
Tab 1

Case Study 1 (Q1-Q6 24 Marks)

A customer can make a payment either by Card or by Wallet or by Cash or by Net
banking.

Q1. Draw a Use Case Diagram - 4 Marks

Q2. Derive Boundary Classes, Controller classes, Entity Classes. - 4 Marks

Boundary class

Payment option Boundary
Card payment Boundary
Wallet payment Boundary
COD payment Boundary
Netbanking payment Boundary
UPI payment Boundary

Controller class

Payment initiated Controller
Net Banking Payment Controller
Card Payment Controller
Wallet Payment Controller
COD Controller
UPI Payment Controller

Entity class

Customer
Card
Wallet
Payment
Server
UPI

Entity-Control-Boundary Pattern (ECB)

The Model-View-Controller pattern is used for user interfaces, the
Entity-Control-Boundary Pattern (ECB) is used for systems. The following aspects of
ECB can be likened to an abstract version of MVC, if that's helpful:

Entities (model)
​
Objects representing system data, often from the domain model.

Boundaries (view/service collaborator)​

Objects that interface with system actors (e.g. a user or external service). Windows,
screens and menus are examples of boundaries that interface with users.

Controls (controller)
​
Objects that mediate between boundaries and entities. These serve as the glue
between boundary elements and entity elements, implementing the logic required to
manage the various elements and their interactions. It is important to understand that
you may decide to implement controllers within your design as something other than
objects – many controllers are simple enough to be implemented as a method of an
entity or boundary class for example.

Four rules apply to their communication:

1.​ Actors can only talk to boundary objects.
2.​ Boundary objects can only talk to controllers and actors.
3.​ Entity objects can only talk to controllers.
4.​ Controllers can talk to boundary objects and entity objects, and to other

controllers, but not to actors

Benefits of ECB:

●​ Clear Separation of Concerns: The ECB pattern promotes clear separation of
responsibilities, making the system easier to understand, maintain, and test.

●​ Testability: Boundaries can be easily mocked or stubbed, making unit testing
easier.

●​ Flexibility: Changing the presentation layer or external systems only requires
modifications to boundary classes, without impacting entity or control logic.

Q3. Place these classes on a three tier Architecture. - 4 Marks

Three-tier architecture

Three-tier architecture is a software design model that separates an application into
three
logical tiers: presentation, application, and data. Each tier has a specific function and
communicates with the others:

Presentation tier: The user interface (UI) where users interact with the application. It
presents information from the application and sends user input for processing.

Application tier: Processes data and handles the application's core logic and business
rules.

Data tier: Stores and manages the application's data.

In a 3-tier architecture, the Entity-Control-Boundary (ECB) pattern is often used to
organize responsibilities. Entity classes represent data, controller classes handle logic
and control, and boundary classes manage interactions with external systems.

Elaboration:

Entity Classes:
These classes represent the persistent data and business objects of the system. They
model the core entities like "Customer," "Product," or "Order".

Controller Classes:
Controllers manage the application logic and orchestrate the execution of use cases.
They coordinate interactions between entities, boundaries, and other controllers.

Boundary Classes:
Boundaries encapsulate interactions with external systems or users, such as the user
interface, database access, or communication protocols. They act as intermediaries
between the system and external actors.

Mapping to 3-Tier Architecture:

Data Tier:
Entity classes are often associated with the data tier, representing the persistent data
stored in the database.

Logic Tier:
Controller classes are typically located in the logic tier, handling business rules and
processing logic.

Presentation Tier:
Boundary classes are often mapped to the presentation tier, representing the user
interface or interactions with other systems.

Q4. Explain Domain Model for Customer making payment through Net Banking - 4
Marks

Domain model

A domain model is a structured, visual representation of the key concepts, entities, and
relationships within a specific domain or problem area. It's a blueprint for understanding
and designing systems, helping teams communicate and collaborate effectively by
providing a common language and visual representation of the problem space. A
Domain Model is a conceptual blueprint that represents the main entities, their
attributes, and relationships within a specific problem domain. It provides a shared
understanding between business stakeholders and technical teams, often as a UML
class diagram (without operations/methods).

Key aspects of a domain model:

Entities (Concepts):
The core building blocks of the model, representing the things or ideas within the
domain. Examples include "customer," "product," or "order".

Relationships:
How entities are connected and interact with each other, often depicted using lines and
arrows. Common relationship types include "is-a," "has-many," and "is-related-to".

Attributes
Properties of an entity that describe or define it.
Not usually deeply modeled, but often shown for clarity.
E.g., Product might have productId, name, price.

Q5. Draw a sequence diagram for payment done by Customer Net Banking - 4 Marks

What are Sequence Diagrams?

Sequence diagrams are a type of UML (Unified Modeling Language) diagram that
visually represents the interactions between objects or components in a system over
time. They focus on the order and timing of messages or events exchanged between
different system elements. The diagram captures how objects communicate with each
other through a series of messages, providing a clear view of the sequence of
operations or processes.

Why use Sequence Diagrams?

Sequence diagrams are used because they offer a clear and detailed visualization of
the interactions between objects or components in a system, focusing on the order and
timing of these interactions. Here are some key reasons for using sequence diagrams:

Visualizing Dynamic Behavior: Sequence diagrams depict how objects or systems
interact with each other in a sequential manner, making it easier to understand dynamic
processes and workflows.
Clear Communication: They provide an intuitive way to convey system behavior,
helping teams understand complex interactions without diving into code.
Use Case Analysis: Sequence diagrams are useful for analyzing and representing use
cases, making it clear how specific processes are executed within a system.
Designing System Architecture: They assist in defining how various components or
services in a system communicate, which is essential for designing complex, distributed
systems or service-oriented architectures.
Documenting System Behavior: Sequence diagrams provide an effective way to
document how different parts of a system work together, which can be useful for both
developers and maintenance teams.
Debugging and Troubleshooting: By modeling the sequence of interactions, they help
identify potential bottlenecks, inefficiencies, or errors in system processes.

Purpose of Sequence Diagram

1.​ Model high-level interaction between active objects in a system

2.​ Model the interaction between object instances within a collaboration that
realizes a use case

3.​ Model the interaction between objects within a collaboration that realizes an
operation

4.​ Either model generic interactions (showing all possible paths through the
interaction) or specific instances of an interaction (showing just one path through
the interaction)

Sequence Diagram Notation

Actor

A type of role played by an entity that interacts with the subject (e.g., by exchanging
signals and data)
external to the subject (i.e., in the sense that an instance of an actor is not a part of the
instance of its corresponding subject).
represent roles played by human users, external hardware, or other subjects.
Note that:

An actor does not necessarily represent a specific physical entity but merely a particular
role of some entity
A person may play the role of several different actors, and, conversely, a given actor
may be played by multiple different people.

Lifeline

A lifeline represents an individual participant in the Interaction.

Activations

A thin rectangle on a lifeline) represents the period during which an element is
performing an operation.
The top and the bottom of the rectangle are aligned with the initiation and the
completion time, respectively

Call Message

A message defines a particular communication between Lifelines of an Interaction.
A call message is a kind of message that represents an invocation of the operation of a
target lifeline.

Return Message

A message defines a particular communication between Lifelines of an Interaction.
Return message is a kind of message that represents the pass of information back to
the caller of a corresponded former message.

Self Message

A message defines a particular communication between Lifelines of an Interaction.
Self message is a kind of message that represents the invocation of message of the
same lifeline.

