Capstone Project- 3

A customer can make a payment either by Card or by Wallet or by Cash or by Net banking.

Q1) Draw a Use Case Diagram.

Answer-1

[image:]

Q2) Derive Boundary Classes, Controller classes, Entity Classes.

 Answer-2

 Boundary Classes (View/UI Classes)
· Handle user interaction (UI/UX).
· Act as an interface between the system and the external actors.
· Example: PaymentOptionBoundary ; CardPaymentBoundary
 Control (Controller) Classes
Acts as intermediaries between boundary and entity classes
· Manage the flow of data between boundary and entity classes.
· Implement business logic and coordinate interactions.
· Example: Pay
 Entity Classes (Model Classes)
· Represent business objects with attributes and behavior.
· Typically map to database tables.

Answer-3

Placing the Payment Classes in Three-Tier Architecture
1. Presentation Layer (UI Layer)
· This layer interacts with users (customers).
· It collects payment details and sends them to the service layer.
· Example Classes:
PaymentUI (Handles user input for selecting payment mode)
PaymentForm (Takes card details, wallet selection, etc.

2. Business Logic Layer (Service Layer)
 Processes payment and applies business logic.

Determines payment method (Card, Wallet, Cash, or Net Banking).
Example Classes:
PaymentService (Processes payments based on the chosen method)
CardPayment (Handles card transactions)
Wallet Payment (Processes wallet transactions)
CashPayment (Confirms cash payments)
NetBankingPayment (Handles net banking payments)

3. Data Access Layer (Persistence Layer)

· Manages database operations like storing payment records.
· Example Classes:
· PaymentDAO (Handles database transactions)
· TransactionRecord (Stores payment details)

Answer-4

A Domain Model represents real-world entities and their relationships in a specific domain. For a scenario where a customer makes a payment through net banking, the domain model includes key entities like Customer, Bank, Payment Gateway, Merchant, and Transaction.

Entities in the Domain Model

Customer
· Attributes: Customer ID, Name, Email, Phone Number, Bank Account Details
· Relationships: Initiates a Transaction, linked to a Bank Account
Bank Account
· Attributes: Account Number, Bank Name, Balance, IFSC Code
· Relationships: Belongs to a Customer, used for a Transaction
Payment Gateway
· Attributes: Gateway ID, Provider Name, Service Fee
· Relationships: Acts as an intermediary between the Bank and Merchant
Bank
· Attributes: Bank ID, Bank Name, SWIFT Code, Net Banking System
· Relationships: Processes Transaction, linked to Bank Accounts
·
Merchant
· Attributes: Merchant ID, Business Name, Account Details
· Relationships: Receives Payment from the Customer via Payment Gateway
Transaction
· Attributes: Transaction ID, Amount, Status (Pending, Successful, Failed), Timestamp
· Relationships: Initiated by Customer, processed via Bank and Payment Gateway, received by Merchant

Answer-5 : Payment done by Customer Net Banking

Workflow Representation
1. Customer selects net banking as the payment method.
2. Payment request is sent to the Payment Gateway.
3. Payment Gateway redirects the customer to the Bank’s net banking portal.
4. Customer logs in, selects an account, and confirms payment.
5. Bank verifies the transaction and debits the amount.
6. Payment Gateway receives confirmation and notifies the Merchant.
7. Merchant acknowledges the payment, and the transaction is completed.
UML Representation
A class diagram for the domain model would show:
· Customer → initiates → Transaction
· Transaction → processed via → Payment Gateway
· Payment Gateway → interacts with → Bank
· Bank → transfers funds to → Merchant
Answer-6
A conceptual model provides a high-level abstraction of entities, their attributes, and relationships in a system. In this case, a customer can make a payment using Card, Wallet, Cash, or Net Banking.

