Capstone Project 3
Part 1

Case Study 1
A customer can make a payment either by Card or by Wallet or by Cash or by Net banking.
Q1. Draw a Use Case Diagram
Answer -

Q2. Derive Boundary Classes, Controller classes, Entity Classes.
Answer –
· Entity Classes represent core domain data and typically persist (e.g. customer, account, transaction).
· Boundary Classes act as system interfaces to actors (users or external systems), e.g. user input forms, APIs, user interface screens.
· Controller Classes manage the business logic / flow for use cases, mediate between boundaries and entities.
Entity Classes
· Customer — identifies who is paying; has customer details (name, id, contact info, wallet balance, etc.)
· Payment — generic payment record; attributes like payment Id, amount, status, date/time, payment Method, maybe reference id for card/wallet etc.
· Card — for card payments, storing card Number (masked), card Type, validity, expiry, etc.
· Wallet — storing wallet Balance, wallet Id, maybe wallet type, etc.
· Bank Account or Net Banking Account — for net-banking payments: account number, bank name, IFSC or equivalent, etc.
· Cash Payment Detail (if needed) — maybe minimal data for cash payments, e.g. receipt info, or verification if any.
Boundary Classes
· Payment UI or Payment Interface — for UI/form through which a customer enters payment details (choose method, enter card or wallet or bank info or indicating cash).
· Payment Gateway API — external interface if bank/card/wallet provider has APIs, for authorization, etc.
· Wallet Service Interface — external boundary class to the wallet provider (if wallet is external service).
· Card Processor Interface — interface to the card processing system.
· Net Banking Service Interface — interface to external bank or net banking systems.
Controller Classes
· Payment Controller (or Make Payment Controller) — central class for orchestrating the payment process. It takes input from the boundary (UI or API), decides which payment method to use, validates data, calls the appropriate entity/boundary classes.
· Card Payment Controller — special controller for flows specific to card payments (validate card, possibly fraud, etc.).
· Wallet Payment Controller — handles wallet validation, balance checks, top-ups if needed etc.
· Net Banking Payment Controller — manages net banking flow: authentication, redirection, bank account validation.
· Cash Payment Controller — for the cash path: maybe generate instruction that the user shows up, or generate receipt, etc.
Q3. Place these classes on a three tier Architecture.
Answer -
	Application Layer
	Customer Registration
Customer Login
Bank Server Login

	Business Logic Layer
(Primary actors associated with the Boundary class)
	Customer
Bank Server

	Data Layer
(All the entity Classes)
	Customer
Bank Server
Cash
Card
Net Banking

In this three-tier architecture, the application tier handles the user interface, the business logic layer manages the business logic and coordinates between the other tiers, the data tier handles data storage and retrieval.
Q4. Explain Domain Model for Customer making payment through Net Banking
Answer -
A domain model is a simplified conceptual representation of a specific real-world problem or area of concern ("domain") that helps in software development by modelling its key concepts, their behaviours, and the relationships between them. It's not a database schema but a visual diagram showing how real-world elements interact within the context of a business or system, providing a shared understanding for stakeholders and guiding the development process.
Domain Model: “Customer Payment via Net Banking”
Key Entities
· Customer
Attributes: Customer Id, name, email, phone, address
Behaviours: Authenticate (login), request payment, check account details
· Bank Account
Attributes: Account Number, Bank Branch, Account Type, Balance, currency
Behaviours: Debit amount, check balance, Validate account status
· Bank
Attributes: bank Id, bank Name, branch Code, ifsc Code (or equivalent), address
Behaviours: Verify account, process authentication, manage net-banking access
· Net Banking Service
Attributes: service Id, URL, status, maybe service Provider
Behaviours: Perform authentication (via password / OTP), authorization of transfers, logging
· Payment
Attributes: payment Id, amount, currency, payment Date Time, status (pending, completed, failed), type (net banking, etc.)
Behaviours: Initiate, authorize, settle, cancel/refund (if applicable)
· Authentication
Attributes: auth Id, auth Type (password, OTP, multi-factor), timestamp, status
Behaviours: Validate credentials, generate OTP, verify OTP
· Transaction
Attributes: transaction Id, payment Id (FK), from Account, to Account (if intra bank or to merchant), amount, timestamp, transaction Status
Behaviours: Record transaction, reverse if required, log for audit
Relationships
Here are how the entities relate to one another:
· A Customer has one or more Bank Accounts.
· A Bank Account belongs to exactly one Bank.
· A Customer uses the Net Banking Service of a Bank.
· The Net Banking Service requires Authentication to allow access.
· When a customer makes a Payment using net banking, the Payment is tied to a Bank Account (from which funds are debited).
· Payment is associated with a Transaction (i.e. the payment triggers a transaction record).
· Authentication is linked with Payment / Transaction (to ensure that before doing the transaction, authentication must succeed).
· The Bank may also be involved in verifying payment, updating account balances, etc.
Q5. Draw a sequence diagram for payment done by Customer Net Banking
Answer -