Q6. Explain Conceptual Model for this Case - 4 Marks

Here is a conceptual model for a customer making payment through NetBanking,
focusing on key business entities, their attributes, and relationships — all at a high level,
abstracted from implementation details.

Conceptual Model Description

1.​ A Customer places an Order.
2.​ The Order generates a Payment.
3.​ Customer, select the NetBanking payment method to complete the Payment
4.​ Customer enters credentials, confirms the payment
5.​ NetBanking verifies the details through the bank database
6.​ The Payment is completed using NetBankingDetails, which records the account

and transaction info.
7.​ NetBankingDetails is linked to a Bank, representing where the customer's

account resides.
8.​ The bank sends a confirmation notification to the customer

Entities

Customer, Bank, NetBanking, Transaction , Account

Attributes:

1. Customer
CustomerID
Name
Email
MobileNumber

2. Order

OrderID
OrderDate
TotalAmount
OrderStatus

3. Payment
PaymentID
PaymentDate
PaymentAmount
PaymentStatus

4. Bank
BankID
BankName
IFSCCode

5. NetBankingDetails
TransactionID
AccountNumber
TransactionStatus
Timestamp

 Relationships:

1.​ A Customer places an Order.
2.​ An Order initiates a Payment.
3.​ A Payment is processed through NetBankingDetails.
4.​ NetBankingDetails references a Bank.

What is a Conceptual Model?

A conceptual model is a high-level representation of the system that focuses on what
the system should do, not how it will do it.
It describes the important entities, their attributes, and the relationships between them
from the user’s or business’s perspective, without getting into technical details.
A conceptual model is a simplified representation of a complex system or concept,
focusing on key elements and relationships rather than specific details. It's a way to
understand and communicate high-level concepts in an abstract manner, often used in
software development, data modeling, and research.

 Purpose of a Conceptual Model

To understand and communicate the core business concepts.

Acts as a bridge between stakeholders and developers.

Helps in requirement validation and identifying scope.

 Key Elements of a Conceptual Model

Entities -Main business objects or
 concepts (e.g., Customer,
 Order, Product)

Attributes - Properties or characteristics
 of entities (e.g., Order Date,
 Customer Name)

Relationships -How entities are related to
 each other (e.g., A
 Customer places many
 Orders)

Benefits of a Conceptual Model

Simplifies complex business processes

Enhances stakeholder understanding

Reduces the risk of missing or incorrect requirements

Supports the design of domain models and system architecture

Key Aspects of Conceptual Models:

Abstraction:
Conceptual models are not detailed implementations but rather high-level abstractions
of the real world.

Communication:
They serve as a common language for different stakeholders to understand and agree
on a system's core elements and relationships.
Foundation for Further Development:
They provide a foundation for more detailed logical and physical models, or for
designing user interfaces.
Focus on Relationships:
They emphasize the relationships between entities or concepts rather than individual
details.

Examples:

Data Modeling: Entity-Relationship Diagrams (ERDs) represent entities (like
"Customer") and their relationships (like "Customer buys Product").
Software Development: Domain models illustrate relationships between objects in a
system, such as users and accounts.
Research: Conceptual models can guide research by illustrating proposed causal
linkages between concepts related to a specific problem.

Purpose:

Understanding: Conceptual models enhance understanding of a system or concept.
Communication: They facilitate efficient communication between team members and
stakeholders.
Specification: They provide a reference point for system designers to gather
specifications.
Documentation: They document the system for future reference.

Q7. What is MVC architecture? Explain MVC rules to derive classes from use case
diagram and
Guidelines to place classes in 3-tier architecture - 8 Marks

What is MVC?

The Model-View-Controller (MVC) framework is an architectural/design pattern that
separates an application into three main logical components Model, View, and
Controller. Each architectural component is built to handle specific development aspects

of an application. It isolates the business logic and presentation layer from each other. It
was traditionally used for desktop graphical user interfaces (GUIs).

Components of MVC

The MVC framework includes the following 3 components:
Controller
Model
View

Controller:

The controller is the component that enables the interconnection between the views and
the model so it acts as an intermediary. The controller doesn’t have to worry about
handling data logic, it just tells the model what to do. It processes all the business logic
and incoming requests, manipulates data using the Model component, and interact with
the View to render the final output.

Responsibilities:
Receiving user input and interpreting it.
Updating the Model based on user actions.
Selecting and displaying the appropriate View.
Example: In a bookstore application, the Controller would handle actions such as
searching for a book, adding a book to the cart, or checking out.

View:

The View component is used for all the UI logic of the application. It generates a user
interface for the user. Views are created by the data which is collected by the model
component but these data aren’t taken directly but through the controller. It only
interacts with the controller.

Responsibilities:
Rendering data to the user in a specific format.
Displaying the user interface elements.
Updating the display when the Model changes.
Example: In a bookstore application, the View would display the list of books, book
details, and provide input fields for searching or filtering books

Model:

The Model component corresponds to all the data-related logic that the user works with.
This can represent either the data that is being transferred between the View and
Controller components or any other business logic-related data. It can add or retrieve
data from the database. It responds to the controller's request because the controller
can't interact with the database by itself. The model interacts with the database and
gives the required data back to the controller.

Responsibilities:
Managing data: CRUD (Create, Read, Update, Delete) operations.
Enforcing business rules.
Notifying the View and Controller of state changes.
Example: In a bookstore application, the Model would handle data related to books,
such as the book title, author, price, and stock level.

Advantages of MVC

Codes are easy to maintain and they can be extended easily.
The MVC model component can be tested separately.
The components of MVC can be developed simultaneously.
It reduces complexity by dividing an application into three units. Model, view, and
controller.
It supports Test Driven Development (TDD).
It works well for Web apps that are supported by large teams of web designers and
developers.
This architecture helps to test components independently as all classes and objects are
independent of each other
Search Engine Optimization (SEO) Friendly.

 MVC rules to derive classes from the use case diagram

Rules of MVC:

Combination of One Actor and a use case results in one Boundary class.
Combination of Two Actors and a use case results in two Boundary classes.
Combination of Three Actors and a use case results in three Boundary classes. (Only
one primary actor is considered with a use case)
Use case will result in one entity class.
Each Actor will result in one entity class.

Derive classes from a use case diagram

To derive classes from a use case diagram within an MVC architecture, focus on the
model and controller classes. Use cases represent user interactions, and the MVC
model handles the data and logic, while the controller manages user input and updates
the model and view. Model classes represent entities and their attributes, while
controller classes handle use case logic.

Here's a breakdown of the process:

1. Identify Use Case Actors and System:
Use case diagrams depict actors interacting with the system. These actors often
correspond to UI elements or external systems that the application interacts with.
2. Model Classes:
For each entity or data object mentioned in the use cases, create a corresponding class
in the model.
Populate these model classes with attributes (data fields) derived from the data
described in the use cases.
Include methods in the model classes that represent the business logic and data
manipulation related to those entities.
3. Controller Classes:
For each use case, create a controller class.
These controllers will handle user input (typically from the view) and manage the
interaction with the model.
Each controller will likely have methods corresponding to each action or step in the use
case.
Controllers orchestrate the interaction between the view and the model, updating the
model and then instructing the view to reflect the changes.
4. Relationships:
Establish relationships between the model classes based on the data and logic
described in the use cases.
Controllers often interact with multiple model classes, so consider these relationships
when designing the controller methods.

Example:

Imagine a use case: "User edits a product."

Model: A Product class with attributes like name, description, price, etc.

