Q1. Draw a Use Case Diagram.
Ans.
A use case diagram is a type of UML (Unified Modeling Language) diagram that visually represents the functional requirements of a system. It shows actors (users or other systems), use cases (interactions or services the system provides), and the relationships between them.
 Components of a Use Case Diagram:
1. Actors:
· Represent users or other systems interacting with your system.
· Can be primary (initiating the interaction) or secondary (responding).
2. Use Cases:
· Represent the functionality or services provided by the system.
· Shown as ovals with the name of the use case inside.
3. System Boundary:
· A rectangle that defines the scope of the system.
4. [bookmark: _GoBack]Relationships:
· Association (solid line): Connects actors to use cases.
· Include (dashed arrow with label): One use case always includes another.
· Extend (dashed arrow with label): One use case optionally extends another.
· Generalization (hollow triangle): Inheritance between actors or use cases.
Given below is the Use Case Diagram for Customer Making Payment:
[image: ]

Q2. Derive Boundary Classes, Controller classes, Entity Classes.
Ans.
· Boundary Classes – Interface between the system and actors (e.g., UI or communication interface).
· Controller Classes – Handle the flow of control from the boundary to the entity.
· Entity Classes – Represent the business logic/data of the system.

 1. Actors and Use Case Summary
· Actor: Customer
· Use Case: Make Payment
· by Card
· by Wallet
· by Cash
· by Net Banking

a. Entity Classes
These contain core business logic/data.
	Class
	Attributes
	Responsibilities

	Payment
	amount, date, status, paymentMethod
	Base class or interface for all payments

	CardPayment
	cardNumber, expiryDate, cvv
	Process card payment

	WalletPayment
	walletId, walletBalance
	Deduct from digital wallet

	CashPayment
	receiptNo
	Handle cash transactions

	NetBankingPayment
	bankName, accountNumber, ifscCode
	Process net banking payment



b. Controller Classes
Coordinate between boundary and entity classes.
	Class
	Responsibilities

	Payment Controller
	Handles user requests, selects payment method, triggers business logic

	Card Payment Controller, Wallet Payment Controller, etc.
	Handle specific method logic if needed separately



c. Boundary Classes
These are user interfaces or communication interfaces.
	Class
	Responsibilities

	Payment UI
	Collects payment input from user

	Card Payment Form, Wallet Payment Screen, etc.
	Specific forms/screens for each method



Q3. Place these classes on a three tier Architecture
Ans.
Three-Tier Architecture is a software architecture pattern that organizes applications into three logical layers:
1. Presentation Tier (UI Layer)
· Directly interacts with the user.
· Responsible for displaying information and collecting input.
2. Application Tier (Business Logic / Controller Layer)
· Processes user input from the presentation layer.
· Makes logical decisions and calculations.
· Calls data access or business rules in the data layer.
3. Data Tier (Persistence Layer)
· Manages the application's data.
· Stores and retrieves data from databases or external storage.

1. Presentation Tier (UI Layer)
Handles all interactions with the user (Customer)
· PaymentUI
· CardPaymentForm
· WalletPaymentScreen
· NetBankingPaymentForm
These display forms to users, take inputs like amount, card details, etc.
2. Application Tier (Business Logic Layer)
Orchestrates processing of the payment logic
· Payment Controller
· (Optional) Card Payment Controller, Wallet Payment Controller if logic is separated

3. Data Tier (Persistence Layer / Entity Layer)
Manages and processes core business objects and persistence
· Payment
· CardPayment
· WalletPayment
· CashPayment
· NetBankingPayment
These classes represent actual payment data and contain methods for processing the payment and interacting with the database (e.g., saving transaction details).

