Q1. Draw a Use Case Diagram
Answer 1 -

Payment
Initiated

Payment Options

Card
Cash
Net Banking
Wallet

Customer
	Server

Q2. Derive Boundary Classes, Controller classes, and Entity Classes.
Answer 2
Boundary Classes:
Payment Gateway: Handles interactions with the user interface related to payments. It might include screens for selecting payment methods, entering payment details, and confirming payments.
Payment Confirmation: Manages the UI for confirming and displaying payment results to the user.
Controller Classes:
Payment Controller: Coordinates the payment process, interacting with the UI and delegating tasks to specific payment method controllers.
Card Payment Controller, Wallet Payment Controller, Cash Payment Controller, and Net Banking Payment Controller: These controllers handle the specific logic for each payment method, including validation and processing.
Entity Classes:
Card Payment Details, Wallet Payment Details, Cash Payment Details, Net Banking Payment Details: These classes represent the details associated with each payment method. They encapsulate the data needed for processing payments.
Payment Result: An entity class representing the result of a payment transaction, including details such as transaction ID, status, and timestamp.
Q3. Place these classes on a three tier Architecture.
Answer 3
The User Interface (UI) Layer classes handle interactions with the user, displaying payment options, gathering user input, and presenting payment results.
The Business Logic Layer classes coordinate the payment process, managing the flow of logic and processing specific payment methods.
The Data Tier classes represent entities associated with payment, encapsulating the data needed for processing payments and storing results.

	User Layer

	PaymentGateway

	PaymentConfirmation

	NetBankingPaymentboundry

	WalletPaymentboundry

	CashPaymentboundry

	Business Logic

	PaymentController

	CardPaymentController

	WalletPaymentController

	CashPaymentController

	NetBankingPaymentController

	Data Tier

	Customer (Entity class)

	Payment (Entity class)

	Card(Entity class)

	Wallet(Entity class)

	BankAccount(Entity class)

Q4. Explain the Domain Model for Customers making payment through Net Banking
Answer 4
	Bank

	Bank Name
	Location
	Branch Code

	
	
	

	
	
	

	
	
	

	
	
	

 A Domain Model represents the key entities, their attributes, and relationships within a specific domain. In the context of customers making payments through Net Banking, the Domain Model captures the essential concepts and their interactions. Here's an explanation of the Domain Model:
	Customer

	Customer ID
	Customer Name
	Contact Details
	Address
	Account Number

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	Account

	Account no.
	Account type
	Balance
	Account holder Name

	
	
	
	

	
	
	
	

	
	
	
	

	Payment

	Payment ID
	Amount
	Payment Date
	Status

	
	
	
	

	
	
	
	

	
	
	
	

	Net Banking Service

	Authentication
	Funds Transfer
	Transaction History
	Account Management

	
	
	
	

	
	
	
	

	
	
	
	

	Transaction

	Transaction ID
	Recipient Details
	Amount
	timestamp

	
	
	
	

	
	
	
	

	
	
	
	

	Authentication

	Username
	Password
	OTP

	
	
	

	
	
	

	
	
	

Interaction Flow:
· A Customer initiates a payment, indicating the desire to use Net Banking.
· The system verifies the associated Net Banking Account details.
· The payment details are sent to the Bank System for processing.
· The Bank System verifies the Net Banking credentials, processes the payment, and records the transaction.
· The result is communicated back to the system, updating the status of the Payment.
· Transaction details are recorded for future reference.