Key Entities and Their Relationships
1. Customer
· Attributes: Customer ID, Name, Email, Phone
· Relationships: Initiates a Transaction and chooses a Payment Method
2. Transaction
· Attributes: Transaction ID, Amount, Status (Pending, Successful, Failed), Timestamp
· Relationships: Linked to one Payment Method, belongs to a Customer
3. Payment Method (Abstract Entity)
· Attributes: Payment Method ID, Type (Card, Wallet, Cash, Net Banking)
· Relationships: Specialized into Card, Wallet, Cash, and Net Banking
4. Card Payment (Subclass of Payment Method)
· Attributes: Card Number, Expiry Date, CVV, Card Type (Debit/Credit)
· Relationships: Linked to Bank
5. Wallet Payment (Subclass of Payment Method)
· Attributes: Wallet ID, Provider Name (PayPal, Google Pay, etc.), Balance
· Relationships: Linked to Customer Account
6. Cash Payment (Subclass of Payment Method)
· Attributes: Receipt ID, Payment Location
· Relationships: No external linkage, used for offline transactions
7. Net Banking Payment (Subclass of Payment Method)
· Attributes: Bank Name, Account Number, IFSC Code
· Relationships: Linked to Bank
8. Bank
· Attributes: Bank ID, Bank Name, SWIFT Code
· Relationships: Processes Net Banking and Card Payments
Conceptual diagram representation
Customer [1] ---- (initiates) ----> [*] Transaction
Transaction [1] ---- (uses) ----> [1] Payment Method
Payment Method {Abstract} ----> (Specialized into) ----> Card, Wallet, Cash, Net Banking
Card [1] ---- (processed via) ----> [1] Bank
Net Banking [1] ---- (processed via) ----> [1] Bank
Wallet [1] ---- (linked to) ----> [1] Customer
Cash [1] ---- (used for) ----> [1] Offline Transaction

Answer-7

What is MVC architecture? Explain MVC rules to derive classes from use case diagram and
guidelines to place classes in 3-tier architecture.

MVC (Model-View-Controller) is a software design pattern used for developing applications by separating concerns into three interconnected components:
1) Model (M) – Business Logic & Data Management
a) Represents the application's data and business rules.
b) Interacts with the database and updates based on user actions.
c) Example: Customer, Transaction, PaymentMethod classes.
2) View (V) – User Interface (UI)
a) Displays information to users.
b) Does not contain business logic; only presentation logic.
c) Example: Web pages, mobile screens, reports.
3) Controller (C) – Request Handling & Coordination
a) Handles user input and updates the Model/View accordingly.
b) Acts as a middle layer between View and Model.
c) Example: PaymentController, UserController.

Rules to Derive Classes from a Use Case Diagram in MVC
1. Identify Entities (Model Layer)
· From nouns in use cases (e.g., "Customer," "Order," "Transaction").
· These become Model classes responsible for business logic and data.
2. Determine UI Components (View Layer)
· From use case scenarios related to UI interactions (e.g., "Display Order Summary," "Show Payment Options").
· These map to View classes (e.g., OrderView, PaymentView).
3. Identify Controllers (Controller Layer)
· From verbs or actions in use cases (e.g., "Process Payment," "Validate User").
· These translate to Controller classes that manage user inputs and direct flow.
4. Define Relationships Between Model, View, and Controller
· Model classes interact with databases.
· View classes retrieve and display model data.
· Controllers update models and decide which view to render.
Guidelines for Placing Classes in 3-Tier Architecture
The 3-Tier Architecture divides an application into Presentation, Business Logic, and Data Layers, mapped to MVC components as follows:
1. Presentation Layer (View in MVC)
· Handles user interaction and UI rendering.
· Includes HTML, JavaScript, CSS, UI Components.
· Example: LoginPage.html, PaymentView.jsp, React Components.
2. Business Logic Layer (Controller in MVC)
· Implements application logic, rules, and validation.
· Includes Service classes and Controllers.
· Example: UserController, TransactionService, PaymentProcessor.
3. Data Access Layer (Model in MVC)
· Manages database operations and persistence.
· Includes Entity classes, Repositories, DAOs (Data Access Objects).
· Example: CustomerDAO, PaymentRepository, Hibernate Entities.

