
Capstone Project 3 (Part 1)

 A customer can make a payment either by Card or by Wallet or by Cash or by Net banking.
Q1. Draw a Use Case diagram

Q2. Derive Boundary Classes, Controller Classes, Entity Classes.

Answer:
1. Boundary Classes (User Interface Components)
Boundary classes manage the interaction between the system and the actor (user). These typically represent screens, forms, or UIs.
· PaymentPage – Interface where the customer selects the payment method.
· CardPaymentUI – Interface for inputting card details like card number, expiry date, CVV, etc.
· WalletPaymentUI – Interface that allows payment through digital wallets like Paytm or PhonePe.
· CashPaymentUI – Interface to confirm offline cash payment entry.
· NetBankingUI – Interface where the user logs into their bank account and authorizes the payment.

2. Controller Classes (Business Logic Handlers)
Controller classes handle the business rules and the flow of logic between boundary and entity classes.
· PaymentController – Manages overall payment logic and directs request based on selected method.
· CardPaymentController – Validates and processes card payment transactions securely.
· WalletPaymentController – Authenticates and processes wallet-based payments.
· CashPaymentController – Registers confirmation for cash transactions.
· NetBankingController – Handles net banking credentials and transaction flow securely.

3. Entity Classes (Data & Business Rules)
Entity classes represent business objects, store data, and contain business logic.
· Payment – A generic class capturing attributes like PaymentID, amount, date, and status.
· CardPayment – Stores card-specific data like cardholder name, card number, CVV, and expiry date.
· Wallet – Represents a digital wallet with balance tracking and transaction history.
· CashTransaction – Represents a cash-based payment, usually entered manually.
· NetBankingTransaction – Stores information related to bank account used, IFSC code, transaction ID, etc.

Q3. Place these classes on a three-tier architecture

Answer:
A Three-Tier Architecture separates the application into three logical layers:
1. Presentation Layer
2. Business Logic Layer
3. Data Access Layer (Data Layer)
Each class derived from the use case diagram is placed in one of these layers based on its responsibility.

1. User Layer -
This layer is responsible for interacting with the user. It contains Boundary Classes.
· PaymentPage
· CardPaymentUI
· WalletPaymentUI
· CashPaymentUI
· NetBankingUI
These classes collect input from the user and display output or error messages.

2. Business Logic Layer (Application Layer) -
This layer processes business logic and workflows. It contains Controller Classes.
· PaymentController
· CardPaymentController
· WalletPaymentController
· CashPaymentController
· NetBankingController
They receive input from the Presentation Layer, apply the rules, and call the appropriate Entity classes.

3. Data Layer -
This layer handles data storage, retrieval, and database communication. It contains Entity Classes.
· Payment
· CardPayment
· Wallet
· CashTransaction
· NetBankingTransaction
These classes represent data objects that are mapped to the database and handle data operations like insert, update, delete, and fetch.

Q4. Explain Domain model for customer making payment through net banking

Answer:
[image:]
Q5. Draw a sequence diagram for payment done by Customer Net banking

Answer:
A Sequence Diagram is one of the most important types of interaction diagrams in the Unified Modeling Language (UML). It is used to model the dynamic behaviour of a system by showing how objects and components interact with each other in a sequential order over time to complete a specific task or functionality.

[image:]

Q6 Explain Conceptual Model for this case

Answer:
A Conceptual Model is a high-level representation of the business objects (concepts) involved in a system. It is independent of implementation and focuses on understanding the structure and relationships of the entities from a business perspective.
In the given case, a customer can make a Payment using different Payment Methods such as Card, Wallet, Cash, or Net Banking. The conceptual model captures the entities involved and how they are related.
Key Concepts (Entities):
1. Customer – The user who initiates the payment.
2. Payment – The transaction made by the customer.
3. Payment Method – The method used to make the payment.
· Card
· Wallet
· Cash
· Net Banking
4. Bank – Involved in Net Banking payment method.
Relationships:
· A Customer can make one or many Payments.
· A Payment is made using one Payment Method.
· If Net Banking is used, the Payment is associated with a Bank.
· Each Payment Method is a specialization (subtype) of the general Payment Method class
Q7. What is MVC architecture? Explain MVC rules to derive classes from use case diagram and guidelines to place classes in 3-tier architecture

Answer:
1. What is MVC Architecture?
MVC stands for Model-View-Controller. It is an architectural pattern used to separate concerns in software applications, especially in web and desktop development. The primary goal of MVC is to divide an application into three interconnected components:
· Model – Represents the business logic and data (e.g., database operations, calculations).
· View – Represents the user interface (UI) that displays data to the user.
· Controller – Manages input from the user and updates the model and view accordingly.