Q5. Draw a sequence diagram for payment done by Customer Net Banking
Answer 5
Bank
Net Banking System
Customer

	|					 |						 |
 | Initiate Payment Request 	 | 						 |
 | |						 |
 | | Authenticate customer details |
 | 	 |						 |
 |					 | Validate Payment Details 		 |
 |					 |						 |
 |					 | Deduct amount from customer account |
 |					 |Process payment to recipient bank |
 |					 |						 |
 | 					 |	Confirm payment success/failure	 |	
 |					 |						 |
 |					 |						 |
 |					 |						 |
	|	Receive payment confirmation			 |
 |					 |						 |
 |					 |						 |

Q6. Explain Conceptual Model for this Case
Answer 6
In the conceptual model for the payment system, various key concepts interact to facilitate diverse payment methods. The central element is the Payment Method, encompassing types like Card, Wallet, Cash, and Net banking. The User Interface (UI) engages users by displaying options and collecting input. The Payment Controller oversees the process, orchestrating interactions between the UI and method-specific controllers. Each Payment Method Controller manages the unique logic for its payment type, leveraging details from Payment Details specific to each method. The result of a transaction is encapsulated in the Payment Result, encompassing attributes like transaction ID, status, and timestamp. This model establishes a high-level understanding, guiding the system's design and emphasizing the separation of concerns among UI, business logic, and data entities.

