
 Capstone project 3 part 1

Q 1. Draw a Use Case Diagram.?

Q 2. Derive Boundary Classes, Controller classes, Entity
Classes.?

Boundary class

Boundary class used to handle interac1ons between the system and the external actors.

Example: login page, booking form

Controller class

Controller class acts as intermediaries between boundary class and en1ty class.

Example: login controller, order controller

 ∫∫∫≤˜˜≤≤˜˜≤˜mn

En1ty class

En1ty class represents the core data and business logic of the applica1on

Example: user, 1cket, product

Q 3. Place these classes on a three tier Architecture.?
3-tier architecture is a software design pattern that organizes an application into three logical
layers

 User

Presenta1on layer

Paymentpage
Paymentconforma1on screen

Applica1on/business logic layer

Payment controller
Cashpayment controller
Walletpayment controller
Netbankingpayment controller
Cardpayment controller

Database layer
Customer
Payment
Card payment
Cashpayment
Walletpayment
Netbanking payment

Q 4. Explain Domain Model for Customer making
payment through Net Banking

A Domain Model is a visual representa1on of real-world objects (en11es) in your system,
including their aQributes and rela1onships.

Q 5. Draw a sequence diagram for payment done by
Customer Net Banking.?

A Sequence Diagram is a type of UML (Unified Modeling Language) diagram. that shows how
objects or components interact with each other in time and what order.

Q 6. Explain Conceptual Model for this Case.?

A Conceptual Model is a high-level representation of the system that shows entities and
their relationships, without focusing on technical implementation

It provides a clear and simplified view of domain, making it easier to understand.

Key elements of conceptual model
Entities – customer, product, order, payment
Attributes – customer id, mail, phone no
Relationships – customer place a order

Q 7. What is MVC architecture?

The Model-View-Controller (MVC) frameworks is an architectural pattern that separates an
application into three logical components Model, View, Controller.

Model – represents the application or business logic layer
View – represents the presentation layer
Controller – represents the database layer

Rules to Derive Classes from Use Case Diagram

Model (entity class)
Derived from nouns in a use case descriptions
Represents core business objects

Example: “customer makes a payment ” – customer, payment

View (boundary class)
Derived from system interactions or user interface screens
Linked to actors in the use case diagram

Example : paymentform, loginpage

Controller class
Derived from actions or use cases
One controller per use case

Example: paymentcontroller

Guidelines to Place Classes in Three-Tier Architecture

Tier Classes type Role
Presentation layer Boundary class (view) Handle user input/output
Application layer Controller class Handle logic,control flow
Database layer Entity class(model) Handle data, rules

Example: for use case “customer makes payment via net banking ”
Customer- entity class database layer
Payment – entity class Database layer
Netbankingpayment entity database layer
Payment page- boundary class presentation layer
Payment controller- controller application layer

Q 8. Explain BA contributions in project (Waterfall
Model – all Stages)

Stage Ac1vi1es Resources
Pre project Iden1fy business problem

Ini1al stakeholder discussions
Business case
Stakeholder list

Planning Par1cipate in project scoping
Define BA roles and
responsibili1es
Es1mate efforts

BA work plan

Requirements gathering Conduct interviews,
workshops
Gather func1onal and non
func1onal requirements

BRD and FRD
Stakeholder requirements

Requirements analysis Analyze requirements
Iden1fy gaps
Priori1ze requirements

Use case diagrams
RTM
Process flow

Design Translate requirements to
func1onal specifica1ons
Validate UL/UX mockups
Review design

Wireframes
Data flow diagrams

Development Clarify requirements to
developers
Handle requirements change
request

Clarifica1ons logs
Updated requirements
documents

Tes1ng Review test case
Support QA tes1ng
Perform requirements
traceability

Test case
RTM

UAT Conduct UAT tes1ng
Support end users
Feedbacks and bugs

UAT test scripts
UAT sign-off
Feedback reports

Q 9. What is conflict management? Explain using
Thomas – Kilmann technique.?

