[bookmark: _Hlk208005783]Question 1: Use Case Diagram

Question 2: Boundary Classes, Controller classes, Entity Classes

Boundary: Payment UI, Card Payment UI, Wallet Payment UI, Cash Payment UI, Net Banking UI
Controller: Payment Controller, Card Payment Controller, Wallet Payment Controller,
Cash Payment Controller, Net Banking Controller
Entity: Customer, Order, Payment, Card Details, Wallet, Bank Account

1. Boundary Classes (Interfaces between user/system)
These represent UI screens or external interactions.
· Payment UI → Main screen where the customer selects payment mode.
· Card Payment UI → Interface for entering card details.
· Wallet Payment UI → Interface for login/OTP/authorization.
· Cash Payment UI → Confirmation screen for cash on delivery.
· Net Banking UI → Bank selection and login interface.

2. Controller Classes (Coordinate workflow / logic)
These control the flow of the use case.
· Payment Controller → Orchestrates payment process.
· Card Payment Controller → Handles card payment processing.
· Wallet Payment Controller → Handles wallet API calls.
· Cash Payment Controller → Confirms COD request.
· Net Banking Controller → Handles banking gateway redirection.

3. Entity Classes (Business/domain objects, stored in DB)
These represent the core business objects.
· Customer (customer ID, name, contact, wallet ID, etc.)
· Order (order ID, amount, status, date, customer ID)
· Payment (payment ID, order ID, amount, method, status, date)
· Card Details (card Number, expiry Date, CVV, card Holder Name)
· Wallet (wallet ID, balance, provider Name)
· Bank Account (account Number, IFSC, bank Name, balance)

Question 3: Three tier architecture

		Tier
	Components
	Responsibilities

	Presentation Tier
(UI Layer / Boundary
Classes)
	Payment Page- Payment Confirmation Screen- Receipt / Acknowledgment Screen
	Capture user input (Card, Wallet, Cash, Net Banking)- Display payment status- Provide receipt/confirmation

	Application Tier
(Business Logic Layer / Controller Classes)
	PaymentController- CardPaymentService- WalletPaymentService- CashPaymentService- NetBankingService- TransactionManager
	Validate payment details- Route to respective payment service- Handle business rules (e.g., balance check, CVV validation)- Update order & transaction status- Integrate with external bank/wallet gateways

	Data Tier
(Database / Entity
Classes)
	Customer- Payment- CardDetails- Wallet- NetBanking- CashPayment- TransactionLog
	Store customer details- Maintain payment records- Manage wallet balances- Store card & bank details securely- Log all transactions for audit

Question 4: Domain Model for Customer making payment through Net Banking

Domain Model Relationships
· Customer "initiates" Payment
· Payment "uses" Net Banking
· Payment "results in" Transaction

A Domain Model shows the real-world entities, their attributes, and relationships for a given business scenario.

Here, the focus is on Customer to Payment to Net Banking to Transaction.

Key Entities & Attributes
1. Customer
· Attributes: Customer ID, Name, Email, Mobile No
· Relationships: Initiates a Payment
2. Payment
· Attributes: Payment ID, Amount, Payment Date, Status (Success/Failure)
· Relationships:
· Associated with Customer
· Uses Net Banking as Payment Method
· Generates Transaction
3. Net Banking
· Attributes: Bank ID, Bank Name, Account No, IFS Code, Net Banking ID
· Relationships:
· Linked to Customer
· Used in Payment process
4. Transaction
· Attributes: Transaction ID, Timestamp, Status, Reference No
· Relationships:
· Belongs to a Payment
· Logs outcome of Net Banking process
[image: C:\Users\admin\Downloads\Untitled Diagram.jpg]