Q7. What is MVC architecture? Explain MVC rules to derive classes from use case diagram and guidelines to place classes in 3-tier architecture
Answer 7
MVC (Model-View-Controller) is a software architectural pattern used to structure applications by separating concerns into three interconnected components: Model, View, and Controller. It aims to provide a clear separation of concerns, making the code modular, maintainable, and easier to scale.
MVC Components:
Model: Think of the Model as the brain of the application. It handles the data and the logic behind how the application works. For example, in a payment system, the Model manages things like processing payments and keeping track of transactions.
View: The View is what users see and interact with. It's like the face of the application. It displays information from the Model in a way that users can understand and interact with. In our payment system, the View shows the payment options to the user.
Controller: The Controller acts as the middle person between the Model and the View. It takes input from users (like clicking a payment option) and decides what to do with that input. For instance, when a user selects a payment method, the Controller figures out how to process that payment using the Model and tells the viewer what to display next.
When deriving classes from a use case diagram following MVC:
· Identify the use case elements and map them to their respective layers (Model, View, or Controller).
· Create classes in each layer based on the identified use case elements. For instance, an entity in the use case diagram may translate to a class in the Model layer, a user interface form might translate to a class in the View layer, and a use case action might translate to a class in the Controller layer.
· Ensure proper communication and interaction among these classes according to the MVC principles: Views displaying data from the Models, Controllers handling user interactions and updating the Models/Views accordingly, and Models containing the core logic and data of the application.
Adhering to these principles will help maintain the separation of concerns, making the application easier to maintain, test, and modify in the future.
Guidelines for Placing Classes in 3-Tier Architecture:
· Presentation Layer (UI): This layer deals with what users see and interact with. Classes that handle the user interface, like showing payment options, belong here.
· Application Layer (Business Logic): These classes manage how the application works. They handle things like processing payments or managing transactions. In a payment system, the classes that handle payment processing belong here.
· Data Access Layer (Persistence): This layer deals with storing and retrieving data. Classes that interact with databases or handle data storage belong here. For example, in a payment system, the classes that save transaction details would be in this layer.
By organizing classes according to these guidelines, developers can create applications that are easier to understand, maintain, and scale because each part has its specific role and doesn't get mixed up with other responsibilities.
Q8. Explain BA contributions in a project (Waterfall Model – all Stages)
Answer 8
In the Waterfall Model, Business Analysts (BAs) play a crucial role across all stages of the project lifecycle. Their contributions are vital in ensuring that the project meets the needs of stakeholders, maintains alignment with business objectives, and delivers a successful outcome. Here is an overview of the BA contributions in each stage of the Waterfall Model:
1. Requirements Gathering/Analysis:
Elicitation of Requirements: BAs work closely with stakeholders to identify, gather, and document requirements. This involves conducting interviews, workshops, and other techniques to understand and document the needs of the business and users.
Documentation: They create detailed requirement specifications, including functional and non-functional requirements, user stories, use cases, and business rules.
2. System Design:
Translating Requirements: BAs assist in translating gathered requirements into design specifications that serve as the blueprint for the solution. They collaborate with designers, architects, and developers to ensure the proposed solution aligns with the identified business needs.
Prototyping: In some cases, BAs may create prototypes or mock-ups to visualize and validate the proposed solution with stakeholders.
3. Implementation/Development:
Clarification and Support: During this phase, BAs work closely with development teams, clarifying requirements, providing insights, and addressing any ambiguity in requirements documentation. They serve as a bridge between stakeholders and developers to ensure accurate implementation of requirements.
Requirement Traceability: BAs track and ensure that each requirement is implemented as specified and documented.
4. Testing:
Test Case Creation: BAs assist in the creation of test cases based on documented requirements to validate that the solution meets business needs.
User Acceptance Testing (UAT) Support: They facilitate UAT by providing necessary documentation, clarifying requirements, and working with users to ensure the solution aligns with their expectations.
5. Deployment/Installation:
Transition Support: BAs aid in the transition phase, ensuring that stakeholders understand the implemented solution. They may assist in creating user manuals, conducting training sessions, and providing support during the deployment phase.
6. Maintenance/Support:
Change Management: BAs manage change requests post-implementation, assess their impact on the existing system, and update documentation accordingly.
Continuous Improvement: They gather feedback from users and stakeholders to identify areas for improvement in the system and contribute to future enhancements or iterations.
Q9. What is conflict management? Explain using the Thomas – Kilmann technique.
Answer 9
Conflict management refers to the process of resolving disagreements or disputes between individuals or groups in a manner that addresses the issues while maintaining relationships and minimizing negative impacts. The Thomas-Kilmann Conflict Mode Instrument (TKI) is a widely used model that identifies five primary conflict resolution styles based on two dimensions: assertiveness and cooperativeness. These styles help individuals understand their approach to conflict and how they can adapt to manage conflicts effectively. The five conflict-handling modes are:
The Thomas-Kilmann Conflict Mode Instrument (TKI) helps people understand how they deal with conflicts. It gives five different ways (or styles) that people might use when facing a disagreement or problem:
· Competing: This is when someone stands their ground and pushes their own ideas without considering others much.
· Collaborating: This style is about working together to find a solution that makes everyone happy. It's when people talk things out and try to reach an agreement that suits everyone involved.
· Compromising: It's about finding a middle ground. Everyone involved gives up a bit to make a deal that everyone can live with, even if it's not perfect for anyone.
· Avoiding: Some people might avoid conflicts altogether. They don't like arguments, so they ignore the problem or try to postpone dealing with it.
· Accommodating: This is when someone gives in to what others want, even if it means not getting what they want. They prioritize keeping the peace and making others happy over their own needs.
The TKI helps people understand which style they tend to use more often and when it might be good to use different styles depending on the situation. It's all about finding the best way to handle conflicts so that problems get solved, relationships stay good, and everyone feels heard and respected.
Q10. List down the reasons for project failure
Answer 10
· Unclear Goals: When the project's aims and what needs to be achieved aren't well-defined or understood.
· Bad Planning: Inadequate preparation, wrong estimations, and poorly managed resources leading to missed deadlines and overspending.
· Risk Ignorance: Not identifying or preparing for potential problems that could pop up during the project.
· Communication Problems: Not talking enough or clearly with everyone involved, leading to misunderstandings or different expectations.
· Team Issues: Problems within the team like conflicts, lack of skills, or motivation leading to low-quality work.
· Technology or Tools Troubles: Issues with the tools or technology needed for the project causing delays or failures.
· Scope Changes: Constantly changing what the project is supposed to do without properly evaluating or controlling these changes.
· Quality Control Lapses: Not checking the work properly, resulting in mistakes, defects, or unsatisfactory results.
· Inflexibility: Being unable to adapt to changes in circumstances, customer needs, or unexpected events.
· External Factors: Things beyond the team's control like changes in laws, economic shifts, or depending too much on other companies or resources.
Q11. List the Challenges faced in projects for BA
Answer 11
Business Analysts (BAs) encounter several challenges throughout project lifecycles. Some of the prominent challenges faced by BAs include:
· Unclear Requirements: Ambiguous or constantly changing requirements can make it challenging for BAs to define and document clear and comprehensive requirements.
· Stakeholder Management: Managing various stakeholders with differing priorities, expectations, and levels of engagement can be difficult, requiring effective communication and negotiation skills.
· Scope Creep: Managing scope changes without proper evaluation or control can lead to project drift, affecting timelines and budgets.
· Technology Constraints: Dealing with outdated or incompatible technology can hinder the BA's ability to gather accurate requirements or implement solutions effectively.
· Conflict Resolution: Resolving conflicts among stakeholders or within project teams regarding requirements or objectives can be challenging and require tact and diplomacy.
· Resource Constraints: Limited resources, including time, budget, or skilled personnel, can pose challenges in meeting project demands and stakeholder expectations.
· Changing Business Environment: Adapting to changes in the business environment, market trends, or regulatory requirements can impact the project's direction and requirements.
· Lack of Domain Knowledge: BAs might face challenges in understanding complex business domains, industries, or specialized areas, affecting their ability to elicit and document requirements accurately.
· Communication Gaps: Ensuring effective communication among diverse stakeholders with varying technical expertise levels can be challenging and might lead to misunderstandings.
· Inadequate Tools and Techniques: Lack of access to appropriate tools or methodologies for requirement gathering, analysis, and documentation can hinder the BA's effectiveness.
· Resistance to Change: Stakeholders or team members might resist proposed changes or solutions, affecting the implementation process.

