Draw a Use Case Diagram
A Use Case Diagram illustrates how actors (users or external systems) interact with the system, outlining the various use cases. Here’s a textual description for the use case diagram since I can't draw directly:
Actors:
· Customer: The user initiating the payment process.
· Payment Gateway: (Optional, depending on system design) could be a system used to handle external payment processes, like card payment processing.
Use Cases:
· Make Payment: The primary use case for the customer. This is a general action where the customer can choose from various payment methods.
· Pay by Card: A specific use case where the customer opts to make a payment via credit/debit card.
· Pay by Wallet: The customer can opt to use their digital wallet to make a payment.
· Pay by Cash: If the payment is done in cash (maybe in physical stores).
· Pay by Net Banking: The customer can use net banking for making the payment.
· [image: C:\Users\admin\Downloads\Untitled Diagram (18).jpg]
·
· [bookmark: _GoBack]

· The relation between essential use case and supporting use case is generalisation
 Derive Boundary Classes, Controller Classes, Entity Classes
The Boundary, Controller, and Entity classes are derived based on their roles in the MVC (Model-View-Controller) design pattern:
Boundary Classes (Represent the user interface or the interaction point with the system):
1. PaymentView: This class handles the user interface for the payment. It displays options like Card, Wallet, Cash, or Net Banking for the customer to select.
2. PaymentConfirmationView: Displays confirmation of payment once completed (e.g., success or failure).
Controller Classes (Coordinate the flow between the view and the model, handling user actions):
1. PaymentController: This class manages the logic for directing the flow based on the customer’s payment choice. It will invoke specific methods related to card, wallet, cash, or net banking payments based on user selection.
· Methods:
· choosePaymentMethod(): Based on user input, it directs the payment to the respective method (Card, Wallet, etc.).
· processPayment(): Process the actual payment based on the selected method.
Entity Classes (Represent the business logic and data storage):
1. Customer: Contains customer details, such as name, payment history, etc.
2. Payment: Stores details about the payment, such as amount, payment method (Card, Wallet, etc.), status (completed, failed), and transaction ID.
3. Transaction: Represents a payment transaction and stores the relevant details for each payment method.

 Place these classes on a Three-Tier Architecture
Here’s how the boundary, controller, and entity classes fit within the 3-tier architecture:
1. Presentation Layer (UI/Frontend):
· PaymentView: Displays the available payment options and takes user input.
· PaymentConfirmationView: Shows the payment confirmation to the user.
2. Business Logic Layer (Controller):
· PaymentController: Handles the logic of directing the payment process and determining which payment method to use based on the customer’s input.
3. Data Layer (Database/Storage):
· Customer: Stores customer data in the database.
· Payment: Stores payment-related data (amount, method, status) in the database.
· Transaction: Stores the individual transaction details in the database.
3-Tier Architecture Layout:

 Presentation Layer

 PaymentView
 PaymentConfirmationView

 Business Logic Layer

 PaymentController

 Data Access Layer

 Customer
 Payment
 Transaction

 Explain Domain Model for Customer Making Payment through Net Banking
The Domain Model represents the core business logic and concepts of the system. In this case, for a customer making a payment via Net Banking, the domain model would involve several key components:
· Customer: The entity initiating the payment. This class would store attributes such as the customer’s name, email, and payment history.
· Payment: Represents a payment transaction. It would have attributes like the payment method (Net Banking), the amount, and the payment status.
· Net Banking: This is the specific payment method chosen by the customer. The model could have attributes such as bank name, account number, and transaction reference.
Domain Model for Net Banking:
· The PaymentController would invoke the processPayment() method when the customer selects Net Banking.
· Net Banking class would be responsible for validating the bank account and initiating the transaction with the bank.
· Payment class will record the payment details (status, amount, etc.) after successful payment.

	Customer
	
	Bank
	

	Customer ID
	Customer Name
	Contact details
	Address Account number
	
	
	Bank name
	Location
	Branch office
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	Payment
	
	Account
	

	Payment ID
	Customer Name
	Amount
	Payment date
	Status
	
	Account ID
	Accoun t type
	Balance
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	Net banking
	
	Authentication
	

	Authentication ID
	Funds transfer
	Transaction history
	Account management
	
	
	User name
	Password
	OTP
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	Transaction

	
	
	
	
	
	
	Transaction
	Receipt details
	Amount
	Timesnap

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

Draw a Sequence Diagram for Payment Done by Customer via Net Banking
A Sequence Diagram outlines the interaction between various system components (objects) over time. Here's a textual explanation of the sequence:
1. Customer initiates the process by choosing Net Banking as the payment method.
2. The PaymentController receives this request and invokes the processPayment() method for Net Banking.
3. NetBanking validates the payment details (bank account, transaction reference, etc.).
4. The NetBanking class interacts with the PaymentGateway (external system) to confirm the transaction.
5. The Payment entity is updated with the payment status (success/failure).
6. PaymentConfirmationView is shown to the Customer to confirm the payment status.
[image: C:\Users\admin\Downloads\Untitled Diagram (15).jpg]

