CAPSTONE PROJECT3 PART1
Case Study 1 (Q1-Q6)
A customer can make a payment either by Card or by Wallet or by Cash or by Net banking.
Q1. Draw a Use Case Diagram

Q2 Derive Boundary Classes, Controller classes, Entity Classes.
Boundary Classes:
Definition: Boundary classes interact directly with actors (users or external systems).
They act as the interface between the system and the external actor.
Purpose: Used to handle interactions between the system and external actor.

In this case study the boundary classes are
Customer Boundary class
Pay by Cash Boundary class
Pay by Net banking Boundary class
Pay by UPI Boundary class
Pay by Card Boundary class

Controller Classes:
Definition: Controller classes coordinate and manage the flow of data between boundary and entity classes. They implement the logic of use cases.
Purpose: To act intermediaries between boundary class and entity class.

In this case study the controller class is
Payment controller class

Entity Classes:
 Definition: Entity classes represent business objects or persistent data. These are typically
 mapped to database tables or domain models.
 Purpose: It represents the core data and business logic of the application.

 In this case study the Entity classes are
 Customer Entity class
 Cash Entity class
 Net Banking Entity class
 Wallet Entity class
 Card Entity class

 Q3. Place these classes on a three tier Architecture.
3-tier architecture is a software design pattern and a client-server architecture that separates an application into three logical layers:
	Tier
	Description
	Responsibility

	1. Presentation Tier
	User Interface Layer
	Displays information and takes user input

	2. Business Logic Tier
	Application Layer
	Processes data, applies rules and logic

	3. Data Tier
	Database Layer
	Stores, retrieves, and manages data

Presentation Layer:
Customer Boundary class and Payment controller class

Business Logic Layer:
 Pay by Cash Boundary class
 Pay by Net banking Boundary class
 Pay by UPI Boundary class
 Pay by Card Boundary class

 Data Base Layer:
 Customer Entity class
 Cash Entity class
 Net Banking Entity class
 Wallet Entity class
 Card Entity class

 Q4. Explain Domain Model for Customer making payment through Net Banking
 A Domain Model represents real-world entities, their relationships, and business rules in an
 application — independent of any technical implementation (like UI or database). It uses
 classes and associations to represent the concepts in the domain.

Q5. Draw a sequence diagram for payment done by Customer Net Banking
A sequence diagram is a type of interaction diagram used in Software Engineering and System design to illustrate how processes operate with one another and in what order

 Q6. Explain Conceptual Model for this Case
 Conceptual Model:
 A Conceptual Model defines the entities, their attributes, and the relationships between
 them at a high level. It focuses on what the system does, not how it does it.
 It provides a clear and simplified view of the domain making it easier to understand.
 Key elements of a conceptual model are Entities, Attributes, and Relationships

Example1. Customer is an entity
Attributes of Customer are: CustomerID (Primary Key), Name, Email, Phone Number
Relationships: A Customer can make one or many Payments.

Example 2: Payment is an entity
Attributes of Payment are PaymentID (Primary Key), Payment Date, Amount, Status (e.g., Success, Failed), Payment Method Type (Card, Wallet, Cash, Net Banking)
Relationships: Belongs to one Customer
 Has one Payment Method (depending on type)

Relationships Summary
	Relationship
	Description

	Customer ↔ Payment
	One-to-Many (1 Customer can make many Payments)

	Payment ↔ Payment Method
	One-to-One (Each Payment uses one specific method)

	Payment Method ↔ [Card/Wallet/Cash/Net Banking]
	Inheritance – only one will be active per payment

Q7.What is MVC architecture? Explain MVC rules to derive classes from use case diagram
and guidelines to place classes in 3-tier architecture
MVC stands for Model-View-Controller, an architectural design pattern used in object-oriented software design, especially in UI-based applications. It helps separate concerns by dividing the system into three interconnected components:

	Component
	Role
	Description

	Model
	Business logic
	Represents the data, business rules, and domain logic (similar to Entity Classes)

