Capstone Project 3 – Part -1/2 V2D2

 Case Study 1

 A customer can make a payment either by Card or by Wallet or by Cash or by Net banking.

1. Draw a Use Case Diagram.

2. Derive Boundary Classes, Controller classes, Entity Classes.

To derive Boundary, Controller, and Entity classes from the scenario, we'll follow Object-Oriented Analysis and Design (OOAD) approach, particularly using the Model-View-Controller (MVC) pattern often used in UML and software design. Whereas the Model-View-Controller pattern is used for user interfaces, the Entity-Control-Boundary Pattern (ECB) is used for systems.

· Entity Classes
These are the core business objects that represent the data and rules of the application.

	Class Name
	Attributes (Example)
	Description

	Customer
	customerId, name, email
	Represents the customer making the payment

	Payment
	paymentId, amount, date, paymentMethod
	Represents a payment

	Card
	cardNumber, expiryDate, cvv, cardHolderName
	Details for card payment

	Wallet
	walletId, balance, provider
	Represents a digital wallet

	Cash
	receivedBy, cashAmount
	For recording cash payments

	NetBanking
	bankName, accountNumber, ifscCode
	Details for net banking

· Controller Classes
These handle requests, perform logic, and coordinate between the Boundary and Entity classes. They orchestrate the execution of commands coming from the boundary.

	Class Name
	Responsibilities

	PaymentController
	Accepts payment requests, verifies input, determines the payment method, and processes the transaction using the correct method

	CustomerController
	Handles customer-related operations like lookup, registration (if needed)

· Boundary Classes
These are the interfaces through which users or external systems interact with your system (UI/API).

	Class Name
	Description

	PaymentUI or PaymentPage
	UI component/form through which a customer selects a payment method and submits a payment

	CustomerUI
	Interface for customer login, registration, or profile info

	PaymentGatewayAPI
	If it's an external API interacting with your app (like a third-party gateway)

3. Place these classes on a three tier Architecture.

· User layer

· PaymentMethod Selection Boundary

· Card PaymentBoundary

· WalletPaymentBoundary

· CashPaymentBoundary

· NetBanking PaymentBoundary

· Business Logic

· PaymentController

· Card PaymentController

· WalletPaymentController

· CashPaymentController

· NetBanking PaymentController

· Data Tier

· Customer (Entity Class)

· Payment (Entity Class)

· Card (Entity Class)

· Wallet (Entity Class)

· BankAccount (Entity Class)

4. Explain Domain Model for Customer making payment through Net Banking.

ERDs are focused on the data structure and relationships, making them essential for database design, whereas Domain Models provide a broader view of the system's functionality and behaviour, guiding the development process. A domain model represents the core concepts (entities), their attributes, and the relationships between them in a specific business domain—in this case, online payments using Net Banking.

Process Flow (Simplified)
1. Customer chooses Net Banking on the UI.
2. Payment object is created with payment Method = Net Banking.
3. Net Banking Details are captured and linked to the Payment.
4. The system authenticates and processes via Bank API.
5. The Payment and Net Banking Details are updated based on the transaction status.

	Customer

	Customer Id
	Name
	Email
	Phone No

	
	
	
	

	
	
	
	

	Bank

	Bank ID
	Bank Name
	Netbanking URL

	
	
	

	
	
	

	

	 Payment

	Payment Id
	Amount
	Payment Date
	Status
	Payment method

	
	
	
	
	

	
	
	
	
	

	Account

	Account
No
	Account type
	Balance
	Account Holder Name

	
	
	
	

	
	
	
	

	 Net Banking

	Bank Name
	Account Number
	IFSC Code
	Transaction Reference No
	Authentication Status

	
	
	
	
	

	
	
	
	
	

	Authentication

	Username
	Password
	OTP

	
	
	

	
	
	

	Transaction

	Transaction Id
	Recipient Details
	Amount
	Time and Date Records

	
	
	
	