Controller: A ProductController with a method like editProduct that receives user input,
updates the relevant Product object in the model, and then updates the view.
By following these steps, you can systematically translate use cases into a
well-structured MVC class diagram. Remember that this is an iterative process. As you
refine your understanding of the requirements and implementation details, you may
need to adjust your class diagram accordingly.

Guidelines to place classes in 3-tier architecture

Place all Entity Classes in DB Layer
Place Primary Actor associated Boundary Class in Application Layer
Place Controller Class in Application Layer
If governing Body influence or Reusability is there with any of remaining Boundary
Classes, place them in Business Logic Layer else place them in Application Layer.

Placing Classes in 3-Tier Architecture:

Presentation Tier:
This tier is responsible for the user interface.
View: The view (boundary class) should reside in this tier. It's responsible for displaying
data and receiving user input.
Examples include:
View models that hold data for display.
UI components like buttons, forms, and tables.
Controllers that handle user interactions.
Key Considerations:
This tier should be independent of the application logic and data access. Changes to UI
elements should not impact other tiers.

Application Tier:
This tier handles the business logic and application rules.
Controller: The controller should also be in this tier. It mediates between the view and
the model.
Examples include:
Services that orchestrate business processes.
Business rules that define how the application should behave.
Data access classes that interact with the database.
Key Considerations:

This tier should be independent of the user interface and data storage. It should provide
a clean interface for the presentation tier to interact with.

Data Access Tier:
This tier manages data storage and retrieval.
Data Access Objects (DAOs): DAOs are used to interact with the database or other
data sources. They can be considered part of the model or a separate layer within the
application tier.
Model: The model, representing data and logic, belongs in this tier. It interacts with the
data access layer.
Examples include:
Entities representing data objects in the database.
Data access objects (DAOs) or repositories for interacting with the database.
Database connection classes.
Key Considerations:
This tier should be independent of the application logic and user interface. It should
provide a clean interface for the application tier to interact with.

Example:

If a use case involves a user logging in, you would have:
Controller: LoginController
View: LoginView (representing the login screen)
Model: User (representing the user's data)
Placement: LoginView and LoginController in the presentation tier, User in the
application tier (or data tier if it also manages data access).

Q8. Explain BA contributions in project (Waterfall Model – all Stages) – 8 Marks

Stages Activities Artifacts & Resources

Pre project Enterprise Analysis -
SWOT Analysis, GAP
Analysis, Market
Research, Feasibility
Study, Root Cause

SOW (Statement of Work)
PO (Purchase Order)

Analysis, Decision
Analysis, Strategy
Analysis, Enterprise
Architectural Frameworks,
Project Scope
and Business case writing,
Risk analysis

Sr. BA, Business Architects
Presales Consultants

Planning, Estimation, and
Assessments

1. Understand
Assumptions and
Constraints along with
ith Business Rules and
Business Goals
2. Plan Packages for Big
Projects
3. Understands the project
plan from the PM
4. BA conducts
stakeholder Analysis
5. Plan BA approach
strategy [Req. gathering
techniques,
communication, Req.
mgmt., Documents
to follow, Tools to use,
Change Request Handling
methodology]
For this Project

Sr.BA
PM

Requirements Gathering 1. Stakeholders identify
and document
2. Client gives BRD or BA
prepares BRD by
interacting
with Client - Brainstorming,
Document Analysis,
Reverse engineering,
Interviews, workshops,
Focus
Groups, Observation,
Questionnaires.

BRD (Business
requirements document)

BA
PM

3. Prototyping can be used
by BA to make the Client
to give more specific
requirements
4. Sort the gathered
Requirements (avoiding
duplicate Reqs, grouping
into similar functionality or
into modules)

5. Prioritize requirements -
MOSCOW
6. Validate Requirements -
FURPS

Requirements analysis 1. Draws UML Diagrams
(Use case and Activity
Diagrams)
2. Prepares Functional
Requirements from
Business
3. All Architects comes up
with Technical
Requirements (SSD)
4. SRS will have
Functional Requirements
and
Technical Requirements
Matrix
5. Takes Signoff on SRS
from Client, SRS is the first
legal binding Doc between
the Business and the
technical Team
6. BA prepared RTM from
SRS before Design phase
starts. (BA is the owner of
RTM).
7. BA traces how
requirements are dealt in
each
phase of development life
cycle from Design till UAT

SSD (Supplementary
Support
Requirements
Document)
RTM (Requirements
Traceability
SRS (Software
Requirements
Specification)
Functional requirements
specification

Solution-Architect
DB - Architect
NW - Architect
BA
PM

Design 1. From Use case
Diagram, Test Manager or
BA will
prepare Test Cases
2. Communicates with
Client on the design and
Solution documents
lupdates Status to Client
and
make them understand
how the solution would
look
like to prepare them to
drive UAT)
3. BA will initiate the
preparation of End user
manuals
4. updates RTM
5. From Use case Diagram
Solution Architect
recommends Architecture
of the IT solution
6. DB Architect uses
Persistence Classes [Entity
Classes) and comes up
with ER Diagrams or DB
Schema.
7. GUI Designer will look
into Transient Classes
(Boundary Classes) and
designs all possible
Screens
for the IT Solution

Solution Document,Design
Document - HDD - ADD

Solution-Architect
DB - Architect
NW - Architect
GUI - Designer
BA
PM
Test Manger

Coding
1.BA organizes JAD
Sessions
2. BA clarifies queries of
Technical Team during
Coding
3. Developers refer
Diagrams and Transient
(Controller Classes) of BA
and code their unit
4. Update End user
manuals

LDD - CDD Application

Development team
BA
PM

5. Update RTM
6. Conducts regular Status
meetings with technical
Development Team
team and the Client and
tuning Client for
participation
in UAT

Testing 1.BA- Prepares Test Cases
from Use Cases or assists
Test Manager to do so
2. BA performs high level
testing
3. BA prepares Client for
UAT
4. Test Data is requested
by BA from Client
5. Updates End User
Manuals
Testing Team
6. Updates RTM
7. Take signoff from Client
on Client Project
Acceptance form

Test Concerning
DocumentsApplication with
less errors

Testing team
BA
PM
Client

Deployment and
Implementation

1.Forwards RTM to Client
or the PM which should be
attached to the Project
Closure Document
2. Coordinates to complete
and share End User
Manuals
3. Plans and Organizes
Training Sessions for End
Users
4. Prepares Lessons
learned from this project
(to take
precautions for coming
projects.)

Q9. What is conflict management? Explain using Thomas – Kilmann technique – 6
Marks

What is the Thomas Kilmann Conflict Model?

In 1974, a pair of researchers – the eponymous Kenneth W. Thomas and Ralph H.
Kilmann – studied workers and their routine conflicts in the workplace. Over time, they
were able to observe a pattern of ways in which people resolved conflict; most methods
could be distilled down to five core methods. These five options formed the basis of the
Thomas Kilmann Conflict Model Instrument and the Thomas Kilmann Conflict
Resolution Model.

The model has two approaches, also known as “dimensions”: assertiveness and
cooperation. Most of you are probably intimately familiar with each of these dimensions
on their own, as well as the associated personality traits, but not necessarily how they
interact. That is where this model shines. There are five forms of conflict resolution that
use these two approaches to different degrees.

The grid that forms the backbone of the model is a simple 2×2 design with an
overlapping square in the center, much like a more involved Venn diagram. At the
centre is the Compromising mode of conflict resolution. On the x-axis is
cooperativeness, and on the y is assertiveness. The four other cells (besides the
aforementioned Compromise) are as follows:

High assertiveness and high cooperativeness: Collaboration
High assertiveness and low cooperativeness: Competition
Low assertiveness and high cooperation: Accommodation
Low assertiveness and low cooperation: Avoidance

Thomas Kilmann Conflict Dimension One: Assertiveness
We frequently get asked by individuals enrolled in our Team Leader Apprenticeship
whether assertiveness is relevant and necessary – as it could be perceived as a
counterproductive trait.