Explain Conceptual Model for this Case
A Conceptual Model represents the high-level understanding of the system's entities and their relationships, without delving into technical details. For the payment process using various methods like Net Banking, the conceptual model involves the following:
Entities:
· Customer: Initiates payments and can choose between various payment methods.
· Payment: Represents an individual payment attempt, which includes the payment method, transaction status, and amount.
· Net Banking: A specific type of payment method, representing an interaction with a customer's bank account.
· Transaction: Each payment made by the customer generates a transaction record, which stores payment details (status, method, amount).
Relationships:
· A Customer can make multiple Payments.
· A Payment is linked to a specific Transaction (one-to-one relationship).
· A Payment has a PaymentMethod (Card, Wallet, Cash, or Net Banking), which could be a shared concept for all payment types.
· Net Banking interacts with the bank to verify and process payments.
Conceptual Model Representation:
· Customer --(makes)-> Payment --(is processed via)-> Net Banking --(generates)-> Transaction

What is MVC Architecture?
As a Business Analyst, my role is to bridge the gap between business requirements and technical implementation. When we talk about MVC (Model-View-Controller) architecture, it's a software design pattern used to separate concerns within an application, which ultimately makes it easier to develop, maintain, and scale.
MVC divides an application into three distinct components:
1. Model: Represents the data layer or business logic. It handles data processing, storage, and retrieval. The Model interacts with databases and other data sources, applying the business rules and logic of the application.
2. View: Represents the presentation layer or user interface. The View is what the end user interacts with. It displays the data provided by the Model in a format that is understandable and usable by the user.
3. Controller: Acts as an intermediary between the Model and the View. The Controller receives user input from the View, processes it (with the help of the Model), and updates the View accordingly. It orchestrates the flow of data and logic between the Model and View.

MVC Rules to Derive Classes from Use Case Diagram:
As a Business Analyst, when we analyze use case diagrams, our focus is on understanding the functionality and the flow of the system. From those use case diagrams, we can derive the classes that would be part of the MVC architecture. Here’s how we can approach it:
1. From Use Case to Classes (Model):
· Identify the Core Entities: Look at the use cases to identify the core business entities or objects that are involved in the system (e.g., "Customer," "Order," "Invoice").
· Define Data Models: These core entities become the Model in MVC. The Model holds the business logic and data, and can represent objects that the application interacts with.
· Example: If there is a use case for placing an order, we would have a Customer class (which holds customer information) and an Order class (which manages order details like product, quantity, price, etc.).
2. From Use Case to Controller:
· Identify Actions and Flow: The Controller component maps directly to the actions users can take within the use cases. The Controller handles the logic for each use case and defines how the system responds to user actions (e.g., placing an order, viewing product details).
· Define Controllers: For each significant user action, we’ll define a corresponding Controller class. For example, if a user is placing an order, there might be an OrderController that handles the process of adding products to the order and submitting the order.
· Example: An OrderController would process the logic to validate the order, calculate the total price, and send the confirmation back to the View.
3. From Use Case to View:
· Identify User Interface Components: The View represents the user interface and shows what the user will see. From the use cases, we can identify what screens, pages, or outputs need to be displayed to the user (e.g., an "Order Confirmation" page).
· Define Views: Views are often tied to specific user actions. For example, a View for placing an order would be a OrderConfirmationView, where users can review and finalize their order.
· Example: The OrderView might display the form to input customer details and product selections, while an OrderSummaryView could show the final order details and the total amount.

Guidelines to Place Classes in a 3-Tier Architecture:
In a 3-tier architecture, the system is divided into three logical layers:
1. Presentation Layer (UI/Frontend):
· Role: Responsible for interacting with the user and displaying data.
· Classes to Include: The View classes from MVC, such as user interfaces and screens. For example, in an e-commerce system, this would include the ProductPageView or OrderConfirmationPageView.
· Guidelines:
· The View layer should not contain any business logic or database-related code. It only presents data provided by the Controller or Model.
· Ensure that Views are reusable and modular, as the same View could be used across multiple scenarios.
2. Business Logic Layer (Controller/Model):
· Role: Handles the core application logic and processes the data.
· Classes to Include: The Controller and Model classes from MVC. For example, OrderController, ProductController, CustomerModel, and OrderModel.
· Guidelines:
· The Controller layer should handle the business logic, such as validating inputs, processing the flow of information, and calling the appropriate methods in the Model.
· The Model should include the data and the business logic related to that data. For example, methods that calculate totals, apply discounts, or retrieve data from a database would belong here.
· Separation of Concerns: The Controller should not directly handle data storage or retrieval (e.g., querying the database). That responsibility should be delegated to the Data Access Layer (in a 3-tier architecture).
3. Data Layer (Database/Storage):
· Role: Responsible for managing the data, including persistence (storing and retrieving data).
· Classes to Include: The Data Access Objects (DAOs), Repositories, or any classes that directly interact with the database or external data sources. These classes interact with the Model layer and are responsible for fetching, saving, or updating data in the database.
· Guidelines:
· The Data Layer should not contain any logic regarding the business rules or user interaction. It should only be focused on managing the persistence of data.
· Ensure that the data access code is abstracted so that the application can easily switch databases or storage mechanisms.