	
	
	
	

5. Draw a sequence diagram for payment done by Customer Net Banking.

6. Explain Conceptual Model for this Case.

A conceptual model is a high-level representation of the system—focused on the what rather than the how. It defines key entities, their attributes, and relationships, but without implementation details (like data types, APIs, or DB schemas). This conceptual model defines the core business concepts (like Customer, Payment, and Payment Method) and how they relate—without touching any technical implementation. Think of it as how a business analyst or domain expert would describe the system before a developer touches it.
Conceptual Model Overview
Entities:
1. Customer
· A person who initiates a payment.
2. Payment
· A financial transaction made by the customer.
· Has general details like amount, date, and status.
3. Payment Method (Abstract / General Concept)
· The strategy or option used to complete a payment.
· Can be of different types.
4. Card, Wallet, Cash, Net Banking (Specializations of Payment Method)
· Specific implementations or types of payment methods.
· Each has its own details:
· Card: Card Number, Expiry, CVV (conceptual, not technical)
· Wallet: Wallet Provider, Wallet ID
· Cash: May not need extra info
· Net Banking: Bank Name, Transaction ID

Relationships:
· A Customer initiates one or more Payments.
· A Payment uses one Payment Method.
· Payment Method can be Card, Wallet, Cash, or Net Banking.

Summary:
A Customer makes a Payment. That Payment is completed using one of several Payment Methods—either Card, Wallet, Cash, or Net Banking. Each payment method has its own relevant details. We're only describing what exists in the system conceptually—not how it's coded or stored.

7. What is MVC architecture? Explain MVC rules to derive classes from use case diagram and guidelines to place classes in 3-tier architecture.

MVC (Model-View-Controller) is a design pattern used to separate the concerns of a software application, especially in GUI or web applications. MVC focuses on system UI whereas ECB focuses on system.

MVC Breakdown:
· Model
· Represents the data and business logic of the application.
· Notifies views/controllers of any state changes.
· Examples: Payment, Customer, Bank, Wallet
· View
· Represents the UI or presentation layer.
· Displays data from the model to the user.
· Examples: PaymentForm, PaymentSummaryPage, CustomerDashboard
· Controller
· Handles user input and interaction.
· Interprets UI actions, calls the appropriate model logic, and updates the view.
· Examples: PaymentController, CustomerController
Example: Let’s say you have a use case diagram like:
"Make Payment", "Select Payment Method", "Confirm Transaction"
Here’s how you extract and classify classes:
1. Identify Classes from Use Case Steps:
· Look at nouns in the use cases (e.g., Customer, Payment, Card).
· These typically become Model classes.
2. Identify Roles from Actors and Use Case Logic:
· Use case actions and flow → likely Controller responsibilities.
· Example: Clicking “Submit Payment” calls PaymentController.submit().
3. User Interface Screens:
· Every screen/form/view in a use case is part of the View.
· Example: PaymentSelectionView, PaymentStatusView

Rules to Derive Classes from Use Case Diagram (Using MVC)
1. Combination of one actor and one use case results in one boundary class.
2. Combination of two actor and one use case results in two boundary class.
3. Combination of three actor and one use case results in three boundary class
4. Use case will result in controller class.
5. Each actor will result in one entity class

Guidelines to Place Classes in 3-Tier Architecture
Now let’s map the MVC-derived classes into a 3-Tier Architecture:
	MVC Component
	3-Tier Layer
	Description

	View
	Presentation Layer
	UI components, forms, screens

	Controller
	Application or business Logic Layer
	Processes requests, interacts with business logic

	Model
	Business + Data Layer
	Business rules and data access logic (can be split)

Example Mapping:
	Class Name
	MVC Role
	3-Tier Placement

	PaymentForm
	View
	Presentation Layer

	PaymentController
	Controller
	Application Layer

	Payment, Customer
	Model
	Business Layer

	PaymentRepository
	Model (Data)
	Data Access Layer

Summary:
MVC separates UI, logic, and data handling.
· Use case diagrams help derive model (nouns), controller (actions), and view (screens).
· 3-Tier architecture organizes your codebase into Presentation, Application (Business), and Data layers.
· MVC can live within a 3-Tier structure: MVC is about responsibility; 3-Tier is about deployment/logical layers.