Conflict Management is the process of handling disagreements or clashes between individuals
or teams in a construc1ve and effec1ve way.

The goal is to minimize nega1ve impact and maximize posi1ve outcomes such as beQer
communica1on, innova1on, or decision-making.

Thomas Kilmann technique is a widely used tool for assessing conflict resolu1on style and
guiding individuals in selec1ng appropriate strategies to manage conflicts.

1. Asser1veness- the extent to which you try to sa1sfy your own concerns
2. Coopera1veness – the extent to which you try to sa1sfy the other person’s concerns

5 conflict handling styles

Compe1ng

High asser1veness, low coopera1veness. you pursue your own concerns at the expense of
others

When quick and decisive ac1on needed

Collabora1ng

High asser1veness, high coopera1veness. You work together to find a win-win solu1on

When both par1es concerns are important and long term solu1ons are needed

Compromising

Moderate asser1veness and coopera1veness. Each party gives up something to reach a middle
ground

When 1me is limited and both sides need to gain something

Avoiding

Low asser1veness and coopera1veness. You sidestep or postpone the conflict

When the issue is trivial or to cool down emo1onally charged situa1ons

Accommoda1ng

Low asser1veness, high coopera1veness. You yield to the other party needs.

When preserving harmony is more important than the issue itself

Q 10. List down the reasons for project failure.?

A project failure occurs when a project does not meet its goals or expectations.

Most project failures are caused not by technical problems but by people and process related
issues.

The reasons for project failure

• Poor planning
Unrealistic schedules, budget or resource allocation

• Unclear requirements
Requirements are vague, incomplete or misunderstood

• Lack of stakeholder involvement
Poor involvement from business users or clients

• Scope creep
Uncontrolled changes or additions to project scope without proper review

• Poor communication
Team members or stakeholders are not informed

• Technical challenges
Tools, platform, or frameworks are unsuitable

• Inadequate risk management
Risks were not identified, tracked properly

• Unrealistic deadlines
Pressure to deliver too fast causes burnout and quality issues

• Lack of user training
End users don’t accept or know how to use the system properly

• Lack of skilled resources
Team lacks necessary technical or domain

• Budget overruns
Costs exceed ini1al es1mates due to poor tracking or changes

Q 11. List the Challenges faced in projects for BA.?

Challenges faced by business analyst

• Unclear or changing requirements
Stakeholder ohen don’t know exactly what they need or keep changing requests

• Lack of stakeholder engagement
Stakeholders re not available or don’t ac1vely par1cipate in discussions

• Poor communica1ons
Miscommunica1ons between technical and business team leads to gaps

• Scope creep
Con1nuous addi1ons to scope without proper impact analysis or approvals

• Incomplete documenta1on
Time pressure or lack of clarity results in missing requirements

• Limited domain knowledge
BA may not fully understand the business domain

• Inadequate tes1ng involvement
BA may not be involved enough in tes1ng/UAT to ensure requirements are met

• Stakeholder conflicts or poli1cs
Internal poli1cs can affect decisions and priori1za1on

• Technical limita1ons
Requirements may not be feasible due to system or budget constraints

• Tool/process limita1ons
Lack of access to modeling tools or standardized documenta1on processes

Q 12. Write about Document Naming Standards.?

A document numbering standard is a systematic approach to assigning unique identifiers to
various document created and used throughout the development process.

This makes it easier to organize, search and manage documents

Why use naming standards
Avoid confusion between versions

Improve searchability and tracking

Ensure consistency across the team

Prevent duplica1on or overwri1ng files

Typical elements in a naming conven1on

project code/name - BANKAPP

document type - BRD,FRD, UAT

version number - v1.0, v2.1

date - yyyy-mm-dd

status - FINAL, REVIEW, DRAFT

Q 13. What are the Do’s and Don’ts of a Business
analyst.?