However, assertiveness is the degree to which people are willing to take initiative and
force their will upon others. This strategy is useful in the following situations:

Results are needed fast
Ethics or morality is in question

You know you are correct and need to push forward
Other attempts to resolve conflict are fruitless
Your power and influence are significant

Naturally, assertiveness often leads to faster resolution and reinforces power within the
dominance hierarchy, but it can cause friction, backlash, and reinforce hierarchies that
are too vertical or power-driven. It can also lower morale and autonomy among strong
and equally disagreeable/assertive workers beneath you. It’s best to be prudent, as
always.

Thomas Kilmann Conflict Dimension Two: Cooperation
As it sounds, cooperation is the degree to which people are willing to work together to
accomplish a goal. It’s all about teamwork and weighing different points of view, much
like a democracy. Here are situations where cooperation may be superior to
assertiveness:

There is no clear-cut best way to handle the situation
Your way may not be the right way.
Your opponent/rival is not very disagreeable or is cooperative.
Helps lower threat levels in the workplace and minimize your number of enemies.
Works in every situation since you are giving up ground to a conflicting stance –
however, it may not always be the RIGHT way.
Cooperation has some advantages: it minimizes fallout and may enhance the worker or
manager’s reputation of being a diplomat and a people person.

However, it takes time to weigh all sides and come to agreements – time you may not
have. Also, the more stubborn the other person or group is, the harder it will be to be
cooperative – to the point where you may just waste your time. Know when to be
assertive and when to be cooperative!

It should now be clear why there are different combinations of the two dimensions, as
no single dimension can be useful for all situations. And remember: to implement this
model and determine which dimension is best, you have to be able to successfully
identify conflict within your own workplace

The five conflict modes

 Competing

High assertiveness
Low cooperativeness

Description: This style is highly assertive and not cooperative. It involves directly
addressing the conflict to achieve personal goals, even if it means others' needs are not
met.
This mode involves pursuing one's own concerns at the other person's expense, using
whatever power seems appropriate to win one's own position — standing up for one's
rights, defending a position which one believes is correct, or simply trying to win.

This could be effective in situations where quick, decisive action is needed, such as in
emergencies, or where unpopular actions need implementing, such as cost-cutting or
enforcing unpopular rules.

Situations: Suitable when quick decisions are needed, urgent issues require immediate
action, or when it's essential to protect oneself against unfair demands.

Potential Drawbacks: Can damage relationships and escalate conflict if used
inappropriately.

Examples:
Someone would rather by right than do the right thing! They might want to just win the
argument!
A person gets too defensive about their ideas or opinions and becomes combative
when facing objections or disagreements.

 Collaborating

High Assertiveness
High Cooperativeness

Description: This style is both assertive and cooperative. It involves working together to
find solutions that fully satisfy everyone involved.
This mode involves working with the other party to find a solution that fully satisfies the
concerns of both. It entails digging into an issue to identify the underlying concerns of
the two individuals and to find an alternative that meets both sets of concerns.

This constructive approach valuable when the quality and acceptance of the solution
are critical, encouraging creative problem solving and integration of multiple viewpoints.
It can also generate solutions that are more durable in the long term.

Situations: Ideal for complex problems, building trust, fostering commitment, or when
everyone's input is crucial.

Potential Drawbacks: Can be time-consuming and require more effort.

Examples:

If a person is offended by an idea but can see that there are implications for other
people, then the person will work with them to come up with alternative solutions that
are mutually agreed upon.
If someone is saddled with too much work, they will discuss the issue with their
employers and try to find a middle ground instead of resigning.

Compromising

Moderate assertiveness
Moderate cooperativeness

Description:
This style involves finding a middle ground between competing and collaborating. It's
moderately assertive and moderately cooperative, aiming for a solution that partially
satisfies everyone.
This mode is intermediate in both assertiveness and cooperativeness. The objective is
to negotiate some expedient, mutually acceptable solution that partially satisfies both
parties.

Compromising may be useful when the goals are moderately important, but not worth
the effort or potential disruption of more assertive approaches. It can provide a quick,
middle-ground solution – something acceptable (if imperfect) to both sides that feels
roughly ‘fair.’

Situations:
Useful when quick resolutions are needed, resources are limited, or when a temporary
fix is acceptable.

Potential Drawbacks:
May not fully address everyone's needs and could lead to dissatisfaction if the solution
is not durable.

Examples:

Two companies might cooperate on marketing efforts when they both want more
customers.
If your boss is offering you a raise, but you don’t want to give up too much of your
salary, you can say that you would be willing to compromise.

 Avoiding

Low assertiveness
Low cooperativeness

Description: This style is neither assertive nor cooperative. It involves ignoring or
postponing the conflict, effectively sidestepping the issue.
This mode involves ignoring the conflict altogether – or postponing the issue to be dealt
with by others or at a later time. People might choose this mode when when the issue is
trivial, when there's no chance of winning, or when the potential damage of confronting
a conflict outweighs the benefits of its resolution. Sometimes it’s less of a conscious
choice and more of an automatic response for a party that lacks the confidence to use a
more assertive Competing style.

Situations: Appropriate when the conflict is trivial, the situation is too volatile, or when a
cooling-off period is needed.

Potential Drawbacks: Can lead to unresolved issues and may worsen the conflict over
time.

Examples:

If someone was talking about an issue at work with someone and they started to argue
together, the first person would switch topics or leave.
A person who always avoids the topic of disciplining their employees might change the
subject or try to avoid talking about it altogether. They might not want to even be around
people when this topic is discussed.

 Accommodating

Low Assertiveness
High Cooperativeness

Description: This style is highly cooperative and not assertive. It involves yielding to the
other party's needs and sacrificing personal goals.
This mode involves neglecting one's own concerns to satisfy the concerns of the other
person; there is an element of self-sacrifice in this mode. This could be used when
maintaining harmony and avoiding disruption are more important than winning, or if one
realizes the other side actually deserves to prevail.

Situations: Suitable for preserving relationships, learning from others, or when the
issue is less important than the relationship.

Potential Drawbacks: Can be exploitable and may lead to resentment if consistently
used.

Examples:

If a co-worker has to skip work due to unavoidable circumstance, the person would
agree to cover their shift even if they are not friends with their co-worker.
If a project needs completing they may do “whatever it takes” to make this happen.

Why is the Thomas-Kilmann Conflict Model Useful?

The Thomas-Kilmann Model is useful for HR professionals, leaders and managers to be
able to understand the responses of their co-workers and employees during conflict
situations. By understanding someone’s response, you are in a better position to handle
a conflict and interpret certain behaviours.

Moreover, the Thomas-Kilmann Model can be used to highlight the benefits and
disadvantages of every position during different types of conflict. For example, a
‘collaborating’ approach is particularly beneficial when seeking a long-term, quality
decision which resolves any underling issues. A ‘competing’ approach may be useful
when fast, decisive action is required, whilst an ‘accommodating’ approach is necessary
where preserving harmony and avoiding disruption is more important than the decision

to be made. For further elaboration, read Dr Thomas and Dr Kilmann’s interpretive
report here.

How to Choose the Right Conflict Management Mode

Knowing how and when to choose the correct conflict management mode can be
challenging. However, there are also a number of variables that can help refine your
manager’s decision-making.