Q12. Write about Document Naming Standards
Answer 12
Document naming standards are guidelines or rules established within an organization to ensure consistency, clarity, and easy retrieval of documents. These standards are crucial for maintaining an organized and efficient document management system.
Implementing and maintaining document-naming standards streamlines document management processes, enhances productivity, minimizes errors, and improve overall efficiency within an organization.

· Make Names Clear and Descriptive: The names should tell what the document is about
· Keep Names Short and Simple: Try not to make the names too long or complicated. Short names are easier to read and remember.
· Use Important Keywords: Include important words related to the document's topic. These words help when searching for or sorting documents. For instance, if it's a project report, include the project name or code in the document name.
· Avoid Special Characters: Don't use unusual symbols, emojis, or spaces in document names. Stick to letters, numbers, hyphens, or underscores.
· Add Dates or Version Numbers: If it's a document that gets updated often, like a report or a plan, include the date or version number in the name. For instance, "Project_Plan_v2_2024."
· Organize Documents in Folders: Create a logical structure for storing documents in folders. For example, have separate folders for different projects or departments.
Q13. What are the Do’s and Don’ts of a Business analyst
Answer 13
Do's for a Business Analyst:
1. Understand Business Needs: Strive to deeply understand the business objectives, goals, and needs. Engage with stakeholders to grasp their requirements comprehensively.
2. Effective Communication: Communicate clearly and effectively with diverse stakeholders, translating technical concepts into understandable language and ensuring everyone is on the same page.
3. Requirement Elicitation and Analysis: Employ various techniques to elicit, analyze, and document requirements accurately. Be thorough in understanding and documenting business processes and user needs.
4. Problem-Solving and Critical Thinking: Develop strong analytical and critical thinking skills to identify problems, propose solutions, and make data-driven decisions.
5. Documentation Skills: Create detailed, clear, and concise documentation of requirements, business processes, use cases, and user stories.
6. Collaboration and Teamwork: Foster collaboration among project teams, stakeholders, and developers to ensure alignment and successful project outcomes.
7. Adaptability and Flexibility: Be adaptable to changing project requirements, technology advancements, and evolving business needs.
8. Risk Management: Identify potential risks, assess their impact, and propose mitigation strategies to avoid project setbacks.
9. Domain Knowledge Enhancement: Continuously learn and enhance domain-specific knowledge to better understand industry trends and business practices.
10. Testing and Validation Support: Assist in the validation of solutions through testing, ensuring they meet business requirements.