	MVC Component
	3-Tier Layer
	Example Classes

	Model
	Data Layer
	Customer, Order, TransactionDAO

	View
	Presentation Layer
	OrderView.jsp, PaymentUI.html

	Controller
	Business Logic Layer
	PaymentController, OrderService

Answer-8

Business Analyst (BA) Contributions in a Project Using the Waterfall Model
In the Waterfall Model, project development follows a linear and sequential approach, moving through distinct phases. A Business Analyst (BA) plays a crucial role in each phase, ensuring clear requirements, smooth communication, and proper alignment between stakeholders and the development team.

BA Contributions in Each Stage of the Waterfall Model
1. Requirement Gathering & Analysis
BA Responsibilities:
· Interacts with stakeholders to gather business needs and objectives.
· Conducts interviews, surveys, and workshops to collect detailed requirements.
· Prepares Business Requirement Document (BRD) and Functional Requirement Specification (FRS).
· Defines Use Cases, User Stories, and Business Rules.
· Helps in requirement validation and approvals from stakeholders.
System Design
BA Responsibilities:
· Translates business requirements into system specifications.
· Works with architects and designers to ensure functional flow is aligned.
· Creates process flow diagrams, wireframes, and mockups for UI/UX.
· Ensures non-functional requirements (performance, security, usability, etc.) are addressed.

Implementation (Development)
BA Responsibilities:
· Acts as a bridge between developers and stakeholders.
· Provides clarifications on requirements to the development team.
· Assists in refining logical and functional flows if issues arise.
· Ensures that business needs are met during development.
Testing (Verification & Validation)
BA Responsibilities:
· Supports QA team in understanding requirements.
· Reviews test cases to ensure all scenarios are covered.
· Participates in User Acceptance Testing (UAT) with stakeholders.
· Identifies gaps between expected vs. actual outcomes and helps in resolving issues.

Deployment & Maintenance
BA Responsibilities:
· Assists in Go-Live planning and ensures a smooth transition.
· Prepares training materials and user guides for end-users.
· Gathers feedback for future improvements or change requests.
· Supports post-production issue resolution.

	Phase
	BA Contributions

	Requirement Gathering
	Collects, documents, and validates business needs.

	System Design
	Translates requirements into system specs, wireframes.

	Implementation
	Provides requirement clarifications to developers.

	Testing
	Assists QA, verifies system alignment with business goals.

	Deployment & Maintenance
	Supports training, collects feedback, manages change requests.

	
	

Q9.

Answer-9

Conflict management is the process of handling disputes and disagreements in a constructive way to minimize negative impact and enhance collaboration. It involves strategies to address conflicts effectively, fairly, and efficiently, ensuring that all parties involved reach a resolution that aligns with their goals.
	
Thomas-Kilmann Conflict Management Model
The Thomas-Kilmann Conflict Mode Instrument (TKI) is a widely used technique to manage conflicts based on two factors:
1. Assertiveness – The degree to which one seeks to satisfy their own needs.
2. Cooperativeness – The degree to which one attempts to satisfy the needs of others.
	Conflict Style
	Description
	When to Use

	1. Competing (High Assertiveness, Low Cooperation)
	One party pursues their goals aggressively, often at the expense of others.
	When quick decisions are needed (e.g., emergencies) or when enforcing unpopular but necessary rules.

	2. Collaborating (High Assertiveness, High Cooperation)
	Both parties work together to find a win-win solution that satisfies everyone.
	When a creative or long-term solution is required and relationships matter.

	3. Compromising (Medium Assertiveness, Medium Cooperation)
	Both parties give up something to reach a mutually acceptable solution.
	When a temporary or partial resolution is acceptable, or when time is limited.