	View
	User interface
	Displays data to users and receives input (similar to Boundary Classes)

	Controller
	Application logic
	Handles user input, interacts with the model, updates the view (Controller Classes)

Example:
For a payment use case:
Model → Payment, Customer, Transaction
View → Payment UI, Card Payment Screen
Controller → Payment Controller, Wallet Payment Controller
	

You can derive classes using the following rules:

	Element in Use Case
	Maps To (Class Type)
	Description
	
	
	

	Actor
	<<boundary>> class
	Each actor maps to one or more boundary classes
	
	
	

	Use Case
	<<control>> class
	Each use case maps to a controller class
	
	
	

	Business Object / Domain
	<<entity>> class
	Nouns in use case suggest entity classes
	
	
	

	System Events / Actions
	Methods in control or boundary class
	Represent operations or behavior
	
	
	

Guidelines to Place Classes in 3-Tier Architecture
3-tier architecture divides the application into Presentation, Business Logic, and Data Access layers:
	Layer
	Purpose
	Class Type
	Examples
	
	
	
	

	1. Presentation Layer
	Handles UI and user interaction
	<<boundary>>
	Payment UI, Order Screen
	
	
	
	

	2. Business Logic Layer
	Handles processing and application rules
	<<control>>
	Payment Controller, Login Manager
	
	
	
	

	3. Data Access Layer
	Manages storage and retrieval of data
	<<entity>>
	Customer, Order, Product
	
	
	
	

Summary Table:
	MVC Component
	UML Class
	3-Tier Layer
	
	
	

	Model
	<<entity>>
	Data Access Layer
	
	
	

	View
	<<boundary>>
	Presentation Layer
	
	
	

	Controller
	<<control>>
	Business Logic Layer
	
	
	

	
	

	
	
	

Q8. Explain BA contributions in project (Waterfall Model – all Stages)
Business Analyst Contributions – Stage by Stage
1. Requirement Gathering and Analysis
BA Contributions:
· Elicit Requirements: Conduct meetings, interviews, surveys with stakeholders to understand business needs.
· Document Requirements: Prepare Business Requirement Document (BRD), Functional Requirement Document (FRD) and Software Requirement Specification (SRS).
· Validate Requirements: Ensure requirements are complete, feasible, and aligned with business goals.
· Prioritize Requirements: Work with stakeholders to prioritize features based on value and feasibility.
 Key Deliverables:
 BRD, SRS, Stakeholder Analysis, Requirement Traceability Matrix (RTM)
2. System Design
 BA Contributions:
· Support Design Team: Clarify business logic and functional requirements.
· Review Design Documents: Ensure system design aligns with business needs.
· Define Use Cases/User Stories: Help create use case diagrams, wireframes, and flowcharts.
 Key Deliverables:
 Use Case Models, Process Flows, UI Mockups/Wireframes
3. Implementation (Coding)
BA Contributions:
· Clarify Functional Requirements: Answer developer queries about business rules or features.
· Bridge Between Dev & Business: Ensure continuous alignment of development with requirements.
· Support Agile Teams (if hybrid): In hybrid models, the BA may participate in daily standups or sprint planning.
 Key Activities:
 Requirement clarifications, Defect analysis (early feedback loop), Change Request Management
4. Testing (System & UAT)
BA Contributions:
· Review Test Plans: Ensure test cases cover all business scenarios and requirements.
· Support QA Team: Help with test data, and clarify expected results.
· Coordinate User Acceptance Testing (UAT): Facilitate testing by end-users and gather feedback.
· Log and Analyse Defects: Work with QA and Dev to resolve mismatches.
 Key Deliverables:
 UAT Test Scenarios, UAT Sign-off Document, Updated RTM (linked to test cases)

5. Deployment
BA Contributions:
· Communicate Changes: Inform stakeholders about release scope and deployment timelines.
· Support Rollout: Assist in go-live preparation and communication planning.
· Training and Documentation: Provide user manuals or conduct training sessions.
 Key Deliverables:
Training Material, Release Noted, Transition Plan