MVC Rules to Derive Classes from Use Case Diagram
The Model-View-Controller (MVC) pattern helps in systematically identifying classes from a Use Case Diagram by mapping each element to a specific type of class:
1. Actors → Boundary Classes (View Layer)
· Actors in use case diagrams represent users or external systems.
· These translate into Boundary Classes, which handle interaction between users and the system.
 Example: LoginPage, PaymentScreen, UserDashboard.

2. Use Cases → Controller Classes (Logic Layer)
· Each use case describes a system function or process.
· These map to Controller Classes, which manage workflows and coordinate between view and model.
 Example: LoginController, PaymentController, OrderManager.

3. Business Concepts / Nouns → Entity Classes (Data Layer)
· Nouns and data elements in use case narratives point to Entity Classes, which hold business data.
Example: Customer, Payment, BankAccount, Order.

 Guidelines to Place Classes in 3-Tier Architecture
Once classes are derived, we place them in the respective tiers of a 3-Tier Architecture, which separates concerns for better design and maintenance.

1. Presentation Tier (UI Layer)
· Contains Boundary Classes.
· Handles user input and output (UI screens, forms).
Classes: LoginPage, PaymentForm, DashboardView.

2. Application Tier (Business Logic Layer)
· Contains Controller Classes.
· Coordinates business logic, validates input, and connects UI to data.
 Classes: PaymentController, UserManager, OrderProcessor.

3. Data Tier (Persistence Layer)
· Contains Entity Classes.
· Manages data storage, retrieval, and mapping to database.
Classes: Customer, Payment, Transaction, Bank.

 Q8. Explain BA contributions in project (Waterfall Model – all Stages)

Answer:
	Stage
	Activities
	Artifacts & Resources

	Pre-project
	- Understand business need
	- Business Case

	
	- Identify stakeholders
	- Feasibility Report

	
	- Conduct feasibility study
	- Stakeholder Register

	Planning
	- Assist in project scoping
	- BA Plan

	
	- Define BA approach
	- Risk Register

	
	- Identify risks and constraints
	- Communication Plan

	Project Initiation
	- Conduct stakeholder meetings
	- Project Charter

	
	- Understand project goals
	- Stakeholder Analysis

	
	- Support project charter creation
	- High-Level Requirements

	Requirements Gathering
	- Conduct interviews, workshops
	- Requirements Document

	
	- Capture functional & non-functional requirements
	- Use Case Diagram

	
	
	- Process Flows

	Requirements Analysis
	- Analyse and validate requirements
	- BRD, FRD, SRS

	
	- Resolve conflicts
	- Requirement Traceability Matrix (RTM)

	
	- Prioritize requirements
	

	Design
	- Support design team
	- Wireframes

	
	- Review design documents for requirement coverage
	- UI Mockups

	
	
	- Data Flow Diagrams

	Development
	- Clarify requirements to developers
	- Updated RTM

	
	- Support functional queries
	- Change Requests (if any)

	Testing
	- Support test case preparation
	- Test Plan

	
	- Validate test coverage
	- Test Scenarios

	
	- Participate in defect triaging
	- Defect Logs

	UAT (User Acceptance)
	- Facilitate UAT planning
	- UAT Scripts

	
	- Support users during UAT
	- Sign-off Document

	
	- Collect feedback and sign-off
	- UAT Feedback Report

 Q9. What is conflict management? Explain using Thomas – Kilmann technique

Answer:
· What is Conflict Management?
Conflict management is the process of identifying and resolving disagreements or disputes between individuals or groups in a constructive and effective manner. It involves communication, problem-solving, and negotiation to ensure the conflict does not negatively impact the project's goals, timeline, or team collaboration.