Question 5: Sequence diagram for payment done by Customer Net Banking
A Sequence Diagram is a type of UML (Unified Modeling Language) diagram that shows how different parts of a system interact over time by exchanging messages.
Key Elements of a Sequence Diagram:
1. Actors:
· Represent external entities (e.g., users, systems) interacting with the system.
· Depicted as stick figures.
2. Objects/Classes:
· Represent the components or participants in the interaction (e.g., system components, classes, services).
· Depicted as rectangles at the top of the diagram.
3. Lifelines:
· Represent the life span of an object during the interaction.
· Depicted as vertical dashed lines extending down from the objects.
4. Messages:
· Represent communication between objects.
· Depicted as arrows between lifelines, showing the direction of the message.
· Synchronous message: Solid arrow with a filled head.
· Asynchronous message: Solid arrow with an open head.
5. Activations:
· Represent the time period during which an object is performing an action or task.
· Depicted as narrow rectangles on the lifeline.
6. Control Logic:
· Includes constructs such as loops, conditionals, and alternatives.
· Depicted using interaction frames (e.g., alt, loop).
7. Return Messages:
· Represent responses or acknowledgments.
· Depicted as dashed arrows pointing back to the sender.

Question 6: Conceptual Model

Conceptual Model Relationships
· A Customer initiates a Payment.
· A Payment is processed through Net Banking.
· Net Banking is provided by a Bank.
· A Payment generates a Transaction.
Conceptual Model – Key Concepts
1. Customer
· Represents the person initiating the payment.
· Attributes: Customer ID, Name, Contact Info.
2. Payment
· Represents the payment request made by the customer.
· Attributes: Payment ID, Amount, Date, Status.
· Relationship: Linked to Customer.
3. Net Banking
· Represents the chosen payment method through the customer’s bank.
· Attributes: Bank ID, Bank Name, Account No.
· Relationship: Payment is processed using Net Banking.
4. Bank
· Represents the external financial institution verifying and authorizing the transaction.
· Attributes: Bank Code, Bank Name.
· Relationship: Provides Net Banking service.
5. Transaction
· Represents the outcome of the payment request.
· Attributes: Transaction ID, Timestamp, Status (Success/Failure), Reference No.
· Relationship: Each Payment results in a Transaction.
Question 7: MVC architecture and MVC rules to derive classes from use case diagram and guidelines to place classes in 3-tier architecture

Model–View–Controller (MVC) is a UI-centric architectural pattern that separates:
· Model – domain data + business rules (e.g., Payment, Customer, Transaction).
· View – UI/Pages that render Model state (e.g., Payment Page, Confirmation View).
· Controller – request handlers that translate user/system events into Model operations (e.g., Payment Controller).
Core principles
· Views are passive: no business logic.
· Controllers are coordinators: they validate/route, then call Model.
· Models are framework-free: reusable across UIs.
· Dependency direction: View → Controller → Model (Model does not depend on View).
MVC rules to derive classes from a Use Case
Start from the use case diagram + main/alternate flows. Use UML stereotypes «boundary», «control», «entity».
Step-by-step
1. List actors & system events (triggers)
From each use case, extract events like “Submit Net Banking Payment”, “Bank Callback Received”.
→ Create one Controller per use case (or per actor role) to handle these events.
GRASP: Controller pattern.
2. Identify interaction points (screens/APIs)
Every user interaction or external API/gateway becomes a Boundary (View) class.
Examples: Payment Page, Net Banking Gateway Adapter, Receipt View.
3. Mine nouns = Entities (Model)
From the use case text/domain glossary, convert stable business nouns to Entity classes.
Examples: Payment, Customer, Transaction, Bank, Bank Account.
Methods come from verbs: e.g., Payment authorize(), Transaction record Success().
4. Assign responsibilities
· Boundary: gather input, render output, convert to DTOs. No business rules.
· Controller: validate request shape, orchestrate flow, manage transactions, call services.
· Entity/Domain Service: enforce business rules (limits, status transitions), compute outcomes.
GRASP: Information Expert, Low Coupling, high Cohesion.
5. Define collaborations via sequence sketches
Actor → «boundary» → «control» → «entity».
Avoid «boundary» → «entity» direct calls (keeps UI thin).
6. Handle alternates & errors
Add controller operations for failure paths (timeout, bank decline, retry), and domain exceptions.
7. Name consistently
· Controllers end with Controller or …UseCase.
· Views/Boundaries end with Page, View, or API.
· Entities use domain nouns.
In this case:

Boundary (View)
· Payment Page – collects amount and payment method.
· Net Banking Redirect View – redirects to bank.
· Receipt View – shows success/failure.
Controller
· Payment Controller
· Start Net Banking(payment Input)
· handle Bank Callback(callback Data)
· confirm Payment(payment Id)
Model (Entities/Domain Services)
· Payment { id, amount, status, method; authorize(bank Ref); mark Failed(reason) }
· Transaction { id, status, bank Ref }
· Customer { id, name }
· Bank { id, name }
· Domain service: Net Banking Service authorize(payment, bank) (talks to gateway).
	3-Tier Layer
	What it contains
	MVC fit
	Examples (payment case)

	Presentation Tier
	UI, controllers/endpoints, input validation, DTO mapping
	View + thin Controller (or just View if controllers live in middle tier)
	Payment Page, Receipt View, REST endpoints

	Application/Business
Tier
	Use-case controllers, domain services, business rules, workflow, transactions
	Controllers + Model (domain)
	Payment Controller, Net Banking Service, Payment, Transaction

	Data Tier
	Persistence, DB schemas, repositories/DAOs, external gateway adapters
	Model persistence & adapters (not Views)
	Payment Repository, Transaction Repository, Bank Gateway Adapter, DB

Question 8: BA Contributions Across Waterfall Stages

1. Requirement Analysis
BA’s Primary Responsibility
· Elicit requirements: Conduct workshops/interviews with stakeholders (Customer, Bank, Finance Team, IT).
· Document Business Requirements (BRD): Capture needs like multi-mode payment, transaction logging, confirmation receipts.
· Create Use Cases: e.g., “Customer makes payment via Net Banking”.
· Functional Requirements: Payment options, validation rules, success/failure handling.
· Non-Functional Requirements: Security (PCI-DSS, encryption), performance (response time < 3 sec), availability (99.9%).
· Traceability: Build Requirement Traceability Matrix (RTM) linking requirements → design → testing.
Deliverables: BRD, Functional Requirements Specification (FRS), Use Case Diagrams, RTM.
2. System Design
BA’s Role = Bridge Business ↔ Tech
· Validate design: Ensure system architecture (MVC + 3-Tier) supports requirements.
· Classify classes: Help identify boundary, control, entity classes from use cases.
· Confirm Data Model: Validate that Customer, Payment, Transaction entities align with requirements.
· Review Prototypes/Wireframes: Ensure screens (Payment Page, Confirmation Page) reflect requirements.
· Clarify business rules: e.g., “If payment fails, order status = pending until retry.”
Deliverables: Review System Design Doc (SDD), Data Models, UML diagrams (Class, Sequence, Activity).
3. Implementation (Coding Stage)
BA’s Role = Support & Clarification
· Provide clarifications to developers on business rules.
· Ensure scope compliance: Prevent scope creep (extra features not requested).
· Validate integration needs: Payment gateway APIs, Wallet APIs, Bank Net Banking system.
· Update Change Requests (CRs) if stakeholders request modifications.
Deliverables: Change Request Documents, Clarification Logs.

4. Testing
BA = UAT Owner + Requirement Validator
· Prepare Test Scenarios & Test Cases from requirements.
· Review System Test Plan to ensure full coverage.
· Perform UAT (User Acceptance Testing): Verify end-to-end flows (Card, Wallet, Net Banking, Cash).
· Validate error handling: declined payments, insufficient wallet balance, timeout in net banking.
· Ensure regulatory compliance testing (AML/KYC, audit logs).
Deliverables: UAT Test Cases, UAT Execution Report, Defect Log, Sign-off Report.
5. Deployment
BA ensures business readiness
· Support rollout plan: training docs, FAQs, user manuals.
· Conduct user training sessions for operations & finance staff.
· Ensure business sign-off before go-live.
· Validate final environment: correct configurations for bank/wallet gateways.
Deliverables: User Manuals, Training Material, Deployment Sign-off Document.