Q4. Explain Domain Model for Customer making payment through Net Banking
Ans.
A Domain Model is a conceptual representation that defines the Structure, relationships and Behaviours of entities within a specific problem domain.
Below given is the Domain Model for a customer making a payment through Net Banking:
[image: ]
Q5. Draw a sequence diagram for payment done by Customer Net Banking.
Ans.
A Sequence Diagram is a type of diagram used in UML (Unified Modelling Language) to show how objects or components in a system interact with each other over time. It’s especially useful for modelling the flow of logic or communication in a use case or system function.
Key Elements of a Sequence Diagram:
1. Actors/Objects: Represented as vertical lines (lifelines), showing participants like users or system components.
2. Lifelines: Vertical dashed lines showing the object's life during the interaction.
3. Messages: Horizontal arrows between lifelines, representing the communication or method calls.
· Solid arrows: synchronous messages (calls)
· Dashed arrows: return messages
4. Activation Bars: Thin rectangles on lifelines showing when an object is active/performing an action.
Below given is the Sequence Diagram for a Customer using Net Banking:
[image: ]





Q6. . Explain Conceptual Model for this Case.
Ans.
A Conceptual Model represents the high-level structure of the system involved in the Net Banking payment process. It identifies key entities, their relationships, and attributes without going into implementation or database details. It's a crucial part of system design in object-oriented analysis.
 Key Entities in the Conceptual Model:
1. Customer
2. Merchant
3. Payment Gateway
4. Bank (Customer Bank & Merchant Bank)
5. Order
6. Transaction
Entity Descriptions and Attributes:
	Entity
	Attributes

	Customer
	Customer ID, Name, Email, Phone Number, Bank Account Details

	Merchant
	Merchant ID, Name, Website, Merchant Bank Details

	Order
	Order ID, Order Date, Amount, Status, Customer ID, Merchant ID

	Payment Gateway
	Gateway ID, Name, API Key, Status

	Bank
	Bank ID, Bank Name, IFSC Code, Account Details

	Transaction
	Transaction ID, Amount, Date Time, Status, Payment Mode, Linked Bank



Relationships Between Entities:
· Customer places Order
· Order is processed by Merchant
· Merchant uses Payment Gateway
· Payment Gateway interacts with both Customer's and Merchant's Bank
· Transaction is created for every payment process

Q7. What is MVC architecture? Explain MVC rules to derive classes from use case diagram and guidelines to place classes in 3-tier architecture
Ans.
MVC (Model-View-Controller) is a software design pattern that separates an application into three main logical components, each with specific responsibilities:

1. Model
· Represents the business logic and data of the application.
· It directly manages the data, logic, and rules of the application.
· Examples: User, Order, Transaction, etc.
 2. View
· The UI (User Interface) component.
· Displays data from the Model to the user.
· Notifies the controller of user input.
· Examples: HTML page, GUI screen, mobile app UI.
3. Controller
· Acts as an interface between Model and View.
· Handles user input and updates the Model and View accordingly.
· Example: Login Controller, Payment Controller.
 MVC Rules to Derive Classes from Use Case Diagram
1. Identify Controllers:
· Each use case generally maps to a Controller class.
· Example: "Make Payment" → PaymentController.
2. Identify Models (Business Entities):
· Extract nouns and domain objects from use case descriptions.
· These become Model classes.
· Example: "Customer logs in" → Customer, LoginCredential.
3. Identify Views:
· For each user interaction, derive a View.
· These are typically UI screens/pages.
· Example: "Display confirmation page" → PaymentSuccessView.
 Guidelines to Place Classes in 3-Tier Architecture 
The 3-tier architecture maps well with MVC:
 1. Presentation Tier 
· Handles UI logic.
· Interacts with the Controller to send/receive user data.
· Contains: JSP/HTML pages, React/Angular components, etc.
2. Business Logic Tier
· Manages application logic, workflows, and rules.
· Controllers process user input.
· Models manage business data.
 3. Data Access Tier (Persistence Layer)
· Interacts with the database.
· Responsible for CRUD operations.
· Contains: DAOs, Repositories, ORM classes 

Q8. Explain BA contributions in project (Waterfall Model – all Stages)
Ans.
Business Analyst (BA) Contributions in a Project Using the Waterfall Model
The Waterfall Model is a linear and sequential software development model, where each phase must be completed before the next begins. A Business Analyst (BA) plays a crucial role at every stage of the Waterfall lifecycle to ensure requirements are clearly defined, communicated, and implemented correctly.
1. Requirements Gathering & Analysis
· Responsibilities:
· Meet stakeholders to understand business needs.
· Elicit and document requirements (Business Requirements Document – BRD).
· Analyze feasibility and scope.
· Define use cases, process flows, and high-level functional requirements.
· Deliverables:
· BRD, Use Case Diagrams, Requirement Traceability Matrix (RTM), Stakeholder Analysis.