· What is Thomas–Kilmann Technique?
The Thomas–Kilmann Conflict Mode Instrument (TKI) is a widely used tool to understand how different people handle conflict. It identifies five conflict-handling styles based on two behavioral dimensions:
· Assertiveness – The extent to which a person tries to satisfy their own concerns.
· Cooperativeness – The extent to which a person tries to satisfy the other person’s concerns.
Based on these, the five conflict-handling styles are:
	Style
	Description

	1. Competing
	High assertiveness, low cooperativeness. One party seeks to win.

	2. Collaborating
	High assertiveness, high cooperativeness. Find a win-win solution.

	3. Compromising
	Moderate assertiveness and cooperativeness. Both parties give up something.

	4. Avoiding
	Low assertiveness and cooperativeness. Delays or avoids the conflict.

	5. Accommodating
	Low assertiveness, high cooperativeness. One party gives in to the other.

· 5 Steps of Conflict Management Process
1. Identify the Conflict
Understand the source and parties involved in the disagreement.
2. Understand Everyone’s Interests
Listen actively to all stakeholders and understand their concerns and expectations.
3. Evaluate Possible Solutions
Brainstorm and analyze potential solutions that meet everyone’s interests.
4. Select the Best Solution
Choose a resolution strategy (e.g., compromise or collaboration) based on the situation.
5. Implement and Follow-up
Ensure the chosen solution is executed and review the outcome to avoid future conflicts.

Q10. List down the reasons for project failure

Answer:
Project failure can occur due to multiple reasons, ranging from poor planning to lack of communication. Below are the key reasons:

 1. Poor Requirements Gathering
· Incomplete, unclear, or misunderstood requirements lead to building the wrong product.
· Lack of stakeholder involvement during requirement elicitation is a major cause.

 2. Scope Creep (Uncontrolled Changes in Scope)
· Frequent additions or changes to requirements without proper evaluation and approval.
· Leads to delays, increased costs, and reduced quality.

 3. Ineffective Project Planning and Scheduling
· No clear roadmap or unrealistic timelines can derail progress.
· Lack of risk planning, buffer time, or milestones causes chaos.

4. Communication Gaps
· Miscommunication between stakeholders, project managers, developers, and testers.
· Leads to misunderstandings, duplicated efforts, and missed expectations.

 5. Inadequate Risk Management
· Failing to identify and mitigate risks in the early phase.
· Unexpected issues can impact time, cost, and performance.

 6. Lack of Stakeholder Engagement
· Stakeholders not being involved or responsive leads to incorrect direction and missed requirements.
· Their buy-in is crucial for project acceptance.

 7. Weak Leadership or Inexperienced Team
· Project manager without leadership skills or team lacking technical competence.
· Affects decision-making, coordination, and execution.

 8. Budget Overruns
· Incorrect cost estimation or poor resource utilization.
· Can cause project delays, quality compromise, or complete halt.

 9. Poor Quality Control
· Inadequate testing or ignoring quality assurance practices.
· Results in bugs, rework, and reduced customer satisfaction.

 Q11. List the Challenges faced in projects for BA

Answer:

1. Unclear or Changing Requirements
· Frequent changes or poorly defined requirements make it difficult to maintain clarity and consistency throughout the project.

2. Managing Stakeholder Expectations
· Stakeholders may have different or unrealistic expectations, making it challenging to ensure alignment and satisfaction.

3. Scope Creep and Scope Management
· Unauthorized or unplanned changes in project scope can affect timelines, cost, and overall project success.

4. Time and Resource Constraints
· Limited time and inadequate resources often hinder thorough analysis, documentation, and validation efforts.

5. Quality Assurance and Testing
· Ensuring that the developed solution meets business needs and is thoroughly tested as per requirements can be a major challenge.

6. Documentation and Knowledge Management
· Maintaining up-to-date, accurate documentation and sharing knowledge across teams is often overlooked, leading to gaps.

7. Technology Constraints and Complexity
· Adapting to complex or unfamiliar technologies may slow down requirement analysis and communication with technical teams.

 Q12. Write about Document Naming Standards

Answer:
Document naming standards are structured guidelines used to consistently name project-related documents. These standards help in easy identification, organization, version control, and retrieval of documents throughout the project lifecycle.

Purpose of Using Naming Standards:
· To maintain clarity and consistency across all documents.
· To easily track document versions and updates.
· To ensure smooth collaboration among stakeholders.
· To support effective documentation management.
Typical Elements in a Naming Convention:
1. Project Identifier – Unique code or ID for the project.
2. Document Type – Short form of the document category (e.g., REQ for Requirements).
3. Version Number – Indicates the version of the document (e.g., 1.0).
4. Date – The date of document creation or revision.