	4. Avoiding (Low Assertiveness, Low Cooperation)
	One or both parties withdraw from the conflict instead of addressing it.
	When the issue is trivial, or when emotions are high and a cooling-off period is needed.

	5. Accommodating (Low Assertiveness, High Cooperation)
	One party gives in to the other's demands to maintain harmony.
	When maintaining relationships is more important than winning, or when the issue is more important to the other party.

Answer-10

Project failure can occur due to various factors, including poor planning, lack of resources, or ineffective communication. Below are the key reasons why projects fail:

· Poor Requirement Gathering & Scope Creep
· Unclear or incomplete requirements lead to mismatched expectations.

· Scope creep occurs when new features are added without proper assessment.

· Lack of stakeholder involvement in defining the scope.
Solution: Conduct detailed requirement analysis, create a Scope Document, and get stakeholder approvals.

· Inadequate Planning & Estimation
· Poor project scheduling and unrealistic deadlines.

· Lack of proper risk assessment.

· Underestimating resource needs (time, budget, manpower).
 Solution: Use project planning tools (Gantt charts, WBS), conduct risk analysis, and allocate buffer time

· Weak Leadership & Poor Decision-Making
· Lack of vision and leadership direction.

· Slow or ineffective decision-making.

· Failure to manage conflicts and team expectations.
Solution: Ensure experienced leadership, promote clear decision-making frameworks, and enhance conflict resolution.
· Lack of Communication & Collaboration
· Misalignment between stakeholders, teams, and clients.
· Poor documentation and lack of status updates.
· Information silos within teams.
Solution: Regular stand-up meetings, clear reporting structure, and collaboration tools (Slack, Jira, Trello).

· Inadequate Risk Management
Ignoring potential project risks (technical, financial, legal).
No contingency planning.
Failure to respond to unexpected challenges.
Solution: Conduct risk assessment early, create a risk register, and define mitigation strategies.

· Budget Overruns & Resource Mismanagement
Poor cost estimation leads to budget exhaustion.
Lack of skilled team members or improper resource allocation.
Uncontrolled spending without tracking financials.
Solution: Use cost-tracking tools, define budget limits, and ensure proper resource allocation.

· Technical Challenges & Poor Quality Deliverables
Selection of wrong technology or outdated tools.
Poor software architecture leads to performance issues.
Inadequate testing and QA processes.
Solution: Perform technical feasibility studies, ensure proper testing (unit, integration, UAT), and follow best coding practices.

· Resistance to Change & Lack of User Adoption
· Employees resist adopting new systems or workflows.
 Lack of proper training and onboarding.
Poor change management strategies.
Solution: Implement change management frameworks (Kotter’s Model), provide training, and involve users in decision-making.

· External Factors & Market Changes

Sudden regulatory or legal changes.
Market conditions shifting (economic downturns, competition).
Vendor or third-party dependencies failing.
Solution: Stay updated on market trends, conduct regulatory compliance checks, and have backup vendors.

10. Lack of Post-Implementation Support & Maintenance
No long-term maintenance or support plan.
System issues arise post-launch but remain unaddressed.
No feedback mechanism for continuous improvement.
Solution: Plan for maintenance, monitor system performance, and gather user feedback for enhancements.

Project failures often result from a combination of poor planning, mismanagement, lack of communication, and technical risks. Proactively addressing these challenges through structured project management frameworks (e.g., Agile, Waterfall, PRINCE2) can increase project success rates.

Answer-11

A Business Analyst (BA) plays a crucial role in project success, but they often face various challenges that impact project timelines, quality, and stakeholder alignment. Below are the key challenges a BA may encounter in different project stages:

Unclear or Changing Requirements
🔹 Stakeholders provide vague, incomplete, or conflicting requirements.
🔹 Requirements change frequently, leading to scope creep.
🔹 Business users may struggle to articulate their actual needs.