 2. System Design
· Responsibilities:
· Collaborate with solution architects and designers to ensure the design aligns with requirements.
· Clarify business needs and constraints during design.
· Help translate business requirements into functional specifications.
· Deliverables:
· Functional Requirement Specifications (FRS), User Interface Wireframes (in collaboration with UX).

 3. Implementation (Development)
· Responsibilities:
· Act as a liaison between developers and business users.
· Resolve ambiguities in requirements.
· Provide support to developers on business logic and flows.
· Participate in review meetings to track progress.

 4. Testing
· Responsibilities:
· Assist QA in understanding the requirements.
· Validate test cases against requirements.
· Perform UAT (User Acceptance Testing) coordination.
· Report and track defects from a business perspective.
· Deliverables:
· UAT Test Plan, Test Case Review, Defect Reports.
 5. Deployment
· Responsibilities:
· Assist in go-live planning and risk identification.
· Ensure that business is prepared for changes (documentation, training).
· Coordinate with stakeholders for final sign-off.
 6. Maintenance
· Responsibilities:
· Gather feedback and new enhancement requests.
· Analyze defects or issues in the live system.
· Update documentation and requirements for changes.

Q9. What is conflict management? Explain using Thomas – Kilmann technique
Ans.
Conflict Management refers to the process of identifying, addressing, and resolving disagreements or disputes between individuals or groups in a constructive way. The goal is to minimize negative outcomes and promote healthy collaboration, especially in teams or projects.
Conflicts can arise due to:
· Differing priorities or goals
· Miscommunication
· Role ambiguity
· Resource limitations
· Personality clashes

 Thomas-Kilmann Conflict Management Technique
The Thomas-Kilmann Conflict Mode Instrument (TKI) is a widely used model that identifies five conflict-handling styles, based on two dimensions:
· Assertiveness (the degree to which you try to satisfy your own concerns)
· Cooperativeness (the degree to which you try to satisfy others’ concerns)

 Five Conflict Management Styles (TKI):
	Style
	Assertiveness
	Cooperativeness
	Description

	1. Competing
	High
	Low
	Win-lose approach, assertive but uncooperative. Used in emergencies or when quick, decisive action is needed.

	2. Collaborating
	High
	High
	Win-win approach, assertive and cooperative. Seeks solutions that satisfy all parties. Ideal but time-consuming.

	3. Compromising
	Medium
	Medium
	Both parties give up something to reach a middle ground. Acceptable solution but may not fully satisfy anyone.

	4. Avoiding
	Low
	Low
	Withdraws from the conflict, neither assertive nor cooperative. Useful when the issue is trivial or needs time.

	5. Accommodating
	Low
	High
	Yield to others' needs, unassertive but cooperative. Maintains harmony but may suppress own needs.



Q10. List down the reasons for project failure
Ans.
Projects can fail for a variety of reasons, ranging from poor planning to lack of stakeholder engagement. Below is a comprehensive list of common causes:
1. Unclear or Incomplete Requirements
Vague or constantly changing requirements lead to confusion and scope creep.

 2. Lack of Stakeholder Involvement
If key users, sponsors, or stakeholders are not engaged, the solution may not meet real needs.

 3. Poor Project Planning
Inaccurate estimates, no clear milestones, or lack of risk planning can derail a project.
 4. Inadequate Communication
Miscommunication between team members, stakeholders, or vendors causes delays and errors.
 5. Unrealistic Deadlines
Setting overly aggressive timelines leads to rushed work and poor quality.
 6. Inadequate Risk Management
Failure to identify and prepare for risks results in unanticipated problems.
 7. Poor Leadership or Project Governance
Weak project sponsorship or leadership leads to misaligned priorities and decision-making delays.
 8. Lack of Resources
Insufficient budget, skilled staff, or tools make it hard to complete tasks effectively.
 9. Team Issues
Low morale, poor collaboration, or unclear roles/responsibilities reduce productivity.
 10. Scope Creep
Uncontrolled changes or continuous addition of features without time or budget adjustments.
 11. Technical Failures
Choosing inappropriate technology, integration failures, or lack of testing can cause breakdowns.
 12. Poor Quality Assurance
Inadequate testing leads to undetected bugs and defects in the final product.
 13. Inadequate Change Management
Users resist adopting the new system due to lack of training or communication.
14. Vendor or Third-party Issues
External dependencies or vendors fail to deliver as expected.