Don'ts for a Business Analyst:
1. Assuming Requirements: Avoid assuming needs without proper validation or solely relying on personal understanding without consulting stakeholders.
2. Overlooking Stakeholder Input: Don't disregard or undervalue stakeholder input or requirements, as their perspectives are crucial for project success.
3. Miscommunication: Avoid using technical jargon that might confuse stakeholders. Ensure communication is tailored to the audience's understanding.
4. Ignoring Change Control: Avoid implementing changes without proper evaluation or change control processes, as this can lead to scope creep and project issues.
5. Lack of Documentation: Don't neglect documenting requirements, decisions, or project-related information, as this documentation is vital for future reference and project continuity.
6. Rigidity in Approach: Avoid being rigid in methodologies or processes. Be flexible and open to different approaches based on project needs.
7. Neglecting Continuous Improvement: Don't get complacent with current skills. Always seek opportunities to learn, improve, and stay updated with industry trends.
8. Losing Sight of Business Goals: Don't get too caught up in technical details and lose focus on the bigger business objectives and outcomes.
9. Siloed Approach: Avoid working in isolation. Collaborate and engage with the team and stakeholders to ensure a holistic view and understanding of project needs.
10. Ignoring Feedback: Don't disregard feedback from stakeholders or team members. Use feedback constructively to improve processes and outcomes.
Q14. Write the difference between packages and sub-systems
Answer 14
	Aspect
	Packages
	Subsystems

	Purpose
	Organize and group related classes or components
	Group functionalities or services within the system

	Scope
	Higher level of abstraction
	Lower level of abstraction

	Visibility
	Provides a namespace for related elements
	Represents a cohesive unit of the system

	Encapsulation
	Encapsulates related elements
	Defines autonomous functionalities or services

	Dependency Management
	Manages dependencies between components
	Defines interaction and dependencies between larger components

	Abstraction Level
	Provides a namespace and groupings
	Represents larger blocks of functionality or services

	Interactions
	Elements within a package might interact
	Subsystems interact with each other within the system

	System Architecture
	Forms a part of the overall system structure
	Defines significant portions of the system architecture

	Language Dependency
	Commonly used in languages like Java or Python
	Not language-specific, but used in system design and architecture

Q15. What is camel-casing and explain where it will be used
Answer 15
CamelCase is a way of writing words or phrases where each new word begins with a capital letter, without any spaces or punctuation in between. CamelCase is used to make names easier to read by joining words together without spaces and making the start of each word stand out with capital letters. It helps keep things consistent and easy to understand in various aspects of coding and software development.
Where CamelCase Is Used:
1. In Programming: It is commonly used for naming things like variables, functions, or classes in computer programming languages. For example, when writing code, programmers might use CamelCase to name things like the first name, calculate Total Amount (), or Customer Account.
2. Web Development: In websites or web applications, developers might use CamelCase for naming things like CSS classes or JavaScript functions.
3. APIs and URLs: In designing web interfaces or web services (like APIs), CamelCase can be used for naming different parts of the URL or in API conventions.
4. Databases: Sometimes, CamelCase is used to name tables or columns in databases.

Q16. Illustrate the Development server and what are the accesses does business analyst has.
Answer 16
A development server is a computer or system dedicated to supporting software development activities. It's a specific environment where programmers, developers, and other team members work on coding, testing, and building software applications before deploying them to production environments. The development server is a controlled environment where changes and updates can be made without affecting the live or operational systems.
Functions of a Development Server:
· Making New Software: It's used by developers to create, write, and test new programs or apps.
· Finding and Fixing Problems: Developers use it to find and fix any mistakes or issues in the software before it's used by lots of people.
· Saving Different Versions: It helps keep track of different versions of the software, so the team can see changes and work together on the same project.
· Testing Before Going Live: Before the software is officially launched or used by everyone, it's tested on this server to make sure it works well.