Example of MVC Classes in 3-Tier Architecture:
Here’s how we can apply MVC classes in a typical 3-tier architecture:
1. Presentation Layer (UI/Frontend):
· OrderView: Displays the order form to the user.
· OrderConfirmationView: Displays the confirmation of the placed order.
2. Business Logic Layer (Controller/Model):
· OrderController: Handles user input for the order and communicates with the Model.
· OrderModel: Holds data related to the order, such as items, pricing, and quantity.
· CustomerModel: Holds customer data, such as name, address, and payment information.
3. Data Layer (Database/Storage):
· OrderDAO: Provides data access methods for storing and retrieving order data from the database.
· CustomerDAO: Provides data access methods for storing and retrieving customer data from the database.

Contribution of BA in waterfall model:
Requirement gathering: BA and project manager are involved. BA will gather business and stakeholder requirements from the client. He will prepare BRD.
Requirement Analysis: BA will prepare functional requirements in functional spec. Technical team will prepare non-functional requirements in SSD. BA will add both and prepare SRS. BA will take signoff from the client on SRS. Then BA will prepare RTM based on SRS.
Designing: BA can prepare designs and mockups. He can use tools like Figma, Balsamiq. He can also prepare flow and sequence diagrams. He useses tools like MS visio, Draw.io. Here HDD and SD are prepared by solution architects. BA can help them in giving inputs for designing
Development: BA will explain all the requirements to technical team. He will handover SRS document and also supporting documentations like User story document. BA works with programmers and developers. LLD and CDD are prepared in this stage.
Testing: Here BA can prepare Test cases and test document which include Test plan, test strategy. Heere he works closely with Testers in explaining test cases.
Deployment and implementation: BA mostly interact with client, makes sure all requirements are fulfilled and takes feedback from them for further action.
Conflict management-Thomas killman technique
The Thomas-Kilmann Conflict Mode Instrument (TKI) is a well-known framework for understanding and managing conflict, based on the idea that different people have different approaches to handling disagreements. The model outlines five conflict-handling modes: Competing, Accommodating, Avoiding, Collaborating, and Compromising.
For a Business Analyst (BA), using these techniques can be very helpful in managing and resolving conflicts that arise during project discussions, stakeholder management, or requirements gathering. Here's how each of the five modes might apply:
1. Competing (Assertive and Uncooperative)
· When to Use: Use this mode when a quick, decisive action is necessary, and there is no time for discussion (e.g., a critical project deadline).
· How It Applies: As a BA, you may need to take a firm stance on certain requirements or constraints. For example, if a stakeholder insists on unrealistic timelines or features that conflict with the project goals, you may need to assertively advocate for what's best for the project’s success.
2. Accommodating (Unassertive and Cooperative)
· When to Use: Use this mode when the issue is more important to the other party than to you, or if maintaining harmony is essential (e.g., building relationships or defusing tension in team discussions).
· How It Applies: You might choose to accommodate a stakeholder's preference on a minor issue to maintain good rapport, especially if their request is not critical to the project's success or if the business relationship is more important in the long run.
3. Avoiding (Unassertive and Uncooperative)
· When to Use: Use this mode when the issue is trivial, or when a situation is too emotionally charged, and you need time to think or cool down.
· How It Applies: As a BA, if a conflict is unproductive or irrelevant to the current business goals (such as a disagreement about something minor), you may choose to avoid engaging until it’s a more opportune time.
4. Collaborating (Assertive and Cooperative)
· When to Use: This is the most constructive approach, where both parties are willing to work together to find a solution that fully satisfies the needs of both.
· How It Applies: Collaborating is ideal for a BA when there are differing opinions among stakeholders, but you aim to find a solution that satisfies everyone and aligns with business objectives. It might involve facilitating discussions to find common ground, conducting joint problem-solving, and engaging in deep analysis to create mutually beneficial outcomes.
5. Compromising (Moderately Assertive and Cooperative)
· When to Use: Use this mode when both parties have equally important concerns, and a quick resolution is needed. It’s a good middle-ground approach, where both sides give up something.
· How It Applies: In cases where stakeholders have differing views on requirements or priorities, you can negotiate a middle ground. For example, you might decide to cut certain features or delay timelines in exchange for other more critical requirements being met.
Application in Conflict Management:
As a Business Analyst, the key to using the Thomas-Kilmann model effectively is knowing when to apply each mode based on the situation:
· If the conflict is around strategic decisions (e.g., project scope), you may lean toward Collaborating to engage all stakeholders and find an optimal solution.
· If the conflict is about a minor procedural issue, Avoiding or Accommodating may help you keep the team focused without escalating unnecessary issues.
· For more pressing matters that require quick decisions (e.g., project delays), you might use Competing to ensure the project stays on track.
Reasons for project failure:
1.Improper gathering of requirements—BA is responsible for this
2.Continous change in requirements----Client is responsible
3.Lack of user involvement---Client is responsible
4.Lack of executive support----Management is responsible
5.Unrealistic expectation from client---Client is responsible
6 inproper planning--- Project manager is responsible