Q6. Explain Conceptual Model for this Case
Answer -

Q7. What is MVC architecture? Explain MVC rules to derive classes from use case diagram and guidelines to place classes in 3-tier architecture
Answer -
MVC architecture
MVC stands for Model-View-Controller. It’s a design pattern / architectural pattern that separates an application into three interconnected components with distinct responsibilities:
· Model: Manages the data, business logic, rules, and the internal state of the application. The model is responsible for retrieving data, applying business rules, updating state, etc. It is independent of the user interface.
· View: Represents the presentation layer; what the user sees or interacts with. It displays model data and sends user input / events to the Controller. It should not contain business logic.
· Controller: Acts as the intermediary. It handles user input, interacts with the Model to process data, decides what view to render, and updates the model or view accordingly. It binds Model and View together.
Deriving Classes from Use Case Diagrams in MVC
When deriving classes from a use case diagram in an MVC context, the following rules can be applied:
· For each Use Case:
· Controller Class: Typically, a controller class or a method within a controller class is created for each major use case or a set of related use cases. This controller handles the user's interaction with that specific functionality.
· Model Classes: The entities involved in the use case (e.g., "Customer," "Product," "Order") often become model classes. These classes encapsulate the data and business logic related to those entities.
· View Components: The user interface elements required to interact with the use case (e.g., forms for input, tables for display) translate into view components or views.
Guidelines for Placing Classes in 3-Tier Architecture
A 3-tier architecture further organizes the application into distinct logical layers: Presentation, Application (or Business Logic), and Data. Here's how MVC classes align with these tiers:
· Presentation Tier:
. View Classes: All classes responsible for the user interface, such as UI elements, forms, and display templates, reside in this tier. They are solely concerned with presenting information and capturing user input.
. Controller Classes (partially): The initial part of the Controller, which receives user requests and orchestrates the interaction, can be considered part of the presentation tier, as it acts as the entry point for user interaction.
· Application (Business Logic) Tier:
. Controller Classes (core logic): The core business logic and orchestration within the Controller, which processes requests, interacts with the Model, and determines the appropriate View, resides here.
. Model Classes (business logic): The business rules, validation logic, and operations on data within the Model classes are central to this tier.
· Data Tier:
. Model Classes (data access): The part of the Model that handles data persistence, including interactions with databases or external data sources, belongs to the data tier. This includes classes for data access objects (DAOs) or repositories.
Q8. Explain BA contributions in project (Waterfall Model – all Stages)
Answer -
	Phase
	Key BA Activities / Contributions
	Why It Matters / Outcomes

	Initiation / Feasibility
	• Identifying stakeholders.
• Understanding business context: goals, strategic drivers.
• Conducting feasibility studies (cost-benefit, risks, constraints).
• Defining high-level scope.
• High-level requirement gathering: “what are the business problems / opportunities?”
• Drafting business case (benefits, ROI, impact).
	Helps ensure the project is justified, aligned with business strategy, with buy-in from key stakeholders. Sets foundation for success. If this is weak, downstream phases suffer.

	Requirements Gathering / Analysis
	• Eliciting detailed requirements (interviews, workshops, surveys, observation).
• Documenting business requirements, then functional/non-functional requirements.
• Modelling: use cases, process flows, activity diagrams, data models.
• Validating requirements with stakeholders; clarifying ambiguities.
• Establishing acceptance criteria.
• Freeze or get sign-off on requirements.
• Risk identification tied to requirements (e.g. incomplete, assumptions, dependencies).
	This is core. Accurate, complete, and well-understood requirements are essential because in Waterfall changes later are costly. Ensures what gets built will satisfy business needs. Reduces rework.