Example:
Suppose we have a project with the ID "PROJ123", and we are working with a Requirements Specification Document, with:
· Project ID: PROJ123
· Document Type: REQ
· Version: 1.0
· Date: 2025-04-10
Then the document identifier would be:
 PROJ123-REQ-1.0-2025-04-10

 Q13. What are the Do’s and Don’ts of a Business analyst

Answer:
	Sr. No.
	DO'S
	DON'TS

	1
	Consult an SME for clarifications in requirements.
	Never say NO to the client.

	2
	Go to the client with a plain mind with no assumptions. Listen carefully and completely until the client is done, and then you can ask queries.
	There is no word as “By default”.

	3
	Try to extract maximum leads to the solution from the client himself.
	Never imagine anything in terms of GUI.

	4
	Concentrate on the important requirements.
	Do not interrupt the client when he is giving you the problem.

	5
	Question the existence of existence/ Question everything.
	Never try to give solutions to the client straight away with your previous experience and assumptions.

 Q14. Write the difference between packages and sub-systems

Answer:
Packages are collections of components that are not reusable, meaning they are built for a specific system or purpose and cannot be easily used in other systems. These are often tightly coupled with the application they are developed for. Companies that provide custom software solutions, such as small IT service firms or freelance developers, usually work with packages. Since every client has unique requirements, the focus is on quick delivery rather than reusability.

Sub-Systems are reusable collections of components. They are designed in a way that allows them to be integrated into various systems with minimal changes. Sub-systems follow standardized interfaces and can operate independently. Product-based companies or large-scale enterprises that build software platforms prefer using sub-systems. For example, a company like SAP or Salesforce may develop a sub-system for user management or data analytics that can be reused across multiple products or client solutions.

Q15. What is camel-casing and explain where it will be used

Answer:
Camel-casing is a style of writing compound words or phrases where each word is joined without spaces, and every word after the first starts with a capital letter. The first word remains in lowercase. This format makes long variable or method names easier to read.

 Example:
· employeeId
· loginStatus
· getCustomerInfo
This style is called camel-casing because the capital letters in the middle resemble the humps of a camel.

 Where is it used?
Camel-casing is widely used in software development for:
· Naming variables in code (e.g., userEmail, orderNumber)
· Naming functions or methods (e.g., fetchData(), sendNotification())
· Creating object property names in many programming languages like Java, JavaScript, C++, and Python.

 Purpose of Using Camel-Case:
· Increases clarity and readability in code.
· Makes it easier to understand long names without using separators like underscores.
· Follows the conventions recommended by many programming languages and frameworks.

 Q16. Illustrate development server and what are the accesses does business analyst has?

Answer:
Development Server –
A Development Server is a server environment used by the development team to build, develop, and test the application or software. It is an internal environment where developers write code, debug, and integrate different modules of the project. It is not accessed by the client or end users.
This environment is usually the first stage in the software development lifecycle before the code moves to staging or production servers.

Access for Business Analyst (BA):
A Business Analyst has limited access to the development server because the BA’s primary role is not technical but functional.
Here is what the BA typically can do:
· Read-only access to the front-end screens or modules to verify if development aligns with business requirements.
· View UI prototypes or early builds to confirm screen flow and feature implementation.
· Access to demo versions of the application for walkthroughs or internal reviews.
· Log issues or bugs found during observation using tools like Jira or Trello.
· Verify requirement coverage (i.e., check if user stories or functional points are reflected in the current build).
The BA is not allowed to modify code, change configurations, or interfere with backend development activities.

Q17. What is Data Mapping

Answer:
Data Mapping is the process of matching data fields from one source to another. It helps in connecting data from different systems, formats, or databases so that the information can be transferred, integrated, or transformed correctly.
In other words, data mapping defines how data from a source (like a user input form, database, or external system) will be converted and stored in a target system (like another database or software).

Why is Data Mapping Needed?
In real-world systems, data is stored in different formats, fields, and database structures. When moving data between systems (like from an old software to a new one), the data cannot simply be copied—it must be mapped to ensure that:
· Correct data reaches the right place.
· No data is lost or misinterpreted.
· Data types and formats are properly aligned.
· The business logic is preserved.