Importance of the issue: A compromising or avoiding approach might be perfect in
minor disagreements. However, higher-stakes disagreements probably call for more
assertive solutions.
Consider the relationship: When trying to improve and instill a lasting positive team
culture, a collaborating or accommodating approach is best -coupled with a strong
application of emotional intelligence. On the other hand, if a speedy resolution is more
important than preserving the relationship, a more competing stance can be more
effective.
Evaluate the willingness to engage: The collaborative approach is perfect if both
parties are open to discussion and problem-solving. However, resistance or power
imbalances could call for a more accommodating style. Leveraging the TKI with Daniel
Goleman’s emotional intelligence theory could help managers resolve the issue quickly
without damaging long-term associations.
Time constraints: If time is against you or conflict is becoming a barrier to the team
hitting a tight deadline, then competing or compromising may be necessary. However, a
collaborative approach is preferred for long-term solutions.
Review cultural or organisational norms: Different groups favour different
approaches. Some cultures prioritise harmony, while others prefer direct conflict
resolution. In these instances, it’s important to understand the dynamics of the
environment to ensure a respectful and effective solution is found.

Q10. List down the reasons for project failure – 6 Marks

The reasons for project failure

1.​ Improper planning
2.​ Inadequate testing
3.​ Unrealistic expectations
4.​ Inadequate budget
5.​ Frequent change in requirements

6.​ Lack of user involvement
7.​ Lack of executive support
8.​ Improper requirement gathering
9.​ Inadequate risk management
10.​Lack of stakeholder involvement
11.​Ineffective communication
12.​Resources restrictions
13.​Technology and tools issues
14.​Poor leadership
15.​Unrealistic deadlines
16.​Inaccurate data
17.​Selection of project methodology
18.​Cost cutting approaches

Q11. List the Challenges faced in projects for BA – 6 Marks

The challenges faced by business analyst in project

1.​ Lack of training
2.​ Obtaining sign off on Requirements
3.​ Change management with respect to cost and timeline
4.​ Coordination Between developers and testers
5.​ Conducting meeting
6.​ Making sure status report is effective
7.​ Driving clients for UAT completion
8.​ People management
9.​ Overall making sure project health is in good shape and delivered as per the

timeline without any issues
10.​Communication issues
11.​Stakeholder management
12.​Constant change in Requirements
13.​Lack of stakeholder engagement
14.​Gaps in project management
15.​Time, resources, budget constraints
16.​Lack of domain knowledge
17.​Inadequate time alloted for BA
18.​Conflict among stakeholders

Q12. Write about Document Naming Standards – 4 Marks

All documents will be named using some standards like [ProjectID][Document
Type]V[X]D[Y].ext.
Example:PQ786BRDV1D2.docx

For document naming standards for a business analyst, it's best to use a structured
format like [Date][Project][Version] or [Project][Document Type][Version]. Descriptive
names and version control are key to easy identification and retrieval of documents.
Consider using a standard date format, and avoid special characters, spaces, and
unclear abbreviations.

Detailed Explanation:

Structured Format:
A consistent format, such as [Date][Project][Version] (e.g., 20231115_HR_Project_v1.0),
helps organize files and easily identify their purpose, project, and version.
Descriptive Names:
Use clear and informative names that accurately describe the document's content.
Avoid generic names like "document1". For example, use "Marketing_Plan_Q3_2023"
instead of "marketing_plan".
Version Control:
Include version numbers (e.g., v1.0, v1.1) to track changes and avoid confusion.
Version dates (e.g., YYYY-MM-DD) can also be helpful.
Standard Date Format:
Use a consistent date format like YYYYMMDD or YYYY-MM-DD to ensure consistency
across files.
Avoid Special Characters and Spaces:
Special characters and spaces can cause compatibility issues. Use underscores (_) or
hyphens (-) as separators.
Keep it Short:
While descriptive, keep file names concise for easy readability.
Placement of Words:

Avoid placing words like "draft" or "final" at the beginning of the file name, as this can
group unrelated items together.
Document Type:
Include the document type (e.g., BRD, FRD, RTM) to quickly identify the type of
document.
Consult and Document:
Involve stakeholders and document the naming conventions for easy reference.
Review Regularly:
Review and update naming conventions periodically to ensure they remain relevant.
Example:
Project: "New Customer Onboarding"
Document Type: "Business Requirements Document"
Version: v1.0
Date: 2023-11-15
Proposed Naming:
Code20231115_NewCustomerOnboarding_BRD_v1.0.docx
or
CodeNewCustomerOnboarding_BRD_v1.0_2023111

Q13. What are the Do’s and Don’ts of a Business Analyst – 6 Marks

Never say no to a client
There is NO word called BY DEFAULT
Never imagine anything in terms of a GUI
Question Everything
Consult an SME for clarification on Requirements
Every problem of client is unique.
Go to the client with a clear mind.
Listen carefully and completely until the client is done, then you can ask your queries.
Do not interrupt the client when he/she is giving you the problem.
Should not be hurry
Maximum try to extract the leads to the solution from the client itself.
Never try to give a solution to the client straight away with previous experience and
assumption.
Try to concentrate on the important and truly required requirements.
Don't be washed away by the add-on functionality and don't imagine a solution in a
screen basis
BA should focus on ‘what’ and ‘when’ to develop rather than ‘how’ to develop

Should not miss any requirement
Should know what the scope of the project is.

Q14. Write the difference between packages and sub-systems – 4 Marks

In the context of software engineering and UML modeling, a package is a grouping
mechanism for model elements, often used to organize and manage classes, interfaces,
and other components. A subsystem, on the other hand, is a stereotyped component
that represents a distinct, behavioral unit within a larger system. It can be thought of as
a smaller system within a bigger system, often with its own internal structure and
interfaces.

Both package and subsystem are used in software modeling (especially UML) to
organize and structure code, but they differ in scope and purpose.

Feature Package Subsystem

Definition

A logical grouping of related
classes, interfaces, or
components

A larger unit of functionality that
represents a self-contained part of
the system

Granularity
Fine-grained (smaller units)
​

​ Coarse-grained (larger
units)

Purpose
Organize code or model into
manageable parts

​ Represent a functional
module or layer in a system

Containment

Typically contains classes,
interfaces, or other packages
​

Can contain multiple packages,
components, interfaces, etc.

Used in
Programming (Java, UML
diagrams)​

​ System-level modeling
(UML, architecture)

Scope

Packages are primarily used
for the organization and
grouping of elements.

Subsystems represent larger,
more independent units within a
system.

Relationship to
system

A package is a grouping
mechanism that can contain
various elements, including
other packages or
subsystems

A subsystem is a system in its
own right, but it is also part of a
larger system.

Behaviour

While packages can
encapsulate and group
elements

subsystems are often associated
with specific behavior and
interfaces.

In simple terms

Think of packages as
containers or folders that
organize related code, similar
to how you organize files on
your computer.

Subsystems are more like
independent modules or
components that perform specific
functions within a larger system.

Details
Package = Code-level
organization

Subsystem = System-level
modularization of business
functionality

Q15. What is camel-casing and explain where it will be used- 6 Marks

CamelCase is a way to separate the words in a phrase by making the first letter of each
word capitalized and not using spaces. It is commonly used in web URLs, programming
and computer naming conventions. It is named after camels because the capital letters
resemble the humps on a camel's back.

CamelCase is formally referred to as medial capitals. It may also be called or styled as
PascalCase, camel case, InterCaps, mixedCase or WikiCase.