DO’s DON’T’s
Consult an SME for clarifications in
requirements

Never say NO to the client

Go to client with a plan mind with no
assumptions. listen carefully and
completely until client is done

There no word as “By default’

Try to extract maximum leads to the
solutions from the clients himself

Never imagine anything in terms of GUI

Concentrate on the important
requirements

Don’t interrupt the client when he is
giving you the problem

Question the existence Never try give solutions to the client
straight away with any previous
experience

Always use 5W1H Banned word for BA is “I KNOW”

As a BA inputs are requirements and outputs are use case and activity diagrams, flowcharts

Q 14. Write the difference between packages and sub-
systems.?

Package Sub system

Package is folder that groups
related classes or files

Used for keeping code organized

Smaller and more focused

Represented by a folder icon in class
diagrams

It may contain classes, interface and
other packages

Example: a package for login,
payment or report

Sub system is a small system inside
a bigger system

Used for dividing big systems into
smaller working parts

Larger and more comprehensive

Represented like a package but
treated as a complete module

It may contain multiple packages,
components and interfaces

Example : a sub system for billing,
inventory, HR system

Package helps organize code within a project

Ex: applica1on development companies work on packages

Sub systems help break down a complex system into independent, func1onal units.

Ex: product development companies work on sub systems

Q 15. What is camel-casing and explain where it will be
used.?

Camel casing is a naming convention used in computer programming
It is used for naming variables, functions, and identifiers

• The first word starts with a lowercase letter
• Each new word starts with a capital letter
• There are no spaces or underscores

Example: userName, totalAmountPaid

Why is camel casing important
Improves readability of code
Keeps naming consistent across teams and files
Makes your code look professional

Q 16. Illustrate Development server and what are the
accesses does business analyst has?

A development server refers to a dedicated environment or server that is used during the
sohware development process.

A development server is an environment where the development team builds and tests the
applica1on before it moves to QA tes1ng , UAT or produc1on

It is used for wri1ng and tes1ng code, unit tes1ng by developers and ini1al tes1ng

As a BA we have only some accesses

Business analyst has read only or review access(UI/data)

Read access – to view deployed screens, forms or test UI

Test/review access – to validate if development aligns with requirements

Screenshot capture – BA can take screenshot to compare with BRD/FSD

Download reports/UI – if reports are generated, BA may validate outputs and data

Q 17. What is Data Mapping.?

Data mapping is the process of connecting data from one source to another.

It’s like creating a guide or map that shows how data in one place corresponds to data in
another place

This is especially important when you are moving data between different systems or database
to ensure that the data stay consistent and accurate

It prevents data loss or mismatch

Tools used for data mapping

• Excel or google sheets
• SQL Queries
• ETL tool like Talend, informa1ca, Apache Nifi

Example

Source system target system mapped field

customerName FullName same data, different name

Date of birth (DOB) BirthDate foarmat may differ

Where data mapping is used

System integra1on – to connect two applica1ons

Data migra1on – to move data from old to new system

Repor1ng & analy1cs – to bring data from mul1ple sources together

ETL process (extract, transform, load)- to clean and transform data before storing

Q 18. What is API.?

API (application programming interface) is a set of rules that allows two different software
systems to communicate with each other

It defines the methods and data formats that application can use to request and exchange
information

Example: you use an app to book a ticket – the app uses an API to connect with an airline
system

Your food app uses an API to show the restaurant menu and track delivery

Explain how you would use API integration in the case of your application Date format is dd-
mm-yyyy and it is accepting some data from Other Application from US whose Date Format is
mm-dd-yyyy

your application accepts date in dd-mm-yyyy format
US application sends dates in mm-dd-yyyy
Both systems need to exchange customer data

Steps to handle API Integration with different date formats

1. Receive API data
Use HTTP GET or POST to fetch the data from the US system

2. Identify date format
Look for date fields like orderdate, birthdate, etc

3. Convert date format
Use date converter function to change mm-dd-yyyy to dd-mm-yyyy

4. Store or process data
Once converted, store or use in your system in your required format

5. Send response
If needed, send back conformation in expected format