Where is Data Mapping Used?
· Data Migration: Moving data from old systems to new systems.
· System Integration: Connecting different applications or databases.
· ETL Processes (Extract, Transform, Load): Preparing data for analysis or storage.
· API Integration: Sending/receiving data between platforms.
· Business Intelligence/Reporting: Standardizing data for reports and dashboards.

 Benefits of Data Mapping:
1. Ensures data accuracy and consistency.
2. Helps avoid data duplication or mismatch.
3. Supports automation in data transformation.
4. Enables smooth system upgrades or transitions.
5. Helps in maintaining data quality and compliance.

Example:
If you are transferring customer data from an old system to a new one:
· Source field: cust_name → Target field: customerFullName
· Source field: dob → Target field: dateOfBirth
· Source field: addr → Target field: address

Q18. What is API. Explain how you would use API integration in the case of your application Date format is dd-mm-yyyy and it is accepting some data from Other Application from US whose Date Format is mm-dd-yyyy

Answer:
An API (Application Programming Interface) is a set of rules and protocols that allows two different software applications to communicate and exchange data with each other. It acts as a bridge between systems, enabling them to send requests and receive responses, even if they are built on different platforms or technologies.
APIs are commonly used to:
· Access third-party services (like payment gateways, maps, weather data).
· Share data between systems (e.g., web and mobile apps).
· Integrate multiple applications to work together seamlessly.

API Integration – Date Format Scenario
Let’s consider a real-life case:
You have built an application where the date format is dd-mm-yyyy (for example, India’s format).
Now, your system receives data from a US-based application via an API, and their format is mm-dd-yyyy.
This can lead to confusion or errors, especially when days and months are less than 12 (e.g., 04-05-2023 could be April 5th or May 4th).

How to Use API Integration in This Case
To avoid errors and ensure correct data handling, the API integration must include a date format conversion process. Here is how it would work step-by-step:

Step 1: Connect with the US Application’s API
Your system sends a request to the US application using their API. The API returns a response that includes user data like name, address, and date of birth in mm-dd-yyyy format.

Step 2: Identify the Format
The backend (API handler or middleware) knows the incoming date is in mm-dd-yyyy format.

Step 3: Convert the Format
Use code to convert mm-dd-yyyy to dd-mm-yyyy before saving to your system.
In programming languages like Python, JavaScript, or Java, you can use date libraries for format conversion. For example:
· From "11-25-1995" (US format)
· Convert to "25-11-1995" (Indian format)

Step 4: Store or Display Correctly
After conversion, store the date in the format your system accepts or display it accordingly to your users.

Step 5: Maintain Consistency in API Documentation
Mention in your API documentation:
· What date format your system expects (dd-mm-yyyy)
· Whether the integration supports automatic format conversion
· Any validation/error handling if incorrect date format is received

 Conclusion:
APIs allow applications to interact and share data effectively. In your application, if there is a mismatch in date formats between your system and the US-based system, API integration should include a format conversion logic to ensure accuracy. This approach avoids confusion, ensures correct data storage, and supports global compatibility.

image3.png
Bank

\ 4

\4

Y

Y

Custgmer Net Banki?g System
i Initiate Payment Request >3
| . Authenticate Customer Details
i i Validate Payment Details
3 : Deduction of Amount
3 : Process Payment to Recipient's Bank
i i Payment Confirmation
Receles Payment Confimation
Custémer |

Net Banking System

A\ 4

Bank

image1.emf
Payment Application

Payment Initiation

View Payment

Options

Customer

Server

*

* *

*

*

* *

*

Cash

Wallet

Net Banking

Debit/Credit Card

oleObject1.bin
System

Payment Application

Payment Initiation

Use Case

View Payment
Options

Customer

Server

*

*

*

*

*

*

*

*

Cash

Wallet

Net Banking

Debit/Credit Card

image2.png
@ Customer

© CustomerlD :
Name :
Email :
ContactNumber :

initiates \yerifies with

® Payment @Authentication
o PaymentID : o AuthlD :
Amount : Username :
Date : PasswordHash :
Status : OTP:
PaymentMode : Status :
CustomerlID : CustomerlID :
@ Account
o AccountNumber :
IFSCCode : uses generates
AccountType :
Balance :
CustomerlID :
@NetBankingService @ Transaction
. A) o TransactionlID :
linked to ° 2::\>lilcce?\llaDm-e . PaymentlD :
BankiD : . Timestamp :
- TransactionStatus :

@ Bank

o BanklID :
BankName :
Branch :