Challenges faced by BA in projects
1. Unclear or Ambiguous Requirements
· Challenge: Stakeholders may not clearly define or understand their needs, leading to vague, incomplete, or contradictory requirements.
· Impact: This can lead to scope creep, delays, and misaligned project outcomes.
· Solution: BAs need strong communication and facilitation skills to draw out clear and complete requirements, often using techniques like interviews, workshops, and prototyping.
2. Stakeholder Conflicts
· Challenge: Different stakeholders (e.g., business, technical teams, end users) often have conflicting goals, priorities, and expectations.
· Impact: This can cause delays, confusion, and compromises that don't meet the needs of everyone involved.
· Solution: BAs must mediate between stakeholders, using conflict resolution techniques, such as the Thomas-Kilmann model, to find common ground and ensure project alignment.
3. Changing Requirements (Scope Creep)
· Challenge: Business needs and priorities may evolve throughout the project, leading to continuous changes in requirements.
· Impact: This can disrupt project timelines, increase costs, and impact the quality of deliverables.
· Solution: BAs should establish a robust change management process, document requirements thoroughly, and engage in regular reviews to manage scope changes effectively.
4. Lack of Stakeholder Engagement
· Challenge: Stakeholders may not be consistently available or engaged, leading to incomplete information or delays in decision-making.
· Impact: Missing input from key stakeholders can cause project delays, misalignment, or inadequate solutions.
· Solution: BAs should proactively communicate with stakeholders, set clear expectations for involvement, and regularly update them on progress.
5. Communication Barriers
· Challenge: Miscommunication between stakeholders, technical teams, and the business can lead to misunderstandings, missed requirements, or errors in the delivered solution.
· Impact: This can result in rework, wasted resources, or the delivery of a solution that doesn’t meet the needs of the business.
· Solution: BAs must bridge the gap between business and technical teams, using clear, consistent, and tailored communication, and translating complex technical jargon into understandable terms.
6. Difficulty in Prioritizing Requirements
· Challenge: Stakeholders often have many competing requirements, and it can be difficult to prioritize them effectively.
· Impact: This can lead to delays, resources being spread too thin, or critical requirements being neglected.
· Solution: BAs should use prioritization techniques like MoSCoW (Must have, Should have, Could have, Won’t have) or weighted scoring to help stakeholders agree on priorities and focus on what matters most.
7. Insufficient Resources
· Challenge: Lack of adequate time, budget, or personnel can hinder the progress of the project.
· Impact: This may lead to missed deadlines, poor-quality deliverables, or team burnout.
· Solution: BAs need to manage resource expectations, work closely with project managers to optimize resources, and communicate risks associated with resource constraints.
8. Lack of Clear Project Vision
· Challenge: A vague or shifting project vision can create confusion and make it difficult to align stakeholders and deliverables.
· Impact: The project may not meet its business objectives, and teams may struggle to stay focused or motivated.
· Solution: The BA should ensure that the project vision is clearly defined and communicated at the start, and that it remains aligned with business goals throughout the project lifecycle.
9. Resistance to Change
· Challenge: Stakeholders or end users may resist adopting new systems, processes, or ways of working.
· Impact: This can lead to delays in implementation, poor user adoption, or a lack of alignment with business objectives.
· Solution: BAs need to actively engage with stakeholders to understand their concerns, offer training, and use change management strategies to encourage buy-in.
10. Inadequate Documentation
· Challenge: Poor or incomplete documentation can lead to confusion, rework, and misalignment among teams.
· Impact: This can result in delays, errors in the final product, or failure to meet the agreed-upon business requirements.
· Solution: BAs should ensure that documentation is comprehensive, clear, and updated regularly, and that stakeholders have access to the latest versions.
11. Managing Multiple Projects or Priorities
· Challenge: Business Analysts often have to manage multiple projects or tasks simultaneously, which can lead to competing priorities and stress.
· Impact: This may cause delays, oversights, or burnout if not properly managed.
· Solution: Effective time management, setting clear priorities, and working closely with project managers to align timelines can help mitigate this challenge.
12. Technological Constraints
· Challenge: Limited technology resources, technical debt, or outdated systems can limit the scope of the project or its capabilities.
· Impact: This can lead to dissatisfaction among stakeholders or the need for unexpected compromises.
· Solution: BAs need to collaborate with technical teams to assess the feasibility of business requirements and make informed decisions about technology constraints and potential solutions.
13. Lack of Domain Knowledge
· Challenge: In some cases, BAs may lack deep knowledge of the business domain or industry they are working in, making it difficult to understand stakeholder needs fully.
· Impact: This can lead to misinterpretations of requirements or missed opportunities for improvement.
· Solution: BAs should spend time learning about the business domain, working closely with subject matter experts (SMEs), and continuously upskilling themselves.
14. Changing Business Environment
· Challenge: Rapid changes in the market, industry, or regulatory environment can shift business priorities or project goals during the course of the project.
· Impact: This can lead to delays or require major revisions to the project scope or objectives.
· Solution: BAs should be adaptable and stay informed about market trends, external factors, and emerging technologies to adjust the project scope and keep stakeholders aligned with current business priorities.
15. Managing Expectations
· Challenge: Managing the expectations of both stakeholders and the project team regarding timelines, outcomes, and deliverables can be difficult.
· Impact: Unrealistic expectations can lead to frustration, scope creep, or stakeholder dissatisfaction.
· Solution: BAs must communicate regularly, set realistic expectations from the start, and work closely with the project manager to ensure alignment.
1. Business Requirements Documents (BRD)
· Naming Convention:
ProjectCode_BRD_RequirementName_V[Version].docx
· Example:
HRMS_BRD_EmployeeOnboarding_V1.0.docx
· Description: This document outlines the business requirements for the project, including goals, objectives, and expected outcomes.
2. Functional Requirements Documents (FRD)
· Naming Convention:
ProjectCode_FRD_Functionality_V[Version].docx
· Example:
HRMS_FRD_LeaveManagement_V1.0.docx
· Description: This document defines the specific features, functionalities, and behavior of the system.
3. Use Case Document
· Naming Convention:
ProjectCode_UseCase_UseCaseName_V[Version].docx
· Example:
HRMS_UseCase_EmployeeLeaveRequest_V1.0.docx
· Description: Contains detailed use cases describing the interactions between users and the system.
4. User Stories
· Naming Convention:
ProjectCode_UserStory_StoryName_V[Version].docx
· Example:
HRMS_UserStory_ApplyLeave_V1.0.docx
· Description: A concise document that defines a user requirement in the form of a user story.
5. Requirements Traceability Matrix (RTM)
· Naming Convention:
ProjectCode_RTM_Traceability_V[Version].xlsx
· Example:
HRMS_RTM_Traceability_V1.0.xlsx
· Description: A document to track the relationship between requirements and test cases.
6. Gap Analysis Document
· Naming Convention:
ProjectCode_GapAnalysis_GapName_V[Version].docx
· Example:
HRMS_GapAnalysis_CurrentVsDesired_V1.0.docx
· Description: An analysis of the difference between current state and desired future state.
7. Stakeholder Analysis Document
· Naming Convention:
ProjectCode_StakeholderAnalysis_V[Version].docx
· Example:
HRMS_StakeholderAnalysis_V1.0.docx
· Description: Identifies the key stakeholders, their roles, interests, and influence.
8. Business Process Model
· Naming Convention:
ProjectCode_BPM_BusinessProcessName_V[Version].pdf
· Example:
HRMS_BPM_EmployeeOnboarding_V1.0.pdf
· Description: A visual representation of the business processes involved in the system.
9. Change Request Document
· Naming Convention:
ProjectCode_CR_ChangeDescription_V[Version].docx
· Example:
HRMS_CR_LeaveBalanceCalculation_V1.0.docx
· Description: A document that outlines changes to previously defined requirements or scope.
10. Test Cases/Acceptance Criteria
· Naming Convention:
ProjectCode_TestCases_FeatureName_V[Version].docx
· Example:
HRMS_TestCases_LeaveApproval_V1.0.docx
· Description: Documents the test cases or acceptance criteria used for validating requirements.
11. Project Plan or Timeline
· Naming Convention:
ProjectCode_ProjectPlan_V[Version].xlsx
· Example:
HRMS_ProjectPlan_V1.0.xlsx
· Description: Outlines the project timeline, milestones, and deliverables.
12. Meeting Minutes/Notes
· Naming Convention:
ProjectCode_MeetingMinutes_MeetingDate_V[Version].docx
· Example:
HRMS_MeetingMinutes_2025-01-25_V1.0.docx
· Description: A record of discussions, decisions, and action items from project meetings.