6. Maintenance / Support
BA Contributions:
· Monitor Post-Implementation: Gather feedback from users on the system performance.
· Support Change Requests: Analyse and document any enhancements or bug fixes.
· Continuous Improvement: Recommend improvements based on user experience and data.
 Key Deliverables:
 Change Request Documents, Enhancement Proposals, Updated Documentation
 Summary Table
	Waterfall Stage
	BA Role Highlights
	Key Deliverables

	Requirements
	Elicitation, Documentation, Validation
	BRD, FRS, RTM

	Design
	Support design, validate business alignment
	Use Cases, User stories, Wireframes

	Implementation
	Clarifications, bridge communication
	Change logs, Defect analysis

	Testing
	UAT coordination, requirement coverage review
	UAT Cases, RTM updates, UAT Sign-off

	Deployment
	Stakeholder communication, training
	Release Notes, Training Docs

	Maintenance
	Feedback collection, change analysis
	Change Requests, Enhancement logs

Q9. What is conflict management? Explain using Thomas – Kilmann technique
What is Conflict Management?
Conflict Management is the process of identifying and handling conflicts in a sensible, fair, and efficient way. In project management, especially in roles like Business Analyst, Scrum Master, or Product Owner, conflict often arises due to:

· Differing stakeholder priorities
· Miscommunication
· Resource constraints
· Personality clashes
Effective conflict management preserves relationships, ensures smooth progress, and improves team productivity.
Steps of Conflict Management
· Identify the conflict
· Discuss the details
· Agree with the root problem
· Check for every possible solution for the conflict
· Negotiate the solution to avoid future conflicts.
Thomas–Kilmann Conflict Management Technique
The Thomas–Kilmann Conflict Mode Instrument (TKI) is a widely used model that identifies 5 conflict-handling styles based on:
· Assertiveness (concern for your own goals)
· Cooperativeness (concern for others’ goals)
5 Styles in the Thomas–Kilmann Model:

	Conflict Style
	Description
	When to Use

	1. Competing
	Assertive and uncooperative: "I win, you lose"
	Quick decisions, crisis situations

	2. Collaborating
	Assertive and cooperative: "Win-Win"
	Complex issues needing mutual buy-in

	3. Compromising
	Moderate assertiveness and cooperation: "Split the difference"
	Temporary solutions, time constraints

	4. Avoiding
	Unassertive and uncooperative: "Ignore the issue"
	When the issue is minor or emotions are high

	5. Accommodating
	Cooperative but unassertive: "I lose, you win"
	Preserve harmony, when you're wrong

Q10. List down the reasons for project failure
The detailed explanation of the reasons for project failure are as follows
1. Poor Planning
· Lack of a clear roadmap, unrealistic timelines, or missing detailed work breakdown structures.
· Impact: Leads to confusion, missed deadlines, budget overruns, and inefficient task execution.
· Example: A team starts development without estimating effort or dependencies, leading to repeated rework.
2. Unclear Objectives and Requirements
· Vague or incomplete goals and business requirements at the start of the project.
· Impact: Results in building the wrong product, frequent change requests, and client dissatisfaction.
· Example: Developers build a feature the client didn’t want because requirements were ambiguous or not validated.
3. Inadequate Risk Management
· Failing to identify, assess, and prepare for potential risks (technical, resource, financial).
· Impact: Unanticipated problems can derail the project without mitigation strategies in place.
· Example: A critical vendor delay halts progress because there was no backup plan for alternate suppliers.
4. Poor Communication
· Ineffective exchange of information between team members, stakeholders, or departments.
· Impact: Misunderstandings, delays in decision-making, and lack of alignment with project goals.
· Example: Developers interpret requirements differently due to lack of proper documentation or clarification.
5. Scope Creep
· Uncontrolled expansion of project scope due to continuous requirement changes.
· Impact: Increases workload, delays delivery, exhausts resources, and inflates budgets.
· Example: A client keeps requesting new features mid-development without adjusting the schedule or cost.
6. Lack of Stakeholder Engagement
· Key stakeholders (clients, sponsors, users) are not involved or responsive during the project.
· Impact: Misaligned expectations, late feedback, and poor product-market fit.
· Example: The product is released without user testing because business users were unavailable for feedback.
7. Resource Constraints
· Insufficient or misallocated team members, skills, budget, or tools.
· Impact: Slows down progress, lowers quality, and causes burnout.
· Example: A skilled developer leaves mid-project, and no trained replacement is available.
8. Technical Challenges
· Complex or outdated technology, integration issues, or lack of technical expertise.
· Impact: Project delays, instability, and failure to meet performance or scalability expectations.
· Example: Attempting to integrate with a legacy system causes unforeseen compatibility problems.