8. Explain BA contributions in project (Waterfall Model – all Stages)

Here's a breakdown of Business Analyst (BA) contributions in each stage of a project that follows the Waterfall Model—a sequential software development methodology with distinct phases.

 1. Requirement Gathering & Analysis
This is where the BA plays the most critical role.
BA Contributions:
· Stakeholder Analysis: Identify stakeholders and understand their needs.
· Elicit Requirements: Use techniques like interviews, workshops, surveys, document analysis, etc.
· Document Requirements: Create:
· Business Requirements Document (BRD)
· Functional Requirements Specification (FRS)
· Use cases / User stories
· Validate Requirements: Ensure they are clear, complete, testable, and aligned with business goals.
· Sign-off Process: Facilitate stakeholder review and formal approval.

2. System Design
This is more of a technical phase, but BA still supports the translation of business needs into technical specs.
BA Contributions:
· Bridge Between Business and Technical Teams: Clarify any ambiguities from requirements.
· Review Design Documents: Ensure alignment with business goals.
· Support UI/UX Discussions: Provide input on user needs and behaviour.

3. Implementation (Coding)
BA has a lower day-to-day role here, but support is still important.
BA Contributions:
· Support Developers: Answer questions and clarify requirements.
· Change Requests: Manage any changes in scope or requirements.
· Traceability: Ensure that every requirement is being implemented (using a traceability matrix).

4. Integration and Testing
Testing is typically led by QA, but BA ensures that tests align with requirements.
BA Contributions:
· Review Test Plans & Cases: Confirm they cover all business scenarios.
· Support UAT (User Acceptance Testing):
· Coordinate with end-users
· Provide test data
· Validate test results
· Defect Triage: Help prioritize more serious issues in comparison with other issues based on business impact.

5. Deployment
System goes live.
BA Contributions:
· Readiness Check: Ensure all business conditions are met for go-live.
· Training & Documentation: Help prepare user manuals, training materials, and conduct sessions.
· Business Communication: Notify stakeholders, coordinate rollout plans.

6. Maintenance
Post-deployment support phase.
BA Contributions:
· Monitor Feedback: Gather feedback from users.
· Manage Enhancements: Identify opportunities for improvements.
· Support Issue Resolution: Assist in analysing defects and identifying causes.
· Change Management: Help with managing change requests and scope updates.

9. What is conflict management? Explain using Thomas – Kilmann technique.

Conflict management refers to the practice of identifying and handling conflicts in a sensible, fair, and efficient manner. It's an essential skill in both personal and professional settings, as conflicts are a natural part of human interaction. The goal of conflict management is not necessarily to eliminate conflict but to manage it constructively so that it leads to positive outcomes like better decision-making, stronger relationships, and improved team dynamics.

Thomas–Kilmann Conflict Mode Instrument (TKI)
The Thomas–Kilmann technique, developed by Kenneth Thomas and Ralph Kilmann, is one of the most widely used tools for understanding and managing conflict. It categorizes conflict-handling styles based on two dimensions:
1. Assertiveness – the degree to which you try to satisfy your own concerns.
2. Cooperativeness – the degree to which you try to satisfy the other person's concerns.
These dimensions create five conflict-handling styles:

1. Competing (High Assertiveness, Low Cooperativeness)
· "I win, you lose."
· This style is power-oriented and used when quick, decisive action is necessary, such as in emergencies.
· Example: A manager insists on implementing a new process despite team objections because of a critical deadline.

2. Collaborating (High Assertiveness, High Cooperativeness)
· "Win-win."
· Both parties work together to find a solution that fully satisfies both sides.
· Example: Two department heads jointly develop a budget plan that supports both of their needs after extensive discussion.

