production |
| (Dev Environment) | | Environment | | (Client) | | (Live System) |
+-------------------+ +---------------+ +------------+ +---------------+
 ↑
 Developer, BA

What Access Does a Business Analyst Have on Development Server?

	Access Type
	Business Analyst (BA) Role

	Read/Review Access
	To view configuration, UI builds, or database changes for review.

	Testing Input Support
	Add test data or review data flow (with controlled access).

	Logs/Debug Info (Limited)
	To verify requirement implementation (rare, usually via developer).

	UI Verification
	Check screen flows, field behavior, or validate requirement mapping.

	API Postman/Swagger Access
	To test/request sample API response for integration scenarios.

	Access via Dev Tools
	For viewing the front-end elements during testing in browser tools.

What a BA Does NOT Have on Dev Server:
· Write/Deploy access to code
· Database schema alteration permissions
· Direct control over versioning or builds

BA Activities Using Dev Server:
1. Validating mock UI/UX prototypes
2. Confirming workflow rules
3. Verifying early changes
4. Communicating clarifications to developers
5. Logging issues for bugs or mismatches
Example (Agri e-Commerce Project):

As a BA, you might log into the dev server to:
· Review how the Farmer registration form is rendering
· Validate if the Crop listing feature reflects business logic
· Confirm if payment method options match what’s defined in the BRD

Q17. What is Data Mapping 6 Marks
Answer 17. What is Data Mapping?
Data Mapping is the process of matching data fields from one source to data fields in another system or database.
It is used to ensure that data is accurately transferred, transformed, or integrated across different systems.

Why is Data Mapping Important?
· Ensures consistency and correctness of data during migration or integration.
· Helps in ETL (Extract, Transform, Load) processes.
· Critical in data warehousing, reporting, API integration, and system upgrades.

Example of Data Mapping (Agri e-Commerce Scenario):
Let’s say you are integrating Farmer Registration Data from a web form into a backend database.

	Source (Web Form Field)
	Target (Database Field)

	farmerName
	name

	phoneNumber
	contact_no

	cropSelected
	crop_type

	villageName
	location

This mapping ensures that when data is submitted from the frontend form, it gets stored in the correct table/column in the database.

Where is Data Mapping Used?
	Area
	Purpose

	Data Migration
	Moving data from old to new systems.

	System Integration
	Connecting two applications (e.g., ERP ↔ CRM).

	ETL Processes
	For loading data into a data warehouse.

	API Development
	Mapping internal fields to API responses.

	Reporting & BI Tools
	Ensuring correct source-to-report links.

Types of Data Mapping
1. One-to-One Mapping: One source field maps directly to one target field.
2. Many-to-One Mapping: Multiple source fields combine into one target field.
3. One-to-Many Mapping: One source field splits into multiple target fields.
4. Transformation Mapping: When data needs to be converted (e.g., date formats or currency).

Tools Commonly Used for Data Mapping:
	Tool
	Purpose

	MS Excel
	Manual mapping and documentation

	Talend, Informatica, SSIS
	ETL & automation

	SQL Queries
	Transforming & validating data

	API documentation tools
	Mapping data fields in endpoints

Q18. What is API. Explain how you would use API integration in the case of your application
Date format is dd-mm-yyyy and it is accepting some data from Other Application from US
whose Date Format is mm-dd-yyyy 10 Marks

Answer 18. API Integration :
API Integration is the process of connecting two or more systems via APIs so that they can exchange data in real-time or batch mode.

API Use Case in Order Payment Application:
Scenario: Your application collects order and delivery details from a partner system in the US. The US system sends dates in MM-DD-YYYY format, but your system expects DD-MM-YYYY.

Steps to Handle API Integration with Date Format Difference:
	Step
	Description

	1️
	API Endpoint Creation (or Consumption): Set up a RESTful API to receive data from the US-based application.

	2️
	Data Receipt: Accept JSON/XML data payload with fields like deliveryDate: 06-14-2025.

	3️
	Format Validation: Use backend logic (Java, Python, or Node.js) to detect MM-DD-YYYY format.

	4️
	Date Conversion Logic: Convert MM-DD-YYYY to DD-MM-YYYY before saving it in your system.

	5️
	Storage: Save the transformed date format into the local database.

	6️
	Response: Send back acknowledgment or process results to the external system via API.

Tools & Technologies Used:
· REST API with JSON format
· Postman for API testing
· Swagger for documentation
· Middleware (e.g., Node.js, Python Flask, Java Spring) for transformation
· Database (MySQL/PostgreSQL) for storing data
· Logging Tools (e.g., Logstash, Kibana) to track API calls and errors

Benefits of Handling API Integration with Format Correction:
· Ensures data integrity and accuracy
· Supports global system compatibility
· Enables real-time sync between systems
· Reduces manual intervention

image1.png
Order Payment

<diquda>

ionte o ‘

B o
7 <dinclydes>

300 to cart/ wishiist

1‘5"
@D T ke

Bank

Approve Products

Upload Products

by <dinctudesn
<ancigion ¢ -
9 cncludes

Pmdum Detais, Stock upﬂate
Pme of the

ondum

image2.png
Net Banking

i

Extonds

Extonds Card (DebitCredit)

|

Extonds

Customer Stonds

é

i

Authenticato &
Transfer Fund

PyamentGateway

Process
Not Banking

Payment
Initate Submit
o Banking | PaYmentpageUl |—pament —>|PaymentConiroler

e I
‘ i

Customer Show Confirmation Log
o Customer | Transacton
Savo
firansactionservicd——Transaction———»| Database
Dotaie
‘ Customer Paymen ,agem‘ ﬁmemmm Netanknosenvices ransactonDaabase
Ly wisatoPaymont L ubmitpayment Detats [+ | i
vesiate ; |
Show Payment Detals T i ;
o § VertyCrodentas | i
> H
Show i
Dorial Messago :
Notified Payment Denied T H
3 | oproved Payment |
Rocord Transacion
Transacton Recorded
Payment Successtu
e sicom |

Customer PaymentpageUl Netbankingservices TransactionDatabase

image3.png
Customer

Actors

Messages

Lifelines

Activation
Bars