Summary Table
	Factor
	Consequence

	Poor Planning
	Missed deadlines, inefficient execution

	Unclear Objectives
	Product misalignment, frequent rework

	Inadequate Risk Management
	Surprises derail progress

	Poor Communication
	Misunderstandings, lack of direction

	Scope Creep
	Project overrun,unavoidable increase of work will happen.

	Lack of Stakeholder Input
	Misaligned results, late feedback

	Resource Constraints
	Incomplete tasks, lowered quality

	Technical Challenges
	Integration failures, system breakdowns

Q11. List the Challenges faced in projects for BA

These are the Challenges Faced by Business Analysts in Projects

1. Unclear or Changing Requirements
 Challenge:
· Gathering complete, precise, and stable requirements from stakeholders can be
difficult.
Impact:
· Requirements often change due to evolving business needs or market changes.
· Leads to rework, confusion for developers, missed deadlines, and increased costs.
Example:
A BA gathers initial requirements for an e-commerce checkout process, but mid-sprint, the client decides to change payment providers and flow, forcing a redesign.
 How BAs handle it:
· Use techniques like interviews, workshops, prototyping, and user stories.
· Maintain a change request log and manage via impact analysis.

2. Managing Stakeholder Expectations
 Challenge:
· Stakeholders may have unrealistic expectations about timelines, features, or results.
· Conflicting interests among different stakeholder groups.
 Impact:
· Stakeholder dissatisfaction, scope disputes, and misalignment between business goals and deliverables.
 Example:
Marketing expects a flashy UI, but finance wants the project live ASAP with basic features.
 How BAs handle it:
· Set clear expectations early using scope documents and requirement baselines.
· Facilitate prioritization (e.g., MoSCoW technique) and regular stakeholder meetings.

3. Scope Creep and Scope Management
 Challenge:
· Frequent addition of new features outside the agreed scope without time or budget adjustments.
 Impact:
· Increases workload, delivery delays, and risks of project failure.
 Example:
Client keeps asking to “just add one more feature” without understanding the impact.
 How BAs handle it:
· Establish a scope baseline and define a change control process.
· Communicate impacts of changes through impact analysis and revised timelines.

4. Time and Resource Constraints
 Challenge:
· Working within tight deadlines or with limited technical/functional team members.
 Impact:
· Incomplete analysis, rushed documentation, and increased chances of error.
 Example:
The BA is asked to complete requirement gathering and documentation for a major module in 3 days due to a resource shortage.
 How BAs handle it:
· Prioritize critical requirements, focus on MVP (Minimum Viable Product).
· Negotiate timelines and involve cross-functional teams early.

5. Quality Assurance and Testing
 Challenge:
· Inadequate involvement in test planning and ambiguity in acceptance criteria.
· Issues may arise if the BA’s requirements are not testable or misunderstood.
 Impact:
· Functional gaps, increased defects, UAT (User Acceptance Testing) failures.
 Example:
A BA doesn’t specify validations for a form field, leading to inconsistent behaviour and QA bugs.
 How BAs handle it:
· Write clear acceptance criteria, collaborate with QA teams, and assist during UAT.
· Use traceability matrices to map requirements to test cases.