Dos for a Business Analyst
1. Do Understand the Business Context
· Take the time to understand the industry, business goals, and processes. This helps you make informed decisions and ensure your analysis aligns with the business objectives.
· Why: It helps you contribute meaningfully and align solutions with actual business needs.
2. Do Engage Stakeholders Early and Often
· Regular communication with stakeholders (e.g., customers, product owners, SMEs) is crucial. Understand their needs, concerns, and expectations from the start and maintain ongoing collaboration throughout the project.
· Why: Helps to gather accurate requirements and reduces the risk of misunderstandings or misalignment.
3. Do Maintain Clear and Structured Documentation
· Use standardized templates, naming conventions, and version control for all documents. Ensure your documentation is well-organized and easily understandable.
· Why: Clear documentation reduces confusion and ensures everyone is on the same page regarding requirements and changes.
4. Do Focus on Problem Solving
· Your role is to help solve business problems. Rather than just gathering requirements, look for ways to improve processes and systems, and provide solutions that align with business objectives.
· Why: Demonstrates your value as a solution provider and not just a requirements collector.
5. Do Prioritize and Manage Scope
· Clearly define what is in and out of scope for each phase of the project, and communicate changes or additional requests effectively. Use tools like MoSCoW or a priority matrix to aid in decision-making.
· Why: Helps prevent scope creep and ensures the project stays on track.
6. Do Use Data and Metrics to Support Your Analysis
· Whenever possible, support your recommendations and decisions with data or metrics. Quantifying business needs and outcomes makes your work more persuasive and valuable.
· Why: Data-driven decisions tend to be more credible and easier to act on.
7. Do Stay Flexible and Adapt to Change
· Be open to changes in requirements or priorities, especially in agile environments. Adapt your approach as necessary to meet evolving business needs.
· Why: The business environment is dynamic; staying adaptable ensures that you can meet emerging challenges.
8. Do Foster Strong Relationships with the Team
· Build good relationships with both business and technical teams. Understand each group’s concerns and help foster collaboration between them.
· Why: Collaboration leads to better solutions and smoother project execution.
9. Do Clarify Assumptions and Uncertainties
· If you’re unsure about certain aspects of the requirements or project scope, ask questions early to clarify. Don’t assume things that might be critical down the line.
· Why: Reduces the risk of mistakes and costly rework later.