Stakeholder Conflicts & Misalignment
🔹 Different stakeholders have conflicting priorities and expectations.
🔹 Lack of proper engagement from decision-makers.
🔹 Resistance from teams unwilling to adopt changes.
Communication Gaps & Misinterpretation
🔹 Misunderstandings between technical and business teams.
🔹 Lack of documentation or improper requirement translation.
🔹 Communication issues with geographically distributed teams.
Managing Scope Creep
🔹 Frequent addition of new features beyond initial requirements.
🔹 Poor requirement prioritization leads to delays.
🔹 Stakeholders pushing last-minute changes without impact analysis
Time Constraints & Unrealistic Deadlines
🔹 Short project timelines limit proper requirement analysis.
🔹 BAs are expected to deliver documentation quickly, risking quality.
🔹 Stakeholders push for faster delivery without considering feasibility.
Lack of Technical Understanding
🔹 BAs may not fully understand complex technical constraints.
🔹 Difficulty translating business requirements into technical specifications.
🔹 Miscommunication with developers leads to incorrect implementation.

Difficulty in Prioritizing Requirements
🔹 Stakeholders want everything as "high priority."
🔹 Limited budget and time force trade-offs between features.
🔹 No proper framework to evaluate critical vs. non-critical requirements.

Resistance to Change from End-Users
🔹 Employees resist new system implementations.
🔹 Users fear job losses or struggle with new processes.
🔹 Lack of training and onboarding support.

Inadequate Documentation & Traceability
🔹 Missing or outdated BRD, FRS, and SRS leads to confusion.
🔹 No proper version control for requirement updates.
🔹 Traceability gaps between requirements and testing.

Challenges in Agile Environments
🔹 Continuous requirement changes make documentation difficult.
🔹 BAs struggle to adapt to short sprint cycles.
🔹 Difficulty in balancing BA role in Agile vs. traditional Waterfall models.

Answer-12

Key Objectives of Document Naming Standards

1. Consistency: Ensures all files follow a uniform structure.
2. Searchability: Helps users find documents quickly.
3. Version Control: Tracks document revisions efficiently.
4. Clarity: Avoids confusion by using descriptive names.
5. Compliance: Ensures adherence to industry and organizational policies.

Example- [Project/Department]_[DocumentType]_[Title]_[Version]_[Date]_[Author]

Answer-13
Never say NO to client
There is no word called as “BY DEFAULT”
Never imagine anything in terms of GUI.
Question the existence of existence /question everything in the world.

DO’s

Understand Business Needs Clearly
✔ Conduct requirement-gathering sessions (interviews, workshops, surveys).
✔ Ask the right questions to uncover hidden needs.
✔ Use elicitation techniques like brainstorming, prototyping, and observation.
Maintain Clear & Concise Documentation
✔ Create structured documents (BRD, SRS, FSD, Use Cases).
✔ Use diagrams and visual models (flowcharts, wireframes) for clarity.
✔ Keep version control and update documents regularly.
Communicate Effectively with Stakeholders
✔ Ensure clear communication between business & technical teams.
✔ Use simple, jargon-free language for non-technical users.
✔ Conduct regular meetings, stand-ups, and status updates.
Be Proactive & Adaptable
✔ Anticipate potential risks & changes in project scope.
✔ Stay updated with industry trends & new technologies.
✔ Adapt to Agile, Waterfall, or Hybrid methodologies as needed.
Focus on Requirement Prioritization
✔ Use techniques like MoSCoW (Must have, Should have, Could have, Won’t have).
✔ Ensure business value alignment before finalizing requirements.
✔ Collaborate with stakeholders to define realistic project goals.
Collaborate with Development & Testing Teams
✔ Involve developers & testers early in requirement discussions.
✔ Clarify technical feasibility and system limitations.
✔ Assist in User Acceptance Testing (UAT) and issue resolution.
Ensure Traceability & Change Management
✔ Use a Requirement Traceability Matrix (RTM).
✔ Track changes systematically using Change Request Logs.
✔ Analyse the impact of changes on project timelines and cost.