6. Documentation and Knowledge Management
 Challenge:
· Poor documentation practices or knowledge not being shared across teams.
· Recreating documentation due to lost versions or team turnover.
 Impact:
· Misunderstandings, rework, and difficulty onboarding new team members.
 Example:
Business rules were defined in emails but never documented formally, causing confusion during development.

How BAs handle it:
· Use structured templates like BRD, SRS, user stories, etc.
· Maintain version-controlled documents in a shared repository (e.g., Confluence, SharePoint).

7. Technology Constraints and Complexity
 Challenge:
· Existing systems may be outdated, incompatible, or too complex.
· BAs may lack technical understanding of system limitations.
 Impact:
· Infeasible requirements, integration issues, or poor solution design.
 Example:
Client requests real-time dashboard updates, but the legacy system updates only once a day.
 How BAs handle it:
· Collaborate with technical architects, understand system limitations.
· Suggest feasible alternatives based on system capabilities.
Summary Table:
	Challenge
	Key Issue
	Resulting Problem

	Unclear/Changing Requirements
	Ambiguity or evolving needs
	Rework, delays, misalignment

	Managing Stakeholder Expectations
	Conflicts and unrealistic goals
	Dissatisfaction, miscommunication

	Scope Creep and Management
	Uncontrolled additions
	Budget and timeline overrun

	Time and Resource Constraints
	Limited staff or tight deadlines
	Incomplete analysis, poor quality

	Quality Assurance and Testing
	Poor collaboration or unclear criteria
	Defects, failed tests

	Documentation and Knowledge Management
	Lost knowledge or poor recording
	Misunderstanding and duplication

	Technology Constraints and Complexity
	Legacy systems, technical limitations
	Feature infeasibility, integration issues

Q12. Write about Document Naming Standards
Document Naming Standards in a Project
Document Naming Standards are predefined conventions used to name project documents in a consistent, structured, and easily identifiable manner throughout the project lifecycle. These standards are critical for organizing, locating, sharing, and version-controlling documents efficiently.

Key Elements of Naming Standards

	Element
	Description
	Example

	Project Id
	Code to identify the project
	SF0625 for Scrum Foods

	Document Type
	Indicates the purpose of the document
	BRD, FRD, SRS, UAT

	Version Number
	Tracks updates to the document
	v1.0, v2.1, vFinal

	Date
	Indicates the creation or revision date (optional)
	2025-06-21

	ext
	File extension
	.docx, .xlsx, .pdf

Standard Format:
<Project Id>_<Document Type>_<Version>_<Date>.ext
 Example:
SF0625_FRD_v1.2_2025-06-21.docx
SF0625_TC_v1.0_2025-06-19.xlsx
SF0625_UAT_vFinal_2025-06-20.docx
Common Document Types
	Document Type
	Abbreviation

	Business Requirements
	BRD

	Functional Requirements
	FRD

	Software Requirements Spec
	SRS

	Test Plan
	TP

	Test Cases
	TC

	User Acceptance Test Results
	UAT

	Change Request
	CR

	Project Closure Report
	PCR

Q13. What are the Do’s and Don’ts of a Business analyst
	 DO'S
	 DON'TS

	Understand the business domain thoroughly
	Don’t assume requirements without verification

	Elicit clear, complete requirements from stakeholders
	Don’t overpromise deliverables or timelines

	Consult an SME for clarifications in requirements
	Never say “NO” to the client

	Go to the client with a plain mind with no assumptions. Listen carefully and completely until the client is done and then you can ask queries
	There is no word as “By default”

	Try to extract maximum leads to the solution from the client himself
	Never imagine anything in terms of GUI

	Concentrate on the important requirements
	Don’t interrupt the client when he is giving you the problem

	Question the existence of existence. Question everything.
	Never try to give solutions to the client straight away with your previous experience and assumptions.