The first letter may or may not be capitalized in CamelCase. This difference is called
UpperCamelCase and lowerCamelCase. PascalCase always has the first letter
capitalized.

Example of camelCase:

customerName

orderTotalAmount

getUserDetails()

Uses of CamelCase

When a computer parses text, it treats the spaces as a delimiter between words.
CamelCase is most used in places where white space is not allowed for technical
reasons. This can make the phrase hard to read or ambiguous. An example of an
ambiguous phrase in programming is chartable, which can be interpreted as char table
(a table of characters) or chart able (having the ability to be charted). Other ways to
remove white space are with dashes called kebab-case or with underscores with
snake_case.

Website URLs often use CamelCase to replace spaces. Domain names cannot contain
special characters and are not case-sensitive, so most websites write their domain
name in CamelCase to make it easier to read and remember.

Where Camel Casing is Used:

Camel-casing is widely used in software development, especially in the following
places:

Area Description Example

Variable names Used to store values totalPrice, userAge

Function/method
names Actions or behavior calculateTax(), sendEmail()

Object properties Data in objects or classes
employee.id,
employee.firstName

JavaScript & Java
conventions

Standard in languages like
JavaScript, Java, C#, Swift isLoggedIn, setUserName()

Camel-casing improves readability and follows naming conventions in many
programming languages. It’s especially used for:

Variables

Methods/functions

Object properties

JavaScript and Java development

Computer Programming: It's a popular convention for naming variables, functions,
methods, and other identifiers in many programming languages like JavaScript, Java,
and C#.
Web Development: It's used for naming elements in HTML, CSS, and JavaScript in
web development.
Online Usernames: Some online platforms and services use camel casing for
usernames.
Domain Names: Companies sometimes use camel casing in their domain names to
make them more readable.
Acronyms and Abbreviations: In some cases, camel casing is used for acronyms and
abbreviations, where all letters of the acronym are capitalized.
Product and Software Names: Companies like Apple use camel casing in their
product and software names.
Text Messaging and Instant Messaging: While less common, camel casing can also
be seen in informal text or messaging contexts.

Q16. Illustrate Development server and what are the accesses does business analyst
has? -6
Marks

What is a Development Server?

A Development Server is a separate environment that mirrors the live production
system but is used for software development, testing, and experimentation without
impacting the live site. Basically a Development Server is a controlled environment used
by developers to build and test new features or fixes before they are deployed to

staging or production environments. It serves as the first layer for implementing and
testing requirements and functionality. It provides a safe, isolated environment where
changes can be made without affecting live users or applications.

Illustrative Example:
Imagine a website like Amazon. The actual website that customers use is the
"Production Server". There's also a "Development Server" that developers and analysts
use. This Dev Server has the same structure as the production site but might have older
versions of the code, dummy data, or specific configurations to facilitate testing.

Purpose:
Development servers are designed for the initial stages of software development,
allowing developers to experiment, iterate, and make changes without impacting the live
system.
Unrestricted Access:
Unlike production servers, development servers typically offer unrestricted access and
control to developers, allowing them to make changes and test freely.
Isolation:
They are often isolated from the production environment, meaning changes made on
the development server won't affect the production server or its users.
Flexibility:
Development servers can be configured with different software versions, databases,
and configurations to mimic production environments or specific testing scenarios.
Collaboration:
They can be used by multiple developers simultaneously, enabling collaborative
development and testing.
Web Development:
In web development, a development server typically hosts the application's static files
(HTML, CSS, JavaScript) and potentially handles server-side logic.
Local vs. Remote:
Development servers can be local (running on a developer's machine) or remote
(hosted on a network server).
Production vs. Development:
The primary difference between a development server and a production server is their
purpose. Production servers host the live application and are accessed by real users,
while development servers are used for testing and development purposes.
Development servers offer several advantages, including:
Testing before deployment: Allows developers to test new features and changes
before they are released to production.
Debugging: Provides a controlled environment for identifying and fixing bugs.

Collaboration: Facilitates teamwork and collaboration among developers.
Experimentation: Allows developers to experiment with different approaches and
configurations without affecting the live application.

Why use a Development Server?

Using a development server is highly recommended because it allows developers to
work on, test, and debug code in a safe and controlled environment. This reduces the
risk of introducing bugs, security vulnerabilities, or performance issues into the live
production site. It also enables a collaborative team approach, where multiple
developers can work simultaneously on different aspects of a project without interfering
with each other’s work.

How does a Development Server differ from a Staging Server and a Production
Server?

A development server is mainly intended for developers to work on, test, and debug
code. In contrast, a staging server is a replica of the production server used to test new
features, updates, or bug fixes before pushing them to the live environment. A
production server is the environment where your live, publicly accessible website or
application resides. Each environment serves a unique purpose, and having these
separate instances helps maintain a smooth development-to-deployment process.

Importance of Development Server
The technology term “Development Server” is important because it plays a crucial role
in the software development process, serving as a controlled environment for
developers to build, test, and debug applications and websites before deployment.

It is specifically designed for experimenting with new features, concepts, and code
modifications without affecting the actual production environment or end users’
experience.

By utilizing a development server, developers can identify and fix errors, optimize
performance, and ensure seamless integration of various components.

As a result, this approach helps reduce the risk of issues in live applications, allowing
developers to deliver a higher quality product, ultimately leading to an improved user
experience and more reliable software solutions.

Business Analyst Access:

Business Analysts typically have limited access to the Development Server,primarily for
viewing data and testing functionalities rather than making changes as their primary
focus is on understanding the system, analyzing data, and providing feedback.

Business Analyst (BA) Access in Development Environment
A Business Analyst typically has limited access to a Development Server,
has controlled or read-only access to the development environment, aimed at validating
requirements and ensuring the development is aligned with business needs.

 Here's what their access might look like:

Viewing Data:
Analysts can usually see the data that exists in the development environment. This
allows them to check if the data is accurate, complete, and conforms to business
requirements.
View Logs or Debug Outputs
In some cases, BAs may be allowed to view logs or debugging screens to help identify
where issues occur, especially in complex flows. This is often read-only.
User Interface (UI) Access
BAs often access the web or mobile interface of the application to review screen flows,
functionality, field validations, and user experience.
Test Environment Access
BAs are given access to the test version of the application to interact with features and
verify whether they work as per requirements.
Testing Functionality:
They can use the Development Server to test specific features or workflows without
impacting the live site.
Observing Behavior:
They can observe how the system behaves under different conditions or with different
data to identify potential issues or areas for improvement.
Limited Reporting:
Some analysts may have limited reporting capabilities on the Development Server,
allowing them to generate reports from the data.

Limited Access:

No Direct Modification:

Business Analysts do not have permission to directly change the code, data, or
configuration of the Development Server.
No Impact on Production:
Their actions on the Development Server do not impact the live, production
environment.
Access Control:
Access to the Development Server is typically restricted to specific users or roles, and
business analysts' access is generally limited to their specific needs.
In essence, the Development Server serves as a sandbox for testing and
experimentation, while the Business Analyst uses it to analyze data, test features, and
gather information to support their analysis of business processes.

What Business Analysts Typically Do Not Have Access To:

Source code
Admin-level system access
Direct deployment tools or DevOps pipelines
Production databases or live environments
Administrative system settings

Common BA Activities on a Development Server:

Validate that features are developed as per user stories and requirements
Identify and report bugs or mismatches
Review early-stage builds for feedback
Collaborate with developers and testers
Prepare notes for UAT (User Acceptance Testing) readiness

Summary

Business Analysts in a development server environment are focused on validation and
collaboration. They review what's been built, ensure alignment with business needs,
and support communication between development and testing teams. Their access is
designed to enable quality assurance and requirement traceability—without directly
interfering with technical operations.