 15. No Clear Definition of Success
Without agreed-upon goals and KPIs, it’s hard to measure progress or success.

Q11. List the Challenges faced in projects for BA.
Ans.
A Business Analyst (BA) plays a key role in bridging the gap between stakeholders and technical teams. However, they often face several challenges during the project lifecycle:

 1. Unclear or Evolving Requirements
· Stakeholders often don’t know what they want initially.
· Frequent changes can lead to scope creep and rework.

 2. Communication Gaps
· Misunderstandings between business users, developers, and other stakeholders.
· Multiple stakeholders with conflicting priorities.

 3. Stakeholder Unavailability or Non-Cooperation
· Key users may not be available for meetings, validations, or feedback.
· Difficult to gather accurate and complete requirements.

 4. Lack of Domain Knowledge
· If the BA is new to the industry or project, understanding processes and terminology can be difficult.

 5. Resistance to Change
· Users may resist adopting new systems or processes due to comfort with existing ones.

 6. Ambiguity in Requirements
· Vague or poorly defined requirements lead to misinterpretation by development and QA teams.

 7. Time Constraints
· Pressure to gather and document requirements quickly, leading to oversight or errors.

 8. Managing Scope Creep
· Stakeholders may request new features mid-project without adjusting timelines or budget.

 9. Difficulty in Prioritizing Requirements
· Stakeholders may consider all requirements equally critical, making prioritization difficult.

 10. Conflicting Stakeholder Interests
· Different departments or users may have conflicting needs or expectations.

Q12. Write about Document Naming Standards
Ans.
Document Naming Standards refer to a consistent and structured method for naming documents within a project or organization. These standards ensure that documents are easy to identify, retrieve, manage, and track across teams and stages of the project lifecycle.
 Purpose of Document Naming Standards
· Improve clarity and consistency
· Enable quick search and retrieval
· Avoid duplication and confusion
· Facilitate version control
· Support collaboration among stakeholders
 Key Elements of a Document Naming Standard
	Element
	Description
	Example

	Project Code
	Short code identifying the project
	BANKSYS

	Document Type
	Abbreviation of the type of document
	BRD, FRS, UAT, SRS

	Module/Feature
	Optional – name of the feature or module
	LOGIN, PAYMENT

	Version Number
	Indicates the revision of the document
	v1.0, v2.1

	Date
	(Optional) Format YYYYMMDD or DDMMYYYY for tracking
	20250428

	Author/Team Initials
	(Optional) Who created or modified the document
	JD, BA_Team



 Best Practices for Naming Standards
· Use consistent separators (e.g., underscore _ or hyphen -)
· Avoid spaces and special characters
· Always include version numbers
· Keep names short but meaningful
· Maintain a document control log to track versions and updates

Q13. What are the Do’s and Don’ts of a Business analyst.
Ans.
A Business Analyst plays a crucial role in bridging the gap between business needs and technical solutions. To succeed, BAs must follow certain best practices while avoiding common pitfalls.
Do’s of a Business Analyst:
	Do
	Explanation

	1. Communicate Effectively
	Listen actively, clarify doubts, and ensure clear communication between stakeholders and the technical team.

	2. Document Clearly
	Maintain thorough, organized, and understandable documentation (BRD, FRS, use cases, etc.).

	3. Understand the Business Domain
	Learn the client's business processes, terminology, and objectives.

	4. Be Detail-Oriented
	Carefully capture all requirements, exceptions, and edge cases to avoid ambiguity.

	5. Ask Questions
	Never assume—clarify everything to ensure all requirements are fully understood.

	6. Manage Stakeholder Expectations
	Set realistic timelines, clarify scope, and communicate changes proactively.

	7. Facilitate Collaboration
	Act as a bridge between business, developers, QA, and UX teams.

	8. Stay Flexible and Adaptive
	Be open to changing requirements and agile workflows.

	9. Use Visual Aids
	Support documents with wireframes, flowcharts, or mockups to enhance clarity.

	10. Maintain Traceability
	Use tools and methods (like RTM) to track requirements from start to finish.



 Don’ts of a Business Analyst:

	Don't
	Explanation

	1. Don't Make Assumptions
	Always validate information with stakeholders instead of guessing.

	2. Don't Ignore Stakeholders
	Every voice matters. Ignoring users or SMEs can lead to major requirement gaps.

	3. Don’t Overcomplicate Requirements
	Use simple language and avoid jargon unless necessary.

	4. Don’t Delay Documentation
	Postponing documentation can result in missed or forgotten requirements.

	5. Don’t Avoid Conflict
	Address and resolve conflicts early rather than avoiding them.

	6. Don't Be Rigid
	Requirements and processes may evolve; adaptability is key.

	7. Don't Skip Validation
	Never finalize requirements without validating them with users and stakeholders.

	8. Don’t Ignore Technical Feasibility
	Understand system constraints and collaborate with developers early.

	9. Don’t Work in Isolation
	Engage continuously with the team and stakeholders.

	10. Don’t Focus Only on Features
	Understand and prioritize based on business value, not just quantity of features.



Q14. Write the difference between packages and sub-systems.
Ans.
In the context of software development and system design, both Packages and Sub-systems are used to organize and manage components of a system. However, they have different purposes, scope, and characteristics. 
	Feature
	Package
	Sub-system

	Definition
	A grouping of related classes or modules in a project
	A self-contained functional unit within a larger system

	Scope
	Smaller, code-level organization
	Larger, functional component

	Functionality
	Code structure and maintainability
	A specific domain or service within the system

	Dependency
	Dependencies are usually at the module/class level
	Dependencies involve interaction with other sub-systems

	Independence
	Not independent, part of a larger structure
	Can operate as a standalone functional unit

	Example
	transactions, user-management packages
	Transaction Sub-system, User Authentication Sub-system



Q15. What is camel-casing and explain where it will be used.
Ans.
Camel casing is a convention for writing compound words or phrases where each word begins with a capital letter except the first word. This style of writing is typically used in programming languages to name variables, functions, and other identifiers in a way that improves readability.
· Camel Casing refers to the practice of writing multi-word identifiers where the first word is in lowercase, and all subsequent words have their first letter in uppercase with no spaces or underscores between words.
· The term "camel case" comes from the humps of uppercase letters, which resemble the humps of a camel.
 Where Camel Casing Is Used
Camel casing is commonly used in various places in software development, especially in programming languages like Java, C#, JavaScript, Python, and others.
1. Variables:
· Lower Camel Case is used for variable names.
· Example: user Age, total Amount, account Balance
2. Functions or Methods:
· Lower Camel Case is used for function and method names.
· Example: get User Info(), calculate Total(), is User Authenticated()
3. Class Names:
· Upper Camel Case (Pascal Case) is used for class names.
· Example: User Account, Product Details, Order Processor
4. Object Properties/Fields:
· Lower Camel Case is typically used for properties/fields of objects.
· Example: user Name, account Number, product Price
5. File Names (for some programming languages and environments):
· Camel Case can also be used for naming files, though some languages might use other conventions.
· Example: UserProfile.js, Employee Details.cs
6. Constants (in some languages):
· In some languages, UPPERCASE_WITH_UNDERSCORES is preferred for constants, but Camel Case might also be used in other contexts.
· Example: MAX_RETRIES (common for constants), but for variables: max Retries

Q16. Illustrate Development server and what are the accesses does business analyst has?
Ans.
A Development Server is an environment where developers write, test, and deploy code during the software development lifecycle (SDLC). It is separate from the production environment and typically includes tools, databases, and configurations specifically for development, testing, and debugging.

 Development Server Overview
A Development Server can have various configurations depending on the development process, the technology stack, and the organization’s needs. Here's a typical illustration:
1. Purpose:
· The development server is used for coding, testing, debugging, and performing integration of features during the software development phase.
· It's an isolated environment where new code is tested before it's moved to staging or production servers.
2. Components:
· Source Code: The application code that developers write (e.g., in Java, Python, JavaScript).
· Web Server: A server that handles HTTP requests, such as Apache, Nginx, or integrated web servers in frameworks.
· Database: A separate database instance or a copy of the production database, often with test data for developers to work on.
· Application Server: Server running the app to execute backend business logic.
· Version Control: Tools like Git to manage different versions of the code.
· CI/CD Tools: Continuous integration and continuous deployment tools (e.g., Jenkins) to automatically test and deploy changes to the development environment.
· Testing Tools: Automated unit tests, integration tests, and test case scripts for QA.