	System / Solution Design
	• Translating requirements into design specs.
• Ensuring the design meets business requirements (alignment).
• Contributing to architecture decisions, data/design interfaces.
• Reviewing design artifacts (UI mock ups, data schema, integration points).
• Liaising between business/stakeholders and technical teams (architects, UI/UX, etc.).
• Identifying design risks (e.g. performance, scalability, maintainability).
	Ensures that the technical solution will deliver what’s needed; avoids misinterpretations. Keeps design feasible and aligned with non-functional concerns. Helps avoid costly redesign later.

	Development / Construction
	• Clarifying requirements during development when questions/ambiguities arise (supporting dev team).
• Ensuring traceability: mapping design & code back to requirements.
• Managing scope changes / change requests: assessing impact, documenting changes.
• Monitoring progress against requirements (are features being implemented correctly?).
	Keeps things “on track” relative to what was agreed. Prevents drift, ensures that developers build the right thing. Helps control scope creep.

	Testing (Integration, System, etc.)
	• Helping define test strategy and test cases based on requirements and design.
• Ensuring coverage of functional and non-functional requirements.
• Reviewing test plans and results: verifying whether defects are true requirement gaps or implementation errors.
• Supporting defect triage (business perspective).
• Ensuring requirements traceability in tests.
	Helps ensure that the delivered system matches what the business expects. Catching deviations or misunderstandings before UAT or deployment is better. Avoid surprises during acceptance.

	User Acceptance Testing (UAT)
	• Coordinating with business users: facilitating UAT planning, defining UAT test scenarios.
• Helping users understand requirements, acceptance criteria, expected behaviour.
• Collecting feedback; validating whether delivered product meets user/business needs.
• Documenting acceptance or issues; facilitating resolution of any gaps or defects.
	Ensures the end‐users are satisfied; ensures business value is realized. UAT is often the final check before deployment; any misalignment here can lead to user dissatisfaction or rejection.

	Deployment / Go-Live
	• Preparing deployment plan from business perspective: arranging data migration, user training, cut-over strategies.
• Ensuring communication to stakeholders/users.
• Ensuring environment readiness, logic for rollback if needed.
• Verifying deliverables against requirements in production.
• Supporting user training and documentation (user manuals, help guides).
	Smooth transition minimizes disruption. Helps users adapt. Ensures that what was built works in real use. Reduces risk of failure in production.

	Maintenance / Support
	• Monitoring actual system use: gathering feedback, logging issues.
• Prioritizing enhancements or bug fixes from business standpoint.
• Evaluating whether further changes are needed or feasible; managing change requests.
• Updating documentation to reflect “as built” system.
• Ensuring business objectives continue to be met; evaluating benefit realisation.
	Helps ensure the long-term value of the system. Fixes and enhancements keep the system relevant and usable. Helps with continuous improvement. Prevents decay or obsolescence.

Q9. What is conflict management? Explain using Thomas – Kilmann technique
Answer -
Conflict management is the process by which individuals or groups attempt to reduce the negative impacts of conflict while maximizing its positive potential — e.g. innovation, better understanding, growth. In business contexts, it involves managing disagreements or clashes (in interests, values, expectations, etc.) in a constructive way, so that the project, team, organization aren’t derailed.