Don’ts of a Business Analyst

Don’t Assume Requirements – Always Validate
Avoid making assumptions about business needs.
Do not rely on a single stakeholder’s opinion—validate across teams.
Never finalize requirements without approval from key stakeholders.
Don’t Overlook Stakeholder Conflicts
Ignoring stakeholder conflicts can lead to project delays.
Don’t exclude end-users from discussions—they are the system’s real users.
Avoid taking sides—maintain a neutral, analytical approach.
Don’t Skip Documentation & Version Control
Avoid keeping requirements only in emails or informal notes.
Don’t neglect proper naming conventions & version tracking.
Never alter requirements without documentation and approval.
Don’t Focus Only on Functional Requirements
· Ignoring non-functional requirements (NFRs) (performance, security, scalability) can cause system failures.
· Always discuss UI/UX, compliance, and scalability with technical teams.
Don’t Resist Change or Be Rigid
Business needs evolve—don’t resist agile changes.
Avoid saying “It’s not my job”—BAs must be flexible problem-solvers.
Be open to feedback & process improvements.
Don’t Ignore Testing & UAT Involvement
A BA’s job doesn’t end with documentation.
Don’t assume developers will interpret requirements correctly validate their understanding.
Always participate in test case review & UAT discussions.

Answer-14

	Aspect
	Package
	Sub-system

	Definition
	A group of related classes or components
	A larger functional unit consisting of multiple packages

	Scope
	Narrower, focuses on specific functionality
	Broader, encompasses major system components

	Granularity
	Smaller, less complex
	Larger, more complex

	Dependency
	May depend on other packages
	Depends on and communicates with other sub-systems

	Example
	A Java package like com.bank.transactions
	A sub-system like User Management Sub-system

	
	
	

A package refers to a group or collection of related classes, modules, or components bundled together within a software project. It is primarily a structural element within a single layer of an application.

Example: packages like:
· com.bank.transactions
· com.bank.customers
· com.bank.utils

A sub-system is a larger, more self-contained component or a group of packages/modules that together fulfil a major part of the overall system's functionality. It represents a higher-level architectural component that can communicate with other sub-systems to form the complete system.

Example: In an enterprise software system, you could have sub-systems like:
· User Management Sub-system
· Inventory Management Sub-system
· Order Processing Sub-system

Answer-15
Camel casing is a naming convention commonly used in programming where a compound word or phrase is written without spaces, and each subsequent word starts with a capital letter (except the first word, which starts with a lowercase letter). This style of writing mimics the humps of a camel, which is where the name comes from.
1. Programming: It’s commonly used in many programming languages to name variables, functions, methods, and other identifiers.
For example: userLogin
2. File Naming: Camel case is sometimes used for naming files and directories in codebases, especially when spaces or underscores are avoided.
For example : userProfileImage.png
3. JavaScript: In JavaScript, camel casing is the convention for naming variables, functions, and method names.
· let userAge = 25;

4. API and Web Development: Many API endpoints and paths also use camel case to ensure readability and uniformity, for example:
· getUserInfo
· postNewOrder
Use
· It enhances readability, especially in places where spaces are not allowed, like variable names in code.
· It ensures consistency across naming conventions, particularly in programming.

Q16) Illustrate Development server and what are the accesses does business analyst has ?

Answer- 16

A Development Server is an environment where developers write, test, and debug code before deploying it to higher environments like staging or production. It is an essential part of the software development lifecycle (SDLC) and allows developers to implement and verify new features or fixes without affecting end users.
Key Features of a Development Server:
· Used for coding, debugging, and testing new functionalities.
· Contains incomplete or experimental features that are not ready for production.
· Often runs on local machines or isolated network environments.
· May not have strict security controls since it is only for internal use.
· Typically integrates with version control systems (e.g., Git) to track changes.
Illustration of a Development Server Setup:
A typical software development workflow involves multiple environments:
1. Development Server: Where the initial coding and unit testing happen.
2. Testing (QA) Server: Where testers verify the functionality and report bugs.
3. Staging Server: A replica of production used for final testing before release.
4. Production Server: The live system used by end-users.
Developer --> Development Server --> QA Server --> Staging Server --> Production Server

Q17) What is Data Mapping ?