 Accesses a Business Analyst (BA) Might Have on a Development Server
While a Business Analyst (BA) typically focuses on the requirements, documentation, and communication between stakeholders, they may still need to interact with the development server in certain contexts. However, BAs usually don’t have as much direct access to code or configuration settings as developers or system admins.
1. Access to Test Environments
· Reason: The BA might need to validate the functionality of a feature or perform UAT (User Acceptance Testing) to verify if the software meets business requirements.
2. Viewing and Reviewing Logs and Reports
· Reason: The BA may need to monitor the progress of specific features or issues (e.g., bug tracking, feature testing).
3. Access to APIs and Documentation
· Reason: If the business analyst is involved in defining integration points between systems, they may need access to API documentation and endpoints exposed by the development server.
4. Collaboration with Developers and QA Team
· Reason: BAs are often involved in regular meetings with developers and QA to provide feedback or clarification on requirements.
5. Verifying Data Inputs and Outputs
· Reason: The BA may need to check if data flow (inputs, processes, outputs) adheres to business rules.

 Q17: What is Data Mapping?
Data Mapping refers to the process of linking or associating data elements from one database, data model, or system to another. It involves creating a relationship between two different data structures or schemas, ensuring that data is correctly transferred, transformed, or integrated across systems or processes.

 Purpose of Data Mapping:
· Data Transformation: Ensures that data is accurately converted between formats or systems.
· Data Integration: Facilitates the integration of data from multiple sources by mapping fields from one system to another.
· ETL Processes: Data mapping is often used in ETL (Extract, Transform, Load) processes to extract data from source systems, transform it according to business rules, and load it into a target system.
· Data Migration: Helps in migrating data from one platform to another by establishing a clear relationship between old and new data formats.

 Types of Data Mapping
1. One-to-One Mapping:
· A single data element in the source system corresponds to a single data element in the target system.
· Example: Mapping a field first_name in the source system to firstName in the target system.
2. One-to-Many Mapping:
· A single data element in the source system corresponds to multiple data elements in the target system.
· Example: A single address field in the source system might be mapped to multiple fields in the target system like street, city, zipcode.
3. Many-to-One Mapping:
· Multiple source elements are mapped to a single target element.
· Example: Several fields like first_name, middle_name, and last_name in the source system are combined and mapped to a single full_name field in the target system.
4. Many-to-Many Mapping:
· Multiple source elements correspond to multiple target elements.
· Example: A source system's orders table could map to multiple related tables in the target system such as order_items, shipping_details, and customer_info.

Q18. What is API. Explain how you would use API integration in the case of your application Date format is dd-mm-yyyy and it is accepting some data from Other Application from US whose Date Format is mm-dd-yyyy.
Ans.
An API (Application Programming Interface) is a set of rules, protocols, and tools that allows different software applications to communicate with each other. It specifies how different software components should interact and enables data exchange and functionality sharing between systems.
APIs are used to allow third-party applications to access certain features or data from your application, system, or service in a secure and controlled way.
 Steps to Use API Integration for Date Format Conversion
1. Define the API Integration Process
· The first step is to establish the connection between your application and the US-based application through the API.
· The API can either be a RESTful API (using HTTP methods) or another format (such as SOAP or GraphQL).
For this example, we assume a RESTful API where the US application sends data through an HTTP POST request, and your application receives the data via an HTTP GET or POST request.
2. Extract the Date from the API Response
· When your application receives the data from the US application, you’ll get it in the format mm-dd-yyyy. 
3. Convert the Date Format
To handle the conversion, your application needs to parse the incoming date string and then reformat it into the desired format (dd-mm-yyyy).
In many programming languages, there are built-in date parsing and formatting functions to facilitate this.
4. Send the Data Back to the Application
Once the date has been converted, you can then send the correctly formatted date back to the application or database, or proceed with other operations as required.



image1.png
View Payment
Optons.

Via UPI Wallet

DebitiCredit Card





image2.png
Customer Payment Net Banking
PK | Customer ID PK =
Customer Name Payment id
Authentication
Contact Details Amount
Fund Transfer
Address Payment Date
Transaction History
‘Account Details Status.
‘Account Management
Transaction
PK

Transaction ID

Transaction Date

Reference Number





image3.png