Q10. List down the reasons for project failure
Answer -
Project failures in business analysis often stem from a combination of strategic missteps, communication breakdowns, and inadequate planning. Here are the most common reasons:
1. Poorly Defined or Incomplete Requirements
Unclear, ambiguous, or missing requirements are a leading cause of project failure. This often results from inadequate stakeholder engagement or ineffective elicitation techniques. The cost of fixing such errors escalates dramatically as the project progresses—from $1,000 during the requirements phase to up to $100,000 during operations.
2. Lack of Stakeholder Engagement
Insufficient involvement from end-users and key stakeholders can lead to misaligned goals and unmet expectations. Active participation ensures that the project aligns with business needs and user requirements.
3. Ineffective Communication
Communication gaps between business analysts, developers, and stakeholders can result in misunderstandings and misinterpretations of project goals. Effective communication is crucial for coordinating efforts and ensuring everyone is on the same page.
4. Scope Creep
Uncontrolled changes or continuous growth in a project's scope can derail timelines and budgets. This often occurs when the project scope isn't properly defined or managed.
5. Unrealistic Expectations and Overambition
Setting overly ambitious goals without considering resource constraints can lead to project failure. This phenomenon, known as the "Icarus Factor," occurs when enthusiasm overshadows practical planning.
6. Inadequate Testing
Reducing or skipping testing phases to save time or costs can result in undetected bugs and system failures. Comprehensive testing is essential to ensure the quality and reliability of the final product.
7. Poor Project Management Practices
Lack of proper planning, risk management, and resource allocation can lead to project delays and failures. Effective project management is vital for navigating complexities and ensuring project success.
8. Resistance to Change
Organizational resistance can hinder the adoption of new systems or processes introduced by the project. Addressing change management proactively is crucial for smooth transitions.
9. Inadequate Risk Management
Failing to identify and mitigate potential risks can leave projects vulnerable to unforeseen challenges. Implementing robust risk management strategies helps in anticipating and addressing issues proactively.
10. Insufficient Resource Allocation
Underestimating the resources required—be it time, budget, or personnel—can impede project progress and quality. Accurate resource planning is essential for meeting project objectives.

Q11. List the Challenges faced in projects for BA
Answer -
· Unclear, Ambiguous or Evolving Requirements
Very often stakeholders don’t fully know what they want up front, or their needs change as the project progresses. The BA has to deal with lack of clarity, vague requirements, or frequent shifts in what is expected.
· Scope Creep
After the requirements have been agreed, additional demands or features tend to creep in. These changes (if unmanaged) can disrupt timelines, costs, and resource planning.
· Stakeholder Misalignment / Disagreement
Different stakeholders (business, technical, users, sponsors) may have conflicting priorities, goals, or expectations. Getting everyone aligned is one of the toughest tasks.
· Lack of Stakeholder Engagement
Sometimes stakeholders are unavailable, uninterested, or don’t engage deeply. That leads to missed insights, misunderstandings, or mis-specifications.
· Insufficient Domain Knowledge
When the BA does not have good understanding of the business domain (terms, processes, rules, constraints), it becomes hard to ask the right questions or interpret stakeholders’ needs correctly.
· Communication Barriers
Translating between business language and technical language, making sure messages are understood, facilitating meetings/workshops — these all can fail badly. Miscommunication causes rework.
· Prioritization Difficulties
With many possible requirements/features, deciding what should be done first (based on value, risk, cost) is often complex. Stakeholders may disagree.
· Time / Resource Constraints
Tight deadlines, limited budget, limited manpower. The BA may be asked to do more with less. Also, sometimes the BA is stretched across multiple projects. These constraints impact quality and depth of analysis.
· Changes in Business / Process Ownership or Organizational Structure
If a project’s sponsor, process owner, or organizational leadership changes mid-project, priorities may shift, causing delays or rework.
· External Factors & Regulatory Changes
Projects may be affected by regulatory or compliance changes, or external events (market, legal, technology) that force changes to requirements or constraints.
· Managing Expectations
Sometimes stakeholders expect certain features or delivery speed that are unrealistic. If expectations are not managed well, BA can be blamed for failures even if issues were inherent.
· Quality of Data
For projects involving data, reports, analytics etc., poor data quality (incomplete, inconsistent, dirty data) or missing data can severely hamper accurate requirements or solution design.
· Technical Constraints / Feasibility vs Business Desires
Stakeholders may want features that are difficult or expensive technically. The BA has to negotiate trade-offs, understand what's feasible, and sometimes push back.
· Conflict Between Speed vs Accuracy / Depth
There’s often tension between delivering quickly vs doing thorough elicitation / design / validation. Rushing can lead to errors; taking too long can frustrate stakeholders or miss deadlines.
Q12. Write about Document Naming Standards
Answer -