3. Compromising (Moderate Assertiveness, Moderate Cooperativeness)
· "Split the difference."
· Each party gives up something to reach a mutually acceptable solution.
· Example: Two colleagues agree to rotate their preferred project roles rather than one dominating the decision.

4. Avoiding (Low Assertiveness, Low Cooperativeness)
· "No winners, no losers."
· The person does not immediately pursue their own or others' concerns; they sidestep or withdraw from the conflict.
· Example: An employee chooses not to bring up a minor disagreement in a meeting to avoid confrontation.

5. Accommodating (Low Assertiveness, High Cooperativeness)
· "I lose, you win."
· One party puts the other’s concerns above their own to maintain harmony.
· Example: A team member agrees to help with extra work despite their own busy schedule to keep peace.

	Style
	Best Used When...

	Competing
	Quick decisions are needed; unpopular actions must be implemented.

	Collaborating
	The goal is to find a solution that fully satisfies both parties.

	Compromising
	Time is limited, and both parties hold equally important goals.

	Avoiding
	The conflict is trivial, or the cost of confrontation outweighs the benefit.

	Accommodating
	The relationship is more important than the issue; the other person has a better solution.

10. List down the reasons for project failure.

 1. Poor Planning
· Unclear goals and objectives
· Inadequate project scope definition
· Missing timelines or unrealistic deadlines
2. Lack of Clear Objectives
· Uncertain deliverables
· No measurable success criteria
3. Inadequate Risk Management
· Failing to identify and mitigate risks early
· Not having contingency plans
4. Ineffective Communication
· Poor communication among team members or stakeholders
· Misunderstanding requirements or expectations
5. Lack of Stakeholder Involvement
· Ignoring input from key stakeholders
· Stakeholders not being engaged or aligned
6. Inadequate Resources
· Shortage of staff, tools, budget, or time
· Wrong skill sets assigned to tasks
7. Scope Creep
· Uncontrolled changes or continuous growth in project scope
· No change management process in place
8. Weak Leadership or Project Management
· Inexperienced project manager
· Poor decision-making or leadership style
9. Unrealistic Expectations
· Overpromising results within tight timelines or limited resources
· Setting unachievable goals
10. Poor Team Dynamics
· Lack of collaboration or trust
· Team conflicts that go unresolved
11. Technology Failures
· Choosing the wrong tools or platforms
· Integration issues or outdated technology
12. Failure to Monitor and Evaluate
· No performance tracking or reporting
· Lack of timely feedback loops
13. Noncompliance with Regulations
· Overlooking legal, regulatory, or industry standards
14. Ignoring the End-User or Customer
· Not understanding user needs
· Deliverables don’t meet user expectations

11. List the Challenges faced in projects for BA.
Business Analysts (BAs) play a crucial role in the success of projects, but they often face unique challenges that can impact project outcomes. Here's a list of the most common challenges faced by Business Analysts in projects:

1. Unclear or Evolving Requirements
· Stakeholders often don’t know exactly what they want.
· Requirements change frequently, leading to confusion and rework.
 2. Stakeholder Conflicts
· Conflicting priorities or interests among stakeholders.
· Difficulty in getting everyone aligned on project goals.
 3. Limited Stakeholder Engagement
· Stakeholders may be unavailable or unresponsive.
· Lack of input leads to incomplete or inaccurate requirements.
4. Inadequate Communication
· Miscommunication between business and technical teams.
· Jargon or unclear documentation causing misunderstandings.
5. Ambiguous Business Processes
· Lack of existing process documentation.
· Legacy processes that are complex or not standardized.
6. Scope Creep
· Gradual expansion of project scope without proper impact analysis.
· Difficulty managing expectations when new requirements keep getting added.
7. Tight Timelines
· Pressure to deliver quickly may lead to skipping critical analysis steps.
· Limited time for thorough requirement gathering and validation.
8. Technology Constraints
· Existing systems may not support new requirements.
· Technical limitations not identified early in the project.
9. Resistance to Change
· End-users or departments reluctant to adopt new processes or systems.
· Organizational culture not supportive of transformation.
10. Insufficient BA Involvement in Decision-Making
· BAs not included in key project decisions.
· Misalignment between project execution and actual business needs.
11. Poorly Defined Roles and Responsibilities
· Overlapping roles between BAs, PMs, developers, or testers.
· Lack of clarity leads to delays and duplication of work.
12. Difficulty in Validating Requirements
· Trouble confirming that requirements meet business needs.
· Limited access to real users or data for validation/testing.