Don'ts for a Business Analyst
1. Don't Make Assumptions
· Never assume you understand what stakeholders want or need without confirming with them. If you don’t have all the details, ask questions.
· Why: Assumptions can lead to errors, scope creep, and missed requirements.
2. Don't Focus Only on the Solution
· Don’t jump into solutioning or technology decisions too early. Focus first on understanding the problem and the business needs, and let the solution evolve from there.
· Why: Understanding the problem ensures that the solution will truly meet the business needs.
3. Don't Ignore Stakeholder Expectations
· Avoid neglecting the perspectives or needs of key stakeholders. It’s important to manage expectations and keep stakeholders informed throughout the project lifecycle.
· Why: Misaligned expectations can lead to dissatisfaction, rework, or project failure.
4. Don't Overload Yourself with Work
· BAs often juggle multiple tasks, but don’t take on too much at once. Prioritize your work and delegate where possible.
· Why: Overwork leads to burnout, mistakes, and lower quality output.
5. Don't Stick to One Methodology If It's Not Working
· Don’t be afraid to change your approach if the current methodology (e.g., waterfall, agile, hybrid) isn’t yielding the desired results.
· Why: Flexibility in your approach ensures better alignment with the project's needs and context.
6. Don't Neglect the End User's Perspective
· Always consider the impact of your requirements or solutions on the end users. It’s easy to focus on business objectives, but user experience matters.
· Why: User-centric solutions lead to better adoption and greater overall success.
7. Don't Avoid Difficult Conversations
· If there are conflicts or misalignments between stakeholders, address them early on. Avoiding tough conversations can make problems worse down the line.
· Why: Tackling issues head-on ensures they’re resolved before they grow into bigger problems.
8. Don't Rely Solely on Written Communication
· While documentation is critical, don’t rely only on written communication. Sometimes verbal discussions, workshops, and face-to-face meetings (or virtual ones) are necessary to clarify complex issues.
· Why: Verbal communication allows for immediate feedback and helps clear up misunderstandings faster.
9. Don't Forget to Manage Risks
· Risk management is a critical part of a BA's role. Don’t overlook potential risks or issues that may arise, and make sure to document and mitigate them where possible.
· Why: Proactive risk management reduces the likelihood of delays or failures in the project.
10. Don't Assume Stakeholder Buy-in
· Just because you’ve gathered requirements doesn’t mean stakeholders are on board. Continually validate assumptions and decisions with them.
· Why: Early buy-in ensures smoother progress and avoids the risk of key stakeholders rejecting the solution at a later stage.
	Aspect
	Package
	Sub-system

	Definition
	A logical grouping of related components or functionalities within a system.
	A larger, self-contained unit with multiple components that performs a high-level function.

	Scope
	Narrower, focuses on specific functions.
	Broader, encompassing multiple components or packages.

	Complexity
	Less complex, focuses on a specific task or function.
	More complex, integrates multiple elements or processes.

	Independence
	Cannot function independently; part of a larger system.
	Can function independently or with limited dependencies on other sub-systems.

	Business Context Example
	"Payment Package" in an e-commerce system.
	"Checkout Sub-system" in an e-commerce system.

	Role in Development
	Defines specific features or business logic.
	Defines broader business processes or workflows.

	Interaction
	Interacts mainly within the same system or sub-system.
	Interacts across multiple sub-systems or systems.

Camel casing (also known as camelCase) is a common naming convention in programming and documentation where the first word is lowercase and each subsequent word starts with an uppercase letter, with no spaces or punctuation between words.
Example of Camel Casing:
· employeeSalaryDetails
· orderProcessingSystem
· userAccountSettings
The name resembles the humps of a camel, hence the name "camel case."
Where Business Analysts Use Camel Casing:
While camel casing is most often associated with coding and technical documentation, it is also commonly used by Business Analysts (BAs) in various aspects of their work to ensure clarity and consistency. Here's how and where BAs might encounter and use camel casing:

1. Documenting Requirements
When documenting requirements, BAs often need to define system components, field names, or identifiers that will be implemented in the system. Camel casing is used to represent these names clearly and consistently.
· Example: When defining a system requirement for user profile management, you might write:
· "The system should allow the userProfileSettings to be updated by the end user."
· "The orderProcessingSystem must automatically validate customer orders."
This helps the development team quickly identify how system components, variables, or fields should be named in the system.
2. Business Rules and Specifications
Business Analysts might document business rules or system behaviors in a way that includes variable names, parameters, or function names that need to follow camel casing conventions.
· Example:
· "The paymentAmount should be calculated based on the order value minus discounts."
· "The shipmentTrackingNumber is assigned once the order is processed."
3. Creating Data Dictionary/Glossary
BAs often create or maintain a data dictionary or glossary for system components, which includes field names, table names, or object identifiers that will be used in the database or system architecture.
· Example:
· Field names such as userId, productCategory, or customerAddress would be listed in a data dictionary using camel case to ensure uniformity.
4. Naming Conventions for APIs and Interfaces
When defining system interactions (such as APIs or user interfaces) that require naming conventions for functions, endpoints, or parameters, BAs will work closely with technical teams to ensure that camel casing is followed.
· Example: A Business Analyst might define an API endpoint like:
· GET /api/getUserProfileDetails
· POST /api/updateOrderStatus
BAs ensure these endpoints are clearly named in line with technical and functional expectations.
5. Describing UI/UX Elements
When BAs work with the design or user experience team, they might need to specify the names of UI elements such as buttons, fields, or sections, and these elements often follow camel casing for consistency.
· Example:
· "The submitOrderButton should be highlighted in the checkout screen."
· "The userProfileLink needs to be easily accessible from the navigation bar."
6. Project Documentation & Code-related Documentation
While Business Analysts themselves may not write code, they often need to refer to system or component names in technical documentation. These names are typically written in camel case, and BAs must adhere to these conventions when communicating with developers, quality assurance teams, or when writing test cases.
· Example:
· "The validateDiscountCode function should return a true or false value."
· "The productListView displays all available products filtered by category."

