Q1. Draw a Use Case Diagram - 4 Marks

[image:]

Q2. Derive Boundary Classes, Controller classes, Entity Classes. - 4 Marks
1. Boundary Classes (UI/Interaction Layer):
These classes handle interactions between the user and the system. They are typically forms, screens, or input pages.
	Boundary Class
	Description

	PaymentPage
	Interface to allow customer to choose and initiate payment

	CardPaymentForm
	UI to enter card details (Card No, Expiry, CVV)

	WalletPaymentScreen
	UI to log into wallet (like Paytm, PhonePe)

	NetBankingLoginScreen
	UI to select bank and enter credentials

2. Controller Classes (Process/Logic Layer):
These classes handle the logic and flow of control for the use case.
	Controller Class
	Description

	PaymentController
	Handles overall payment coordination

	CardPaymentController
	Validates and processes card payments

	WalletPaymentController
	Manages wallet API calls and validation

	CashPaymentController
	Handles confirmation of cash payment

	NetBankingController
	Handles net banking integration and logic

3. Entity Classes (Data/Business Layer):
These classes represent the data and business rules.
	Entity Class
	Description

	Customer
	Contains customer details

	Payment
	General payment information (amount, date, status)

	Card
	Card details (card number, expiry, etc.)

	Wallet
	Wallet details (wallet ID, balance)

	BankAccount
	Bank info for net banking

Q3. Place these classes on a three tier Architecture. - 4 Marks

In a Three-Tier Architecture, classes are organized into the following layers:
1. Presentation Layer (UI Layer) – User interaction
2. Business Logic Layer (BLL) – Application logic & rules
3. Data Access Layer (DAL) – Data management and storage

1. Presentation Layer (Boundary Classes)
These classes interact with the user interface:
	Class Name
	Role

	PaymentPage
	Allows customer to select payment mode

	CardPaymentForm
	UI to collect card details

	WalletPaymentScreen
	UI for wallet login

	NetBankingLoginScreen
	UI for net banking login

2. Business Logic Layer (Controller Classes)
These classes process input, control application logic, and manage workflows:
	Class Name
	Role

	PaymentController
	Main logic for processing payments

	CardPaymentController
	Handles card payment flow

	WalletPaymentController
	Handles wallet transactions

	CashPaymentController
	Logic for handling cash option

	NetBankingController
	Logic for net banking transactions

3. Data Access Layer (Entity Classes)
These classes represent business objects and manage database interactions:
	Class Name
	Role

	Customer
	Stores customer details

	Payment
	Contains payment info like amount, status

	Card
	Holds card-related data

	Wallet
	Stores wallet data

	BankAccount
	Represents bank account for net banking

Q4. Explain Domain Model for Customer making payment through Net Banking - 4 Marks
A Domain Model is a visual representation of real-world objects (entities), their attributes, and relationships within the problem domain. It helps identify core business concepts and their interactions.
[image:]

Q5. Draw a sequence diagram for payment done by Customer Net Banking - 4 Marks
[image:]

Q6. Explain Conceptual Model for this Case - 4 Mark
A conceptual model is a high representation of a system that helps in understanding, visualizing and communicating the essential aspects of a domain.
It provides a clear and simplified view of the domain, making, it easier to understand key elements of a conceptual model.
Entities: Customer, Product, Order and Payment
Attributes: Customer id, name, email, phone number.
Relationships: For example, a customer place an order.

Q7. What is MVC architecture? Explain MVC rules to derive classes from use case diagram and guidelines to place classes in 3-tier architecture - 8 Marks
MVC Architecture Explanation:
MVC stands for Model-View-Controller.
It is a design pattern that separates an application into three interconnected components:
Model: Manages data, business logic, and rules of the application.
View: Handles the display and presentation to the user.
Controller: Manages user inputs and updates the Model and View accordingly.
Purpose: To separate internal representations of information from the ways information is presented and accepted from the user.

2. MVC Rules to Derive Classes from Use Case Diagram:
When analyzing a Use Case Diagram, we can apply these rules:
	MVC Layer
	Rule to Derive Classes

	Model
	Identify business objects (nouns) from the use cases and descriptions. Example: Customer, Order, Product.

	View
	Identify screens, forms, reports where users interact with the system. Example: Order Entry Screen, Invoice Report.

	Controller
	Identify actions (verbs) that involve interaction between user and system. Example: Place Order, Update Customer Profile.