To overcome many of these challenges, effective stakeholder management, clear documentation, proactive communication and using tools like BA templates, requirement traceability matrices and modelling techniques (like BPMN - Business Process Modelling Notation or UML) can make a big difference.

12. Write about Document Naming Standards.

Document naming standards are predefined rules and formats used to name files and documents consistently across an organization or project. They help in organizing, identifying, retrieving, and managing documents more efficiently.

Purpose of Naming Standards:
· Improve document searchability and accessibility
· Avoid confusion caused by duplicate or unclear names
· Support version control and audit tracking
· Enable collaboration across teams and departments
· Promote consistency and professionalism

Key Elements of a Naming Standard:
A standard name might include components like:

	Element
	Description
	Example

	Project Code
	Identifies the project
	PRJ001

	Document Type
	Type of document (e.g., report, plan)
	REQ for Requirements

	Department/Team
	Team that owns the document
	IT, HR, FIN

	Date
	In YYYYMMDD format for sorting
	20250423

	Version Number
	Indicates revision level
	v1.0, v2.1

	Title/Short Desc.
	Brief description of the content
	LoginFunctionality

Example Filename:

PRJ001_REQ_IT_20250423_LoginFunctionality_v1.0.docx

Best Practices:
· Avoid spaces—use underscores (_) or camelCase
· Be concise but descriptive
· Use standardized date formats (e.g., YYYYMMDD)
· Include a version number to track changes
· Stick to approved abbreviations

13. What are the Do’s and Don’ts of a Business analyst?

✅ Do’s for a Business Analyst

 1. Understand the Business
· Learn the domain, goals, and challenges of the organization.
2. Communicate Clearly
· Use simple language with stakeholders; bridge the gap between business and IT.
3. Ask the Right Questions
· Dig deeper to uncover real needs, not just stated wants.
4. Document Requirements Thoroughly
· Use clear, structured formats: BRD, user stories, use cases, etc.
5. Engage Stakeholders Early
· Involve the right people at the right time to validate and refine requirements.
6. Stay Neutral
· Remain objective and focus on what's best for the business, not individuals.
7. Adapt to Change
· Be flexible and open to evolving requirements, especially in Agile environments.
8. Use Visual Tools
· Diagrams (like BPMN, flowcharts, wireframes) make complex ideas easier to understand.

❌ Don’ts for a Business Analyst

1. Don’t Assume—Always Validate
· Never rely solely on what one stakeholder says; cross-check information.
2. Don’t Skip Documentation
· Verbal agreements can be forgotten—document everything.
3. Don’t Use Jargon with Non-Tech Stakeholders
· Use clear, non-technical language when needed.
4. Don’t Ignore Risks or Constraints
· Always identify and communicate limitations and challenges early.
5. Don’t Overpromise
· Set realistic expectations about timelines, features, and outcomes.
6. Don’t Take Sides in Conflicts
· Be a facilitator, not a participant in disputes.
7. Don’t Forget the End User
· Requirements should reflect actual user needs and behaviors.
8. Don’t Work in Isolation
· Regularly collaborate with developers, testers, and business teams.