Q13. What are the Do’s and Don’ts of a Business analyst?
Answer -
Do’s for a Business Analyst
1. Understand the Business Goals & Domain
A BA should take time to really understand the organization’s strategy, business domain, market, and how the project aligns with that. This ensures that recommendations and requirements are relevant and add value.
2. Engage Stakeholders Early & Often
Identify all relevant stakeholders, understand their interests, power, and influence, and involve them in elicitation, validation, feedback loops. Getting buy-in early helps avoid misalignment later.
3. Communicate Clearly and Effectively
Both written and verbal communication matter. You should be able to explain requirements in business language for stakeholders, as well as translate them into technical terms for developers, testers, etc. Also practice active listening.
4. Do Thorough Requirement Gathering and Documentation
Use multiple techniques (interviews, workshops, observation, surveys, document analysis) to gather requirements. Document them clearly, define acceptance criteria, and ensure all parties agree (sign-off) before moving forward. Maintain traceability.
5. Use Visuals & Models
Diagrams, process flows, user stories, use cases, prototypes, mock-ups etc. Visuals help clarify complex processes or requirements, reduce misunderstandings.
6. Manage Expectations & Scope
Be clear about what is in scope vs out of scope; document assumptions and constraints; whenever changes arise, do impact analysis (on scope/time/cost). Keep stakeholders aware of trade-offs.
7. Be Adaptable & Continuously Learn
Business environments change; technologies change. A good BA stays updated (tools, methods, domain knowledge), adapts to change, refines approaches as needed.
8. Validate & Verify
Always validate requirements / assumptions with stakeholders, and verify deliverables (during design, development, testing) against those requirements. Don’t assume that “understood” means “correctly implemented.”
9. Focus on Value & Prioritization
Not all features are equally important. A BA should help prioritize requirements based on business value, urgency, cost, risk. Focus effort on what matters.
10. Cultivate Soft Skills
Empathy, negotiation, facilitation, conflict resolution, problem-solving, stakeholder relationship building. These often make the difference in whether the project succeeds.
Don’ts for a Business Analyst
1. Don’t Assume Things
Never assume you understand what a stakeholder wants without clarifying; assumptions about domain, requirement, user behaviour can lead to costly rework.
2. Don’t Overlook or Ignore Stakeholder Feedback
Disregarding feedback, or failing to loop back to get confirmation from all impacted stakeholders, can lead to gaps or misalignment.
3. Don’t Let Scope Creep Go Unchecked
Accepting changes without proper impact analysis or without managing expectations around cost/time puts the project at risk.
4. Don’t Neglect Documentation
Skipping documentation (or making it vague or incomplete) may seem to save time, but causes misunderstandings later (e.g. during testing, deployment, maintenance).
5. Don’t Work in Isolation
Trying to do everything alone, not involving subject matter experts, not collaborating with cross-functional teams, will limit your perspective and may miss critical inputs.
6. Don’t Overcomplicate or Overengineer
Sometimes simplest solutions are best. Avoid making designs or requirements overly complex without justification. Over-engineered solutions cost more, are harder to maintain.
7. Don’t Ignore the Human Element
Focusing only on processes, tools, data and forgetting about user experience, human behaviour, user emotions, resistance to change etc. can lead to low adoption or failure.
8. Don’t Make Decisions in Isolation
Especially for choices that affect many parts of the system/process/stakeholders. Bring in multiple viewpoints. Validate with subject matter experts.
9. Don’t Underestimate Risks and Changes
Risk management is key. Ignoring potential risks, or assuming no change, is a frequent mistake. Also not planning for changes (in requirements, scope, technology) can hurt.
10. Don’t Resist Learning or New Methods
Holding onto older techniques rigidly, resisting new tools, ignoring changing methodologies or new trends in the domain can make you less effective.
Q14. Write the difference between packages and sub-systems
Answer -
Subsystem
A subsystem is a self-contained, reusable component that fulfils a specific function within a larger system, defined by its own purpose, interfaces, and components. Subsystems are higher-level, architectural elements with behavioural units.
Package
A package is a logical grouping or collection of model elements, such as classes or other packages, used to organize and simplify the structure of a system, often representing a folder for related functionalities and managing dependencies at a component level. Packages are a lower-level, organizational construct for managing complexity and mapping relationships between elements.
	Aspect
	Package
	Subsystem

	Behaviour vs Pure Organization
	A package is mostly organizational. It groups model elements for clarity, manageability, namespace control. It doesn't itself define interfaces or behaviour—it just contains elements that do.
	A subsystem does define behavior (via interfaces or exposed operations). It encapsulates its internals and expects other parts of the system to interact with it only via its well-defined interfaces.