Q8. Explain BA contributions in project (Waterfall Model – all Stages) – 8 Marks

	Stage
	Activities
	Artifacts & Resources

	Pre Project
	- Market research
- Feasibility study
- Identifying stakeholders
	Business Case, Feasibility Report, Stakeholder List

	Planning
	- Scope definition
- Estimating effort and timelines
- Risk analysis
	Scope Document

	Project Initiation
	- Conducting stakeholder meetings
- Understanding business needs
	Project Initiation Document (PID), Stakeholder Analysis Matrix

	Requirements Gathering
	- Conducting interviews/workshops
- Documenting requirements
	BRD (Business Requirements Document), Meeting Minutes, Use Cases

	Requirements Analysis
	- Validating and prioritizing requirements
- Gap analysis
	SRS (Software Requirements Specific
ation), Requirements Traceability Matrix (RTM)

	Design
	- Assisting in translating requirements into system design
- Reviewing design documents
	Functional Specification Document, Review Notes

	Development
	- Clarifying requirements for developers
- Participating in sprint/demo discussions
	Updated RTM, Developer Queries Log

	Testing
	- Supporting test case creation
- Reviewing test scenarios
- Validating fixes
	Test Plan, Test Cases, Defect Log, RTM

	UAT (User Acceptance Testing)
	- Coordinating UAT activities
- Collecting feedback
- Assisting in final sign-off
	UAT Plan, UAT Feedback Report, Sign-Off Document

Q9. What is conflict management? Explain using Thomas – Kilmann technique – 6 Marks
What is Conflict Management?
Conflict Management refers to the process of identifying, addressing, and resolving disagreements or conflicts between individuals or teams in a constructive manner. Effective conflict management helps maintain a healthy work environment, improves collaboration, and ensures project progress is not disrupted.

Thomas–Kilmann Conflict Management Technique:
The Thomas–Kilmann Conflict Mode Instrument (TKI) is a widely used model that identifies five conflict-handling styles based on two dimensions:
· Assertiveness – the extent to which a person tries to satisfy their own concerns.
· Cooperativeness – the extent to which a person tries to satisfy others’ concerns.

Five Conflict Handling Styles:
	Style
	Description
	When to Use

	1. Competing
	High assertiveness, low cooperativeness. Focus on winning.
	In emergencies or when quick, firm decisions are needed.

	2. Collaborating
	High assertiveness, high cooperativeness. Win-win solution.
	When both sides' concerns are important and time allows.

	3. Compromising
	Moderate assertiveness and cooperativeness. Middle-ground solution.
	When a temporary solution is acceptable.

	4. Avoiding
	Low assertiveness and cooperativeness. Ignoring or postponing conflict.
	When the issue is trivial or emotions are high.

	5. Accommodating
	Low assertiveness, high cooperativeness. Yielding to others.
	When preserving relationships is more important than the issue.

Q10. List down the reasons for project failure – 6 Marks
Projects can fail for various reasons, especially when there is a lack of planning, communication, or alignment with business goals. Below are some key reasons why projects fail:

1. Unclear Requirements
· Poorly defined or incomplete requirements lead to confusion during development.
· Misunderstanding between what the client wants and what is delivered.

2. Lack of Stakeholder Involvement
· Stakeholders are not actively involved in reviews or decision-making.
· Delays in feedback and approvals impact project timelines.

3. Poor Planning and Estimation
· Inaccurate time and cost estimates lead to missed deadlines and budget overruns.
· Lack of risk analysis and mitigation strategies.

4. Ineffective Communication
· Miscommunication between team members, departments, or stakeholders.
· Important information gets lost or misunderstood.

5. Scope Creep
· Uncontrolled changes or continuous addition of new features.
· Results in resource strain and reduced focus on core objectives.

6. Inadequate Testing
· Insufficient or rushed testing causes defects in the final product.
· Leads to poor user experience and project rejection.

Q11. List the Challenges faced in projects for BA – 6 Marks
A Business Analyst (BA) plays a key role in bridging the gap between business needs and technical solutions. However, BAs often face several challenges during project execution. Below are some common ones:
1. Unclear or Changing Requirements
· Stakeholders may not clearly define what they need.
· Requirements often change mid-project, causing rework and confusion.
2. Communication Gaps
· Miscommunication between stakeholders, developers, and testers.
· Lack of clarity in explaining business needs to technical teams.

3. Conflicting Stakeholder Interests
· Different stakeholders may have opposing views or priorities.
· BA has to balance and negotiate to meet the overall business goal.

4. Scope Creep
· Gradual increase in project scope due to additional feature requests.
· Leads to delays, budget overruns, and quality issues.

5. Limited Access to Stakeholders
· Difficulty in scheduling meetings or feedback sessions.
· Delays in decision-making and requirement finalization.
6. Technical Constraints
· Business requirements may not always align with system capabilities.
· BA must work with developers to find feasible alternatives.