Answer-17

Data Mapping is the process of linking or matching data fields from one source to corresponding fields in another system. It is commonly used in data integration, migration, transformation, and analytics to ensure consistency, accuracy, and usability across different databases, applications, or formats.
Key Aspects of Data Mapping:
1. Source and Target Mapping: Identifying the source data fields and mapping them to the correct target fields in another system.
2. Transformation Rules: Defining rules for data modification, such as format changes, unit conversions, or data type adjustments.
3. Validation & Quality Checks: Ensuring the mapped data meets business rules and does not introduce inconsistencies.
4. Automation: Using tools to automate mapping for large-scale data transfer.
Where is Data Mapping Used?
1. Data Migration: Moving data from one database or system to another (e.g., migrating from an old CRM to a new ERP system).
2. Data Integration: Combining data from multiple sources for a unified view (e.g., merging customer data from different platforms).
3. ETL (Extract, Transform, Load) Processes: Used in data warehousing to extract, transform, and load data into a central repository.
4. API Data Exchange: Mapping data between different applications via APIs for seamless communication.
5. Regulatory Compliance: Ensuring data follows legal and industry standards (e.g., GDPR, HIPAA).
Example of Data Mapping
Source Data (CSV file)
	Name
	DOB
	Contact Number

	XXX
	01-02-1990
	9876543210

	ZZZ
	12-05-1985
	8765432109

Target Database (CRM System)
	Full Name
	Date of Birth
	Phone Number

	XXX
	1990-02-01
	+91-9876543210

	ZZZ
	1985-05-12
	+91-8765432109

Here, the Name field is mapped to Full Name, and the DOB format is transformed into YYYY-MM-DD format.
Answer-18
An API (Application Programming Interface) is a set of rules and protocols that allow different software applications to communicate with each other. APIs define how requests and responses should be structured so that systems can exchange data efficiently and securely.
API Integration
API integration is the process of connecting two or more applications using APIs to enable seamless data exchange. This is commonly used in:
· Third-party services (e.g., payment gateways, social media logins).
· Data synchronization (e.g., integrating a CRM with an ERP).
· Automation (e.g., fetching real-time stock prices or weather updates).
If your application expects dates in dd-mm-yyyy format but receives data from a US-based application in mm-dd-yyyy format, you need to implement a date transformation process before storing or processing the data.

Solution Approach

1. Receive the API Data: Assume the US application sends a JSON response with a date field formatted as mm-dd-yyyy.
2. Extract & Transform the Date Format : Before saving it into your system, convert "dob": "12-25-1990" (MM-DD-YYYY) → "25-12-1990" (DD-MM-YYYY).
3. Store or Use the Transformed Data

image1.png
LIS 0 app.diagrams.net ¢ B+ O
@ .z COEPD Participant Login © Packages vs Sub-systems © ChatGPT O (33) Capstone Prep 3 - Part 1| B drawio) Untitled Diagram - drawio
Untitled Diagram B3
File Edit View Arrange Extras Help Unsaved changes. Click here to save. & Share
A - @a - P 4+ B L@
Payment Application
~ General
0o - = Payment Initation
doodo
JBDon o
BOw1D =
E‘” S / /] Sever
Customer

S

_—— e s e

» Misc

» Advanced

» Basic

» Arrows

» Clipart / Computer
» Clipart Finance
» Clipart | Various

» Clipart / Networking

+ More Shapes

(Via net banking

Text

Via UPI fwallet

Page-1 | Page-2 | Page-3

Page-4 ‘ Page-5

Page-6

Page-7 | Page-8 | Page-9 | Page-10 | Page-1l

+

Page-12 ~