Access of Business Analysts on Development Servers:
Business Analysts (BAs) on the team have specific permissions or rights on this server:
· Reviewing Progress: BAs can look at how the software is coming along, ensuring that it matches what the business wants.
· Discussing and Sharing Ideas: They can talk to the developers and team members, sharing ideas and making sure the software meets the business needs.
· Testing and Checking Details: Sometimes, BAs might help in testing the new software to make sure it does what it's supposed to do for the business.
· Reading Documents: BAs can access documents that describe what the software should do, making sure everything stays on track.
· Giving Feedback: Based on what they see during the development, BAs can suggest changes or updates to make the software better for the business.
· Limited Changes: They usually have limited abilities to change or control the server settings or technical parts of the software.
[bookmark: _GoBack]In short, a development server is like a workshop where a team builds and tests new software. Business Analysts have a role in overseeing the process, making sure the software matches what the business needs, and providing input for improvements.
Q17. What is Data Mapping
Answer 17
Data mapping is like making a map between two different sets of information. It's the process of connecting or matching data from one place to another, showing how information in one system relates to information in another system. It involves defining the relationship or correspondence between data elements from one system to another, ensuring data interoperability and accurate data transfer between disparate systems or formats.
Key Points about Data Mapping:
· Matching Data Fields: It involves identifying and linking data fields or attributes from a source system to their corresponding fields in a target system.
· Understanding Data Structures: Data mapping requires a clear understanding of the structure, format, and meaning of data elements in both the source and target systems.
· Transformation Rules: It often includes defining transformation rules or logic to convert data from one format to another, ensuring that data retains its integrity and meaning during the transfer.
· Data Integration: Data mapping is crucial in data integration projects where data needs to be moved or synchronized between different databases, applications, or systems.
· Business Requirements Alignment: Mapping should align with business requirements and objectives, ensuring that the mapped data serves the intended purpose.
· Tools and Techniques: Various tools, software, or manual methods can be used for data mapping, such as spreadsheets, data mapping software, or programming scripts.
Q18. What is API. Explain how you would use API integration in the case of your application Date format is dd-mm-yyyy and it is accepting some data from Other Application from US whose Date Format is mm-dd-yyyy.
Answer 18
An API (Application Programming Interface) is a set of rules, protocols, and tools that allows different software applications to communicate and share data with each other. It defines the methods and data formats that applications can use to request and exchange information.
Using API Integration in the Case of Date Format Differences:
Imagine your application uses a date format like "dd-mm-yyyy" (day-month-year), but you're getting data from another app in the US that uses a different date format: "mm-dd-yyyy" (month-day-year). Here's how you'd handle this:
1. Understanding the Other App's Way: You need to know how the other app sends its dates, like the "mm-dd-yyyy" format.
2. Fixing the Date Format Mismatch: When your app receives data from the US app through the API, you'll need to make adjustments to the date format so your app can understand it.
3. Changing Dates to Match: You'll need to convert the date format from "mm-dd-yyyy" to "dd-mm-yyyy" when your app receives it. It's like rearranging the date so your app can read it properly.
4. Adjusting Your App's Integration: Modify the way your app's integration with the other app works. Ensure your app can recognize and handle the different date formats properly when getting information from the US-based app.
5. Testing and Making Sure It Works: Double-check everything! Test to confirm that your app can receive, understand, and use the date information correctly after the format change.
6. Handling Mistakes or Errors: Sometimes things might go wrong. Put systems in place to handle any mistakes or issues that might pop up during the process of converting date formats.