Q12. Write about Document Naming Standards – 4 Marks
A document numbering standard is systematic approach to assigning unique identifies to various documents created and used throughout the development process.
Ex- Suppose we have project with ID”PROJ123” and we working with a Requirements Specification Document.
Project ID: PROJ123
Document Type: REQ
Version: 1.0
Date: 2025-04-19
The document identifier could be PROJ123-REQ- 1.0.2025.05-26.
Q13. What are the Do’s and Don’ts of a Business analyst – 6 Marks

	Sr No
	Do's
	Don’ts

	1
	Consult the SME clairficaiton in requirements.
	Never say NO to client.

	2
	Go to the client with a plain mind with no assumptions, Listent carefully and completely until the client is done, and then you can ask queries.
	There is no word as "By default".

	3
	Try to extract maxumum leads to solution from the client himself.
	Never imaging anything in terms of GUI.

	4
	Consentrate on the important requirements.
	Don't interupt the client when he is giving you the problem.

	5
	Question the existence of existence/Question everhthing
	Never try to give solution to the client straight away with your previous experience and assumptions.

Q14. Write the difference between packages and sub-systems – 4 Marks
	Aspect
	Packages
	
	Sub-Systems

	Definition
	A package is a logical grouping of related elements such as classes, interfaces, or use cases.
	
	A sub-system is a larger unit representing a complete, independently functioning part of the system.

	Scope
	Used for code or model organization within a system.
	
	Represents a functional component of a larger system.

	Dependency
	Packages often depend on other packages and are not standalone.
	
	Sub-systems can work independently or be integrated with other subsystems.

	UML Representation
	Represented using a folder icon in UML diagrams.
	
	Represented as a component or a separate block in system architecture diagrams.

Q15. What is camel-casing and explain where it will be used- 6 Marks
Camel-casing is a naming convention used in programming and documentation where each word in a phrase is capitalized except the first one, and no spaces or underscores are used between words. Example:
· customerName
· orderTotal
· getUserData
The name comes from the way the capital letters in the middle of the word resemble the humps of a camel
Where Is Camel-Casing Used?
Programming Languages:
Used in Java, C#, JavaScript, Python, etc., for naming variables, methods, and classes.
Example: calculateTotalAmount(), orderDate
APIs and Data Fields:
Used in JSON keys and API parameters.
Q16. Illustrate Development server and what are the accesses does business analyst has? -6 Marks
Development Server:
A Development Server is an environment where software applications are built, developed, and initially tested before being deployed to staging or production environments.
It is mainly used by developers and testers to:
· Write and test new code
· Fix bugs
· Integrate new features
· Perform unit testing and integration testing

Key Features of a Development Server:
· Contains in-progress code (not final)
· Frequently updated with new builds
· May have test data or dummy data
· Not accessible to end-users or clients
· Separate from production and staging servers

Accesses for a Business Analyst (BA):
A Business Analyst generally has limited but important access to the development server:
	Access Type
	Description

	Read-Only Access to Builds
	BA can view the application builds to verify if features align with requirements.

	Access to Test Environment
	BA may test use cases or assist QA with validating business rules.

	Access to Logs or Reports
	BA can analyze logs or reports for issue tracking or requirement validation.

Q17. What is Data Mapping 6 Marks
Data Mapping is the process of connecting data fields from one source to corresponding fields in another system or database. It defines how data from a source (such as an API, form, or database) is translated, transformed, or matched to the destination format or structure.

Why is Data Mapping Important?
Ensures data consistency and accuracy between systems.
Essential for data integration, migration, transformation, and reporting.
Helps in handling differences in data formats, units, field names, or structures.

Q18. What is API. Explain how you would use API integration in the case of your application Date format is dd-mm-yyyy and it is accepting some data from Other Application from US whose Date Format is mm-dd-yyyy 10 Marks

What is an API?
API (Application Programming Interface) is a set of protocols and tools that allows different software applications to communicate with each other. It acts as a bridge between two systems, enabling them to share data and functionality securely and efficiently.
For example, when two different systems (like our application and a US-based application) need to exchange data (such as user information, product details, or dates), an API ensures this communication is smooth and standardized.
Implementation Steps:
Receive API Data:
Use an HTTP client in your backend (e.g., in Python, Node.js, Java, etc.) to receive data via REST API.
Parse the Date Field:
Extract the date string from the received data.
Use date parsing libraries (e.g., moment.js, datetime, or DateTime.ParseExact) to interpret mm-dd-yyyy format.
Convert the Format:
Convert the date into the required format (dd-mm-yyyy) before saving it to your database or displaying it to users.

image1.png

image2.png
Custorr ?[ng Bankld,
ContagtNo BranchName
Location
Eaild BranchCode
Customerld Accountld,
PovmentTyee | [Acouname
v AccountType.
AccountNo
Balance
Authentication Username
Password
Fund Transfer
7 otP.
Transaction
History
Account

image3.png