What is a Development Server?
A development server typically contains a copy of the application where developers can work on features and updates in real-time without affecting the live, production environment. It's crucial for testing, integration, and verification before moving code into staging or production servers.
Key Components of a Development Server:
1. Source Code Repository: Contains the application's codebase. Development teams push new code, features, and fixes here.
2. Databases: Often a development database (which mimics production but is not live) is used for testing purposes.
3. Web Server: Runs the application in a controlled environment. For web applications, this could be Apache, Nginx, or other application servers.
4. Version Control: Git or another version control system may be used to manage code changes and ensure consistency across development efforts.
5. Automated Build and Test Tools: Tools like Jenkins, GitLab CI, or CircleCI can automate building and testing applications to catch errors quickly.
6. Environment Variables: Configurations that dictate how the application behaves in the development environment, such as API keys, database URLs, etc.

While Business Analysts typically don’t work directly on code or server infrastructure, they may need specific access to a development server in order to carry out their responsibilities effectively. The access that a Business Analyst has is generally view-only or limited to specific tasks, depending on the organization and its security policies.
Here’s an outline of what kind of access a BA might have to a development server:

1. View-Only Access (Common for BAs)
· Purpose: BAs may be granted access to view the development environment, application features, and updates to stay informed about progress and ensure alignment with business requirements.
· What They Can Do:
· Test User Interfaces (UI): BAs can access the development server’s front end (like a website or application) to ensure the UI/UX meets business needs.
· Review Features: BAs may interact with newly developed features to ensure they align with documented requirements.
· Verify Functionalities: BAs can perform basic validation testing on features, such as checking if business rules or requirements are being properly implemented.
· Tools Typically Used:
· Web Browser: To access the user-facing part of the application on the development server.
· Bug Tracking/Issue Tracking Tools: To report any issues or inconsistencies found during testing (e.g., JIRA, Trello).
2. Access to Staging or Test Environments (Sometimes Provided)
· Purpose: Some companies provide access to a staging server or test server for BAs where they can perform user acceptance testing (UAT) or verify that the application behaves according to the business requirements.
· What They Can Do:
· Conduct User Acceptance Testing (UAT): BAs test the system’s behavior to confirm it meets business needs.
· Document Defects: If discrepancies are found, BAs log issues in the project management or bug-tracking system.
· Engage with Developers/QA: BAs collaborate with developers and quality assurance teams to explain business processes and clarify requirements.
· Tools Typically Used:
· UAT Documentation: To track test cases, results, and defects.
· Collaboration Tools: Slack, Microsoft Teams, or project management tools to communicate with the development or QA team.
3. Read-Only Access to Log Files (Occasionally)
· Purpose: Sometimes BAs need to access logs for understanding how the system behaves in specific scenarios. Logs can help explain issues or failures that end users may encounter.
· What They Can Do:
· Monitor System Behavior: Read logs for understanding how certain features are performing or to identify inconsistencies with user stories.
· Report Issues: While BAs may not analyze logs in-depth, they can share logs with developers to report user experience issues.
· Tools Typically Used:
· Log File Viewers: Tools such as Splunk or simple text editors, depending on the organization's policies.
4. Limited Access for Requirements Verification (Specific Permissions)
· Purpose: BAs sometimes need access to databases or configuration files to verify that the requirements are correctly implemented or the data is structured properly.
· What They Can Do:
· Review Data in Development Databases: BAs may query the development database to confirm data models or business logic align with the business requirements.
· Verify System Behavior with Data Inputs: Confirm that the system processes data as expected according to business rules.
· Tools Typically Used:
· Database Query Tools: SQL-based tools to query the development database (e.g., MySQL Workbench, SQL Server Management Studio).
· Configuration Review: Using web interfaces or specific tools for reviewing configuration settings.
5. Feedback & Documentation (Indirect Access)
· Purpose: Even if a BA doesn’t have direct access to the development server, they can still provide important feedback and documentation that guides development.
· What They Can Do:
· Provide Feedback on Features: After seeing demos or receiving updates, BAs provide feedback on the functionality to ensure it aligns with business needs.
· Document Requirements & Changes: BAs are responsible for keeping documentation up to date, and may need to reflect changes in the system, as discovered through development and testing processes.
· Track Project Progress: BAs document the progress of development activities and create reports for stakeholders.
· Tools Typically Used:
· Documenting Tools: MS Word, Excel, Confluence, or other documentation tools.
· Collaboration Tools: To gather feedback from stakeholders and development teams.