	Always use 5W1H for probing into any concept
	Banned word for BA is “I Know”

	Continuously learn and improve domain and technical skills
	Don’t let personal opinions override objective business needs

Q14. Write the difference between packages and sub-systems
 Packages: Collection of components which are not reusable in nature.
 Sub systems: Collection of components which are reusable in nature

Differences between Packages and Subsystems:

	Aspect
	Packages
	Subsystems

	1. Reusability
	Collection of components not reusable in nature (mainly for organization).
	Collection of components that are reusable and can function independently.

	2. Purpose
	Used to logically group related classes or components to manage complexity.
	Designed to encapsulate a specific functionality that can be reused across systems or applications.

	3. Dependency
	Typically dependent on other parts of the system.
	More independent, can be reused as a self-contained module.

	4. Encapsulation Level
	Lower encapsulation; focuses on code grouping rather than functional boundaries.
	Higher encapsulation; often includes interfaces and behaviours to interact with other systems.

	5. UML Representation
	Represented as a package symbol in UML (folder icon).
	Represented as a subsystem stereotype in UML (with <<subsystem>> keyword).

Q15. What is camel-casing and explain where it will be used
Camel-casing is a naming convention in programming where multiple words are joined together without spaces, and each word starts with a capital letter, except the first one.
The name "camelCase" comes from the hump-like capital letters that appear in the middle of the word — like a camel’s back.
Example of Camel- Casing
	Words
	Camel Case Version

	user name
	userName

	payment method
	paymentMethod

	customer order details
	customerOrderDetails

· In object-oriented programming (OOP), camel-casing improves readability and helps follow standard naming conventions for various components and makes it easier to identify variables, methods, and objects quickly.

Q16. Illustrate Development server and what are the accesses does business analyst has?
Development Server:
A Development Server is a controlled environment where developers build, test, and debug applications before deploying them to staging or production environments.
It simulates the real working conditions of the application but is primarily used for internal development purposes.
A Business Analyst typically has limited but strategic access to the development environment. Here’s what a BA can and cannot do:
 Accesses a BA Usually Has:
	Access Type
	Description

	Read-Only Access
	View UI for feature validation, requirements traceability

	Access to Dev URLs
	Test early builds, review sprint outputs

	UAT Participation
	Perform or support User Acceptance Testing in Dev environment

	Logs or Screenshots
	Collect defect evidence or behaviour analysis

	Bug Reporting Tools
	Log issues in tools like Jira

	Version Info Access
	Know which build/version is currently deployed

Accesses a BA Usually Does NOT Have:
	Access Type
	Reason

	 Codebase Access
	BAs are not expected to modify code

	 Database Write Access
	Could affect data integrity and testing stability

	 Server Configuration Rights
	Only DevOps or System Admins have that

	 Deployment Rights
	Deployment is handled by developers or DevOps team

Summary
	Environment
	BA Access?
	Purpose for BA

	Development Server
	Limited (view/test)
	Validate feature alignment with requirements

	Staging Server
	Moderate (UAT/Test)
	Simulate production usage

	Production Server
	Usually none
	Only for observing released features

Q17. What is Data Mapping
Data Mapping is the process of matching fields from one data source to another. It establishes a relationship between data elements in different formats, systems, or databases, ensuring that data can be transferred, transformed, or integrated accurately.
Why Data Mapping Is Important
· Enables data integration across systems (e.g., CRM → ERP)
· Ensures data consistency and accuracy
· Crucial for ETL processes (Extract, Transform, Load)
· Supports data migration and system upgrades
· Helps in reporting and analytics
Real-World Example of Data Mapping
Scenario: Migrating data from a legacy HR system to a new HRMS
	Source System (Legacy)
	Target System (New HRMS)

	Emp_ID
	Employee ID

	First_Name
	Full Name First Name

	Last_Name
	Full Name LastName

	DOB
	Date Of Birth

	Dept
	Department Code

 This mapping ensures the right fields are populated in the correct format in the new system.
 Where Is Data Mapping Used?