14. Write the difference between packages and sub-systems.

	Feature
	Package
	Sub-system

	Definition
	A logical grouping of related elements like classes, interfaces, etc.
	A larger component that represents a major part of the system with its own functionality.

	Scope
	Smaller in scope; used to organize code or models.
	Broader; often represents a whole module or functional area.

	Purpose
	Organize and manage complexity in a project.
	Divide the system into manageable, independent sections.

	Dependency
	Can have dependencies on other packages.
	May include multiple packages and define external interfaces.

	UML Representation
	Represented as a tabbed folder icon.
	Represented similarly to packages, but typically with stereotypes like «subsystem».

	Example
	com.bank.account, com.bank.loan
	PaymentSystem, InventorySystem

Summary :

· Package is mainly for organization and structure within a model or codebase.
· Sub-system represents a self-contained unit of functionality that can operate independently or be integrated into a larger system.

15. What is camel-casing and explain where it will be used.

Camel casing (or camelCase) is a naming convention in which words are combined into a single phrase without spaces, and each word after the first starts with a capital letter.

Example:
· customerName
· totalAmountDue
· getUserDetails
It’s called camel case because the capital letters in the middle resemble the humps of a camel 🐫.

Where Is Camel Case Used?

· Programming:
· Used for variable names, function names, and sometimes object names.
· Common in JavaScript, Java, C#, and many other languages.
orderTotal = 99.99;

function calculateTax() { ... }

· APIs and JSON Naming:
· camelCase is often used for JSON (JavaScript Object Notation. JSON is a lightweight format for storing and transporting data) keys to match coding style.
{
 "firstName": "John",
 "lastName": "Doe"
}

· Document Naming (sometimes):
· In document/file names when spaces are not allowed or discouraged.
· Example: projectPlanFinal.docx instead of Project Plan Final.docx

Note:
CamelCase starts with a lowercase letter. If it starts with an uppercase (e.g., CustomerName), that’s called PascalCase.

16. Illustrate Development server and what are the accesses does business analyst has?

A development server is a dedicated environment where developers write, test, and debug code during the software development lifecycle.

Definition (Simple Terms):
A development server is a sandbox where developers can safely build and test new features or updates without affecting live users or production systems.

Key Features of a Development Server:
· ✅ Safe Testing Zone – It lets developers try out code without crashing the real app.
· 🧪 Early Testing Ground – Used for unit tests and integration tests.
· 🛠️ Coding Playground – Developers write and run their code here.
· 🔄 Frequent Updates – It’s updated constantly with the latest code changes.
· 🧱 Mock or Dummy Data – Often uses fake or sample data to simulate (copy) real scenarios.

Where It Fits:
Business Needs ➝ Development ➝ Testing ➝ Staging ➝ Production
· Development Server (DEV): For coding & initial testing.
· Testing/Staging Server: For QA and user acceptance testing.
· Production Server: The live system used by real users.

Example Scenario:
You're building an e-commerce app. A new "Dark Mode" feature is being developed:
· The developer adds the feature on the development server.
· They test to make sure it doesn’t break anything.
· Once it works, the code is sent to QA for deeper testing.

What Access Does a Business Analyst Have?
Business Analysts (BAs) typically focus on gathering requirements, analysing processes, and communicating between business and tech teams, rather than writing code or deploying software. So, their access in a development environment is limited and non-technical.
Typical BA Access:
· Requirement Management Tools (like Jira, Confluence, Azure DevOps)
· Read-Only Access to DEV Environment:
· To view data for validation
· To observe features implemented based on their specs
· Testing Tools or Sandboxes (testing environment in a computer system in which new or untested software or coding can be run securely) for validating functionality (UAT level)
· Documentation Repositories for storage (SharePoint, Confluence, Git repos for docs)
· Access to Logs or Dashboards (if needed to trace data flow or issues)
· Stakeholder Communication Platforms (MS Teams, Slack, etc.)