Q17. What is Data Mapping 6 Marks

Data Mapping is the process of linking fields or data elements from one source to
corresponding elements in another. It ensures that data is transferred accurately
between different systems, databases, or file formats.
Data mapping is the process of defining relationships between data fields in different
data sources. It essentially creates a "map" that outlines how data should be moved and
transformed from one system or database to another. This process ensures that
different systems can share and synchronize data seamlessly.

Data mapping helps ensure that data flows correctly between systems. It's a
foundational step in system integration, migration, and automation, helping to avoid
mismatches, errors, or data quality issues. It’s like creating a set of instructions for how
one system’s data should be interpreted or restructured by another.

Why Is Data Mapping Important?

Prevents data loss or corruption during migration or integration
Ensures that systems can communicate accurately
Supports reporting, analytics, and compliance by maintaining clean data
Helps automate workflows across tools and platforms
Transforming data from one format to another (like changing date or currency formats)
Ensuring consistency in reports, analytics, or dashboards

Data mapping is a crucial step in various data management tasks, including:

Data integration: Combining data from different sources into a unified view. A
continuous process of transferring data from one system to another, typically triggered
by a specified event or as part of a scheduled timeline.

Data migration: Moving data from one system to another.A one-time transfer of data
from a legacy system to a new source. Once moved, the original data source is retired.

Data transformation: Converting data from one format to another.A process of
converting data from a source format to the new destination’s format. Examples of this
include deleting redundancies or duplicates, removing nulls, enriching the data, or
changing the data type.

Data synchronization: Keeping data consistent across multiple systems. Pools all the
data into a singular source for analysis, queries, or reports. Data in a data warehouse
has already undergone the three processes above.Aka data warehousing

Data Mapping Process

1.​ Define the Data: Start with identifying which data needs to move and which
doesn’t. From there, define the data relationships and their significance, then
set prioritizations for data sets. This is critical for preventing data loss,
upholding data accuracy, and determining the correct data sets, data fields, and
inputs involved in the process.

2.​ Map the Data: Identify data flows and match source data fields to their
destination fields so there’s alignment between the two. For this, maintaining
logs and monitoring the process helps prevent errors or data bottlenecks.

3.​ Test the Process: Run a system test using sample data to see whether the
process works and is error-free. Adjust accordingly. The three primary forms of
tests are:

●​ Visual
●​ Manual
●​ Automated

4.​ Deploy the Data Management Process: After the tests confirm the data
transformation is operational, schedule the migration or integration.

5.​ Maintain and Update: As mentioned, data maps aren’t static, they’re dynamic.
They require constant maintenance, updates, and changes when new data
sources are added or changed.

Who are the stakeholders involved in data mapping?
It depends on the size and strength of an organization’s privacy program. If an
organization is set on building and maintaining a labor-intensive manual data map, it will
likely need to hire specific data mapper system operators, data systems administrators,
and CRM specialists to deal with marketing-specific data, among other positions.

Benefits of data mapping:

Reduced errors:
By clearly defining data relationships, data mapping minimizes the potential for errors
during data transfer.
Data standardization:
Data mapping helps ensure that data is consistent across different systems, making it
easier to analyze and understand.
Improved data quality:

By identifying and correcting inconsistencies, data mapping improves the overall quality
of the data.
Efficient data integration:
Data mapping streamlines the process of integrating data from multiple sources, leading
to faster and more accurate results.
Better data governance:
Data mapping helps organizations understand where data comes from, how it's used,
and how it's stored, which is essential for data governance and compliance.

Types of Data Mapping

1. One-to-One Mapping
Each field in the source system maps directly to a single field in the target system.

2. Many-to-One Mapping
Two or more fields in the source system are combined into one field in the target
system. For example, combining "First Name" and "Last Name" into "Full Name".

3. One-to-Many Mapping
One field in the source is split into multiple fields in the target. For example, a single
"Full Name" field is separated into "First Name" and "Last Name".

4. Transformation Mapping
The data is modified or converted during mapping. For example, changing the date
format from "DD/MM/YYYY" to "YYYY-MM-DD", or converting currency from dollars to
euros.

Data mapping technique

Manual data mapping
Manual data mapping is performed entirely by humans which is time-consuming,
resource draining, and prone to human error. One of the biggest issues with manual
data mapping is the lack of ongoing, real-time data mapping as an organization grows
and changes. Complex data mapping processes make it difficult to run an entirely
manual mapping program.

Benefits: Completely custom to your exact needs, flexible

Drawbacks: Manual, time-consuming, resource-intensive, tool-agnostic,
code-dependent

Manual data mapping requires a heavy lift. It involves connecting data sources and
documenting the process using code. Usually, analysts make the map using coding
languages like SQL, C++, or Java. Data mappers may use techniques such as Extract,
Transform and Load functions (ETLs) to move data between databases. Although, when
there are data professionals in an organization who can complete the task, you can
create the data map with complete control.

Semi-Automated data mapping

Semi-automated data mapping processes combine elements from both automated and
manual data mapping activities.
Benefits: Balance of flexibility and effectiveness
Drawbacks: Requires coding knowledge, requires navigating between manual and
automated processes, resource-intensive

Other companies may use semi-automated data mapping. Semi-automated data
mappers use graphical representations of the data links. Pros can create schema maps
in a visual interface. For example, users match “StudentName” in one database to
“Name” in other databases by drawing lines, using a drag-and-drop function, or smart
clustering functionality in software like Tableau Prep. Then there may be an output script
with the map in coding language—just like the manual process above. Having a script
output to save can assist when you want to standardize your map for other data sources
or use cases where you do not have automated tools.

Automated data mapping
Automated data mapping processes — like DataGrail’s Live Data Map — immediately
reduce risk, eliminate human error, and allow employees to focus their time and energy
elsewhere. For example, our Live Data Map is supported by 2,000+ powerful
integrations that make it easy to integrate new apps and systems and discover shadow
IT.
Powerful automation also supports ongoing, real-time data mapping as an organization
grows, shifts, and collects more data from new and existing sources.
Benefits: Less technical knowledge required, low barrier to entry, fast, easy to scale,
easy to schedule, deployment flexibility

Drawbacks: Training tends to be tool or software-specific, usually required software
comes with a price tag

Modern data mapping platforms are evolving to become fully automated. This means
anyone—from the data pro to data novice—can complete data mapping without coding
to sort data the way they want and refresh the analysis on a regular, scheduled basis to
capture all changes. Some mapping platforms now use natural language processing to
match data fields and attributes and describe the contents in a data source. This can
help teams understand what the data is telling them, reducing incorrect assumptions.

Q18. What is API. Explain how you would use API integration in the case of your
application
Date format is dd-mm-yyyy and it is accepting some data from Other Application from
US whose Date Format is mm-dd-yyyy 10 Marks

What is an API?

An API, or Application Programming Interface, is a set of rules protocols, tools and
definitions that allows different software applications to communicate and interact with
each other. It acts as a bridge, enabling applications to request data and functionality
from other systems or perform operations without needing to understand each other’s
internal structure or logic.
APIs simplify and accelerate application and software development by allowing
developers to integrate data, services and capabilities from other applications, instead
of developing them from scratch. APIs also give application owners a simple, secure
way to make their application data and functions available to departments within their
organization. Application owners can also share or market data and functions to
business partners or third parties.