	Encapsulation / Visibility
	Packages may have elements marked public or private relative to package boundaries, but packages in UML are not primarily focused on hiding implementation; they’re more about structuring than enforcement.
	Subsystems aim to encapsulate internal elements fully; external parts should depend only on the interfaces of the subsystem, not on internal classes. This allows internal change without affecting clients (as long as interfaces stay stable).

	Replaceability / Modularity
	A package is less about replaceability. Because external dependencies often refer directly to classes inside, replacing a package with another implementation is harder.
	Subsystems are designed so that as long as a subsystem implements the same interfaces (externally visible contract), its internal parts can be changed or even replaced. This supports modularity, partial substitution, independent evolution.

	Scope & Size / Granularity
	Usually more fine-grained. Packages can group a few related classes or small modules. They may be nested. They help structure but are less heavy weight.
	Subsystems tend to be coarser: larger units that possibly contain many packages, classes, components. They represent major functional divisions, larger modules of behaviour.

	Dependencies & Interfaces
	Dependencies with packages are often at the level of classes or internal elements; other parts of the system may directly depend on classes inside the package
	Subsystems enforce dependency via interfaces. Clients depend on the subsystem’s exposed interfaces rather than its internal implementation. Interfaces are key.

	Use in Modeling / UML
	In UML, packages are general model organizing constructs. They are used in package diagrams, class diagrams etc., to group related elements and to manage namespaces.
	Subsystems may be modelled as packages with the stereotype «subsystem». They can appear in UML as components or subsystems, showing behavior, interfaces, realization, etc.

Q15. What is camel-casing and explain where it will be used?
Answer -
Camel-casing (often spelled CamelCase) is a naming convention where multi-word identifiers are written without spaces, and typically each word after the first starts with a capital letter. For example: customerName, paymentMethod, netBankingAccount, cardPaymentController.
 The term “camel case” refers to the “humps” in a name — each new internal word starts with a capital letter, making the name readable without spaces.
There are variations:
· lowerCamelCase (sometimes called “dromedary case”): the first letter of the first word is lowercase, e.g. paymentAmount, customerAddress.
· UpperCamelCase (also called PascalCase): first letter of the first word is also uppercase, e.g. PaymentController, CustomerAccount.
Where CamelCase is Used
BAs may use CamelCase in a variety of artifacts and contexts to keep naming consistent, clear, and aligned with development:
1. Requirement & Specification Documents
· When naming elements like fields/attributes (e.g. DateOfBirth, creditCardNumber) in data definitions.
· Use case names, if the naming convention allows (e.g. MakePayment, ValidateCard, ProcessWalletPayment).
· For naming business rules, constraints, or identifiers within requirements, so everyone (stakeholders, developers, testers) can refer unambiguously.
2. Data Models / Entity Diagrams
· Entity classes and attributes/getters/setters may use CamelCase (or align with what the developers will use).
· For example, in an ER diagram or class diagram: CustomerName, PaymentStatus, BankAccountNumber.
3. Use Case / UML Models
· When defining actors, boundary names, controllers, entities, etc., naming according to CamelCase improves clarity.
· It also helps maintain consistency between models & later implementation.
4. Interface / API Design / Data Contracts
· Names of APIs, request/response JSON or XML keys often follow CamelCase (depending on language/style guide).
· eg paymentMethodType, netBankingTransactionId.
5. Test Cases / Test Scripts / Traceability Matrices
· Mapping requirements to test case IDs, using names that match attribute or class names (CamelCase) helps link them.

Q16. Illustrate Development server and what are the accesses does business analyst has?
Answer -

Q17. What is Data Mapping?
Answer –
Data mapping is the process of creating structured connections, rules, and documentation that define how data fields from one or more source systems align with corresponding fields in a destination system. It acts as a roadmap to integrate, transform, and standardize disparate datasets, ensuring they can be correctly interpreted and used together to provide consistent, actionable business insights.

Q18. What is API. Explain how you would use API integration in the case of your application Date format is dd-mm-yyyy and it is accepting some data from Other Application from US whose Date Format is mm-dd-yyyy
Answer -