Business Analyst Access on a Development Server:
	Access Type
	Purpose
	Activities
	Tools

	View-Only Access
	To stay informed about development progress.
	Validate UI/UX, review features, check business rule implementation.
	Web browser, issue tracking tools (JIRA, etc.)

	Access to Staging or Test Servers
	To conduct user acceptance testing (UAT) or feature verification.
	Perform UAT, report issues, collaborate with developers/QA.
	UAT documentation, collaboration tools, test cases tracking

	Read-Only Access to Logs
	To understand system behavior and monitor failures.
	Monitor system behavior, report bugs, identify issues.
	Log file viewers, text editors

	Limited Database Access
	To verify database structure or data processing.
	Query development databases, check system behavior.
	Database query tools (SQL tools, MySQL Workbench)

	Feedback & Documentation
	To provide feedback and ensure requirements are met.
	Provide feedback, document requirements, track project progress.
	Documentation tools (MS Word, Excel, Confluence)

What is Data Mapping?
Data mapping is the process of establishing relationships between two distinct data models or structures. It involves identifying and linking fields from a source system (e.g., a legacy database, spreadsheet, or external application) to the corresponding fields in a target system (e.g., a new database or software platform).
Key Objective: To ensure data is correctly transferred, transformed, and integrated between systems so that the receiving system can process and utilize it accurately.
Data Mapping Example:
Suppose you're working with two systems:
1. Source System: A legacy CRM system that stores customer information in fields like customer_name, contact_number, email_id.
2. Target System: A new Customer Relationship Management (CRM) system where the corresponding fields are customerFullName, phoneNumber, emailAddress.
A data mapping for this integration would look something like:
· customer_name (Source) → customerFullName (Target)
· contact_number (Source) → phoneNumber (Target)
· email_id (Source) → emailAddress (Target)
This mapping ensures that when data is migrated or integrated, the information is placed correctly into the corresponding fields in the new system.
As a Business Analyst, my role in the context of API integration, especially regarding the handling of date formats between two systems, would be to bridge the gap between the technical team and business requirements, ensuring that data is accurately transferred, understood, and used by the business stakeholders.
What is an API?
An API (Application Programming Interface) is a set of rules and protocols that allows different software applications to communicate and exchange data. APIs are the means through which systems can request and send data, enabling integration between systems that may have different architectures or data formats.
For example, APIs allow your application to retrieve data from another system, send data to external services, or even trigger actions in external applications. APIs facilitate the interaction between different systems, ensuring they can work together seamlessly, even if they have different technologies or frameworks behind them.

Scenario: Date Format Integration via API
In our case, we are dealing with a situation where your application expects a date format of dd-mm-yyyy, but it is receiving data from another application in the US that uses the mm-dd-yyyy format. The objective here is to ensure data consistency between these systems, particularly when dates are involved, which is a common issue in data integration.
As a Business Analyst, my approach to solving this issue would involve understanding both systems, working with the technical teams, and ensuring the business requirements are met.

Steps to Address the Date Format Issue Using API Integration:
1. Understanding the Business Requirement:
· First, I would confirm with the stakeholders (business owners, end-users) the preferred date format for the system (in this case, dd-mm-yyyy).
· I would also understand any implications of different date formats on business logic (e.g., reporting, analytics, or user interactions) to ensure the correct handling of dates across the entire application.
2. Identifying the Source and Target Systems:
· The source system (the US application) uses the mm-dd-yyyy date format, and we are receiving data from it via an API.
· Your system (the target application) expects the dd-mm-yyyy format.
3. Collaborating with the Development Team:
· Once the business requirements are understood, I would work closely with the development team to ensure that they are aware of the date format mismatch.
· I would ensure that the API integration accounts for this mismatch and that the data is transformed as it moves between the two systems.
4. Proposing a Data Transformation Solution:
· Data Transformation: In this case, we would need to transform the date format from mm-dd-yyyy to dd-mm-yyyy during the API integration process.
· This transformation would likely be handled in the API response process or as a part of the data processing layer in your system (either server-side or application logic).
5. Documenting the Data Mapping:
· I would ensure that the data mapping is clearly documented. This documentation would include:
· Field names: Mapping the date fields in both systems (e.g., date_of_birth in the source system to dob in the target system).
· Transformation rules: Specifically, that the date format should be converted from mm-dd-yyyy to dd-mm-yyyy during the integration.
· This ensures both the technical team and the business stakeholders understand the approach to handling the data correctly.
6. Ensuring Data Consistency:
· I would validate that the transformation logic for date formats is consistent across
· all data transfers from the source system.
· This could involve setting up validation rules within your system to catch any invalid or misformatted dates coming from the US application.
7. User Acceptance Testing (UAT):
· Once the integration is implemented, I would work with the stakeholders to carry out UAT to ensure that the dates appear correctly in the application and that there are no issues with the data being displayed in the expected format.
8. Communicating with Stakeholders:
· As the business analyst, I would keep the stakeholders informed throughout the process. This includes clarifying the impact of the date format issue on business processes and reporting, and ensuring that the solution meets the business requirements.

image1.jpeg
Make payment

By Wallet Net Banking

Customer

Bank senve

image2.jpeg
Payment controller Payment controller Net banking
Choose nat banking > Process net banking Validate details
v

Show payment status|

le—]

Display confirmation

Process payment