What BAs Usually Don’t Have:
· Admin access to the development server
· Code commits or deployment rights
· Deep database access (unless explicitly required)
· Access to production (in most environments)

16. What is Data Mapping?

Data Mapping is the process of matching data fields from one source to their corresponding fields in another system or database. In simple words, it's like creating a translation guide. Eg : When you see “First_Name” in System A, it matches “FName” in System B.

Data mapping is essential when:
· Migrating data from one system to another
· Integrating multiple systems (like CRM to ERP)
· Ensuring data flows correctly in data pipelines or APIs

Its’s used In:
· Data migration
· API integration
· ETL (Extract, Transform, Load) processes
· Business Intelligence (BI) and reporting
· System upgrades

	Old System (Source)
	New System (Target)

	emp_id
	employeeNumber

	emp_name
	fullName

	dob
	dateOfBirth

	dept
	departmentCode

Example : When filling out a form in another language using a dictionary:
· Your dictionary (data map) tells you what word in your language matches the form’s field.
· Without the right map, you could enter your last name where it asks for your birthday

18. What is API. Explain how you would use API integration in the case of your application Date format is dd-mm-yyyy and it is accepting some data from Other Application from US whose Date Format is mm-dd-yyyy.

API stands for Application Programming Interface.
It’s a bridge that allows two different applications to talk to each other and exchange data.
Example : At a restaurant:
· You are the application that needs food (data).
· The kitchen is the system where the food (data) is prepared.
· The waiter (API) takes your order to the kitchen and brings back your food — correctly and efficiently.

API Integration :

· Establish API Communication: Set-up API communication between your application and the other application (US application) to exchange data.
· API Receives Data from the US system.
· Middleware / Backend Code Converts the Format:
· Detects incoming date format (Eg: 04-24-2025 in the format of mm-dd-yyyy)
· Parses it (converting data from 1 format to another)
· Converts to your required format (dd-mm-yyyy)
· Final format your system uses: Eg: "orderDate": "24-04-2025 in the format of dd-mm-yyyy)"
· Data is saved or displayed correctly in your application.

· Business Analyst's Role in API Integration:
As a BA, your job is to:
· Identify these kinds of data format differences
· Document mapping rules and transformation logic
· Ensure developers know the expected formats
· Coordinate testing to ensure correct data flow

image2.emf
Customer Merchant Website

Payment Gateway Net Banking Portal Bank

Selects product and proceeds to pay

Initiates payment

Selects Net Banking

Redirects to bank login

Logs in and authorises payment

Verifies credentials and funds

Shows payment options

Confirms payment success

Sends Payment confirmation

Sends success notification

Shows Payment confirmation

oleObject2.bin
System

Customer making Payment

Customer

Use Case

View Payment
Options

«inherits»

«inherits»

Make Payment

«inherits»

System Admin

«inherits»

*

*

Card

Wallet

Cash

*

Net Banking

*

*

*

*

*

Use Case

Customer

Merchant Website

Payment Gateway

Net Banking Portal

Bank

Selects product and proceeds to pay

Initiates payment

Shows payment options

Selects Net Banking

Redirects to bank login

Logs in and authorises payment

Verifies credentials and funds

Confirms payment success

Sends Payment confirmation

Sends success notification

Shows Payment confirmation

image1.emf
Customer making Payment

Customer

Make Payment

System Admin

Card Wallet

Cash

Net Banking

View Payment

Options

*

*

*

*

*

*

*

*

oleObject1.bin
System

Customer making Payment

Customer

Use Case

View Payment
Options

Make Payment

System Admin

*

*

Card

Wallet

Cash

*

Net Banking

*

*

*

*

*

Use Case

Customer

Merchant Website

Payment Gateway

Net Banking Portal

Bank

Selects product and proceeds to pay

Initiates payment

Shows payment options

Selects Net Banking

Redirects to bank login

Logs in and authorises payment

Verifies credentials and funds

Confirms payment success

Sends Payment confirmation

Sends success notification

Shows Payment confirmation