	Use Case
	Description

	Data Migration
	Moving data between old and new systems

	System Integration
	Sharing data between different applications

	ETL Processes
	For data warehousing (Extract → Transform → Load)

	API Integration
	Mapping API response fields to internal fields

	Business Intelligence
	Aligning data from multiple sources for reporting

Tools Commonly Used for Data Mapping
· Microsoft Excel (manual mapping)
· Talend
· Informatica
· ETL tools in cloud platforms (AWS Glue, Azure Data Factory)
Summary
	Aspect
	Explanation

	Definition
	Aligning fields from one data set/system to another

	Purpose
	Enable data integration, migration, and transformation

	Common Usage
	ETL, APIs, migrations, BI reports

	Benefits
	Ensures consistency, reduces errors, supports automation

Q18. What is API. Explain how you would use API integration in the case of your application Date format is dd-mm-yyyy and it is accepting some data from Other Application from US whose Date Format is mm-dd-yyyy
API stands for Application Programming Interface. It is a set of rules and protocols that allow one software application to communicate with another. APIs enable systems to exchange data and perform operations without exposing internal logic or code.
Simple Definition:
An API is like a waiter in a restaurant—you (the application) tell the waiter (API) what you want, and the waiter brings back the requested dish (data) from the kitchen (another system).

Why Use API Integration?
· To connect applications across platforms
· To automate data transfer (e.g., user details, payment status, orders)
· To ensure real-time communication between different systems

Case Study: Date Format Mismatch Between Systems
Scenario:
· Your application accepts date format in: dd-mm-yyyy
· External system (US-based) sends date in: mm-dd-yyyy
· You are integrating via API to receive data like customer records, transaction logs, etc.

Problem with Date Format in API Integration If no handling is done:
· A US date like 03-08-2025 (→ March 8) could be misinterpreted as 3rd August in your system.
· This causes data corruption, reporting errors, or functional issues.
Solution: Handle Date Format Using Data Transformation
Steps for API Integration Handling Date Format:
	Layer
	Responsibility

	API Integration Layer
	Receive external payload

	Middleware / Mapping Layer
	Convert mm-dd-yyyy to dd-mm-yyyy

	Backend Storage
	Save data in unified internal format

	Frontend Display
	Display dates in expected format to users

Summary
	Concept
	Details

	API
	Interface for two applications to communicate

	Problem
	Date format mismatch (US vs Local)

	Solution
	Use transformation logic before saving/using data

	Tools Used
	Python, JavaScript, middleware (MuleSoft, Talend, etc.)

image3.emf
Customer Net Banking System Bank

Inititate Payment Request

Authenticate Customer Details

Validate Payment Details

Deduction of Amount

Process Payment of Recipients Bank

Payment Confirmation

Receive Payment Confirmation

oleObject3.bin
Customer

Net Banking System

Bank

Inititate Payment Request

Sequence

Authenticate Customer Details

Validate Payment Details

Deduction of Amount

Process Payment of Recipients Bank

Payment Confirmation

Receive Payment Confirmation

image1.emf
Payment Application

Payment

Debit Card/Credit

Card

Wallet Cash

Wallet

Customer

-End3

*

-End4

*

Server

-End9

*

-End10

*

oleObject1.bin
System

Payment Application

Use Case

Payment

Debit Card/Credit
Card

Wallet

Cash

Wallet

Customer

-End3

*

-End4

*

Server

-End9

*

-End10

*

image2.emf
Customer

PK Customer Id

Customer Name

Contact Details

Account Details

Order

Order id

Amount

Date

Bank

Bank Name

Location

Branch Code

Payment

Payment Id

Amount

Payment Date

Status

Net Banking Info

Account No

Login Id

IFSC Code

Transaction Status

Transaction Id

Status

Message

oleObject2.bin
text�

�

Table