APIs allow for the sharing of only the information necessary, keeping other internal
system details hidden, which helps with system security. Servers or devices do not have
to fully expose data, APIs enable the sharing of small packets of data, relevant to the
specific request.

API documentation is like a technical instruction manual that provides details about an
API and information for developers on how to work with an API and its services.
Well-designed documentation promotes a better API experience for users and generally
makes for more successful APIs.

Here's a more detailed explanation:
Communication Bridge:
APIs essentially define how software components can interact, allowing them to share
data, features, and functionality.

Requesting and Receiving Data:
APIs establish how one application can request information or actions from another
application and how the receiving application responds.
Standardized Communication:
APIs follow a set of rules and protocols, ensuring that applications can communicate in
a consistent and predictable manner.
Essential for Modern Applications:
APIs are crucial for building interconnected and functional software applications that rely
on sharing data and functionality between different systems.

How do APIs work?
It’s useful to think about API communication in terms of a request and response
between a client and server. The application submitting the request is the client, and the
server provides the response. The API is the bridge establishing the connection
between them.

1. A client application (such as a mobile app or web browser) sends a request to an
API.
2. The API processes this request and may interact with other systems, such as
databases or other services.
3. After processing, the API sends back a response with the required information or
result.
4. The client receives the response and uses it to display data or perform an action.

Importance of APIs

APIs are crucial in modern software development for several reasons:

They allow different software systems to integrate and share data.
They enable automation by allowing systems to perform tasks without human
interaction.
They support scalability and modular development, as developers can reuse existing
APIs.
They enhance security by only exposing specific parts of a system.

What are the benefits of APIs?
APIs connect various software systems, applications, and devices by allowing them to
communicate with one another. This unlocks many benefits, ranging from enhanced
user experiences to increased business efficiency. The most common advantages of

APIs include:

Automation: APIs can be used to automate repetitive, time consuming work so that
humans can focus on more complex tasks. This improves productivity, especially for
developers and testers.
Innovation: Public APIs can be used by external engineering teams, which spurs
innovation and accelerates development by enabling developers to repurpose existing
functionality to create new digital experiences.
Security: APIs can provide an additional layer of protection against unauthorized
breaches by requiring authentication and authorization for any request to access
sensitive data.
Cost efficiency: APIs provide access to useful third-party tools and infrastructure,
which helps businesses avoid the expense of building complex in-house systems.

Types of APIs

1. Public APIs (Open APIs): These are available to any developer and can be used
without restrictions. For example, weather or map services.
2. Private APIs (Internal APIs): These are used within an organization and are not
shared outside the company.
3. Partner APIs: These are shared with specific external partners or organizations
under agreements.
4. Composite APIs: These combine multiple APIs into a single request, useful for
complex operations that require data from different sources.

Common API Styles

1. REST (Representational State Transfer): The most commonly used API style. It is
simple, uses standard HTTP methods like GET, POST, PUT, DELETE, and returns data
in JSON or XML format.
2. SOAP (Simple Object Access Protocol): A more structured and secure protocol using
XML. Often used in enterprise and financial systems.
3. GraphQL: A flexible approach where the client defines exactly what data it needs. It
minimizes the amount of data transferred.

Other types of APIs
Less common types of APIs include:

Data (or database) APIs, used to connect applications and database management
systems

Operating system (or local) APIs, used to define how apps use operating system
services and resources
Remote APIs, used to define how applications on different devices interact

Key Components of an API

1. Endpoint: A specific URL or address where the API can be accessed by a client.

2. Request: A message sent by the client to the server, asking for specific data or an
action.

3. Response: The data or result returned by the server after processing the request.

4. Methods or Functions: Specific operations that the API can perform, such as getting
data, creating a record, updating a value, or deleting something.

5. Authentication: Security mechanism to control who can access the API, often using
keys or tokens.

 Explain how you would use API integration in the case of your application
Date format is dd-mm-yyyy and it is accepting some data from Other Application
from US whose Date Format is mm-dd-yyyy

To integrate an API where one application uses dd-mm-yyyy and the other
mm-dd-yyyy, you need to handle the date format conversion during data exchange.
This can be done either within the application itself, or by the API endpoint. The
backend will handle the date conversion, ensuring the incoming dates are in the
correct format for database storage and other operations.

1. Backend API Conversion (Recommended):

​​ Request/Response Handling:​
The API should be configured to accept dates in the source format (mm-dd-yyyy)
from the external application and convert them to the target format (dd-mm-yyyy)
internally. Similarly, any requests that require dates in dd-mm-yyyy format should
be converted to the source format before sending them to the external
application.

​​ Date Parsing and Formatting:​
Use date parsing and formatting libraries or functions within the backend to convert
between the two formats.

●​ Parsing: Parse the incoming date string (e.g., 03/28/2025) using the
mm-dd-yyyy format.

●​ Formatting: Format the date object to the target format (dd-mm-yyyy) (e.g.,
28-03-2025).

​​ Error Handling:​
Implement error handling to manage invalid date formats or parsing failures.

2. Frontend Conversion (Alternative):

​​ Client-Side Transformation:​
The application could potentially handle date format conversion in its frontend.
However, this can introduce more complexity and potentially require custom logic
to handle date differences.

​​ User Interface:​
The application could offer a user interface to input dates in the mm-dd-yyyy
format (or even a more flexible format like YYYY-MM-DD), then convert the date
for the API call.

​​ Validation:​
Frontend validation could be used to ensure users enter valid dates in the correct
format.

To handle API integration between two applications that use different date formats, you
need to ensure that the data exchanged is transformed and interpreted correctly on both
ends. Below is a clear explanation of how to handle this scenario, particularly focusing
on date format differences.

When integrating your application with another system through an API, and both use
different date formats, you need to carefully handle the date values to avoid errors. For
example, your application might use the format dd-mm-yyyy, like 10-06-2025 for 10th
June 2025, while the other application from the US sends dates in the format
mm-dd-yyyy, like 06-10-2025, which actually means October 6th, 2025. If you directly
use the date received without converting it, your system may misinterpret the date. To

fix this, when your application receives a date from the API, you must convert it from
mm-dd-yyyy to dd-mm-yyyy before storing it or displaying it to users. This can be done
by splitting the date into parts and rearranging them in the correct order. Similarly, if
your application is sending data back to the US system, you should convert the date
from dd-mm-yyyy to mm-dd-yyyy. This ensures both systems understand the dates
correctly and prevents confusion or data errors. Proper date conversion should always
happen at the integration point before the data is processed further.

Steps to Use API Integration and Handle Date Format

1. Understand the API Contract

Before integration, study the API documentation provided by the US application. Identify
which fields contain dates and note the format (in this case, mm-dd-yyyy).

2. Fetch the Data via API

Use your application to call the API endpoint and fetch the data using an HTTP request
(e.g., GET request).
3. Convert the Date Format

Once the data is received, convert the date from mm-dd-yyyy to dd-mm-yyyy before
saving or displaying it in your application.
4. Store or Display the Correct Format

Now use the converted local_date in your database, UI, or reports to maintain
consistency in your system.

5. Reverse the Format (if sending data back)

If your system is sending data back to the US application via API, convert the date from
dd-mm-yyyy to mm-dd-yyyy before sending it.

Best Practices

Always handle date formatting and conversion at the integration layer or middleware.
Validate all incoming date fields to prevent data corruption.
Use standard date libraries or functions for date parsing to avoid manual string
manipulation.

Consider using ISO 8601 format (yyyy-mm-dd) in your API if you have control over both
systems, as it is universally accepted and avoids ambiguity.

	Tab 1