6. Maintenance
BA continues as point of contact for improvements
· Gather enhancement requests: new banks, new wallet integrations.
· Document post-production defects & raise CRs.
· Participate in periodic audit & compliance reviews.
· Help with impact analysis for future upgrades.
Deliverables: Enhancement Logs, Change Requests, Impact Analysis Reports.
Summary Table: BA in Waterfall

	Stage
	BA Contribution

	Requirement Analysis
	Elicit, document BRD/FRS, create use cases, RTM

	Design
	Validate architecture, data model, UMLs, review prototypes

	Implementation
	Clarify requirements, manage CRs, support dev team

	Testing
	Create/Review test cases, execute UAT, validate compliance

	Deployment
	Training, user manuals, rollout support, sign-off

	Maintenance
	Handle CRs, defect tracking, impact analysis, compliance reviews

Question 9: Conflict management -Thomas – Kilmann technique
Conflict Management
Conflict management is the process of identifying, addressing, and resolving disputes or disagreements in a constructive way so that relationships are maintained and objectives are achieved.
In projects, conflicts may arise due to:
· Differing goals/priorities (e.g., business vs. IT teams).
· Resource constraints.
· Miscommunication.
· Role ambiguity.
Objective of conflict management: not to “avoid conflict” but to handle it effectively so that it leads to growth, better decisions, and team harmony.
Thomas–Kilmann Conflict Management Technique
The Thomas–Kilmann Conflict Mode Instrument (TKI) is one of the most widely used frameworks for conflict management.
It is based on two dimensions of behavior:
1. Assertiveness: the extent to which a person tries to satisfy their own needs.
2. Cooperativeness: the extent to which a person tries to satisfy the other person’s needs.
By combining these two, five conflict-handling styles emerge:
1. Competing (High Assertiveness, Low Cooperation)
· “I win, you lose.”
· Focused on achieving one’s own goals at the expense of others.
· Suitable for quick, decisive action (e.g., emergency decisions).
· Risk: damages relationships.
Example: Project Manager enforces a deadline despite developer’s objections.
2. Collaborating (High Assertiveness, High Cooperation)
· “Win–Win.”
· Both sides work together to find a solution that satisfies everyone.
· Best when the issue is important to all parties.
· Time-consuming but builds trust.
Example: BA, Developers, and Client brainstorm together to finalize payment system features.
3. Compromising (Moderate Assertiveness, Moderate Cooperation)
· “Lose–Lose (but acceptable to both).”
· Each side gives up something to reach a middle ground.
· Useful for temporary settlements or when time is limited.
Example: Client wants 4 payment modes immediately, IT team can deliver only 2. Agreement: deliver 2 now, 2 in next release.
4. Avoiding (Low Assertiveness, Low Cooperation)
· “No winners, no losers.”
· Ignoring or postponing the conflict.
· Useful when issue is trivial or emotions are high.
· Risk: unresolved issues may grow.
Example: Team skips discussion on a minor UI color conflict to focus on core payment functionality.
5. Accommodating (Low Assertiveness, High Cooperation)
· “I lose, you win.”
· One side gives in to maintain harmony or relationship.
· Useful when issue matters more to the other party.
· Risk: overuse leads to resentment.
Example: Developer accepts BA’s design change request, even though they preferred another approach, to maintain team harmony.
Thomas–Kilmann Model Summary Table

	
Style
	Assertiveness
	Cooperation
	When to Use

	Competing
	High
	Low
	Emergencies, quick decisions, unpopular but necessary actions

	Collaborating
	High
	High
	Complex issues, long-term solutions, relationship building

	Compromising
	Moderate
	Moderate
	Temporary solutions, time constraints

	Avoiding
	Low
	Low
	Trivial issues, cooling-off period

	Accommodating
	Low
	High
	When relationship is more important than the issue

Question 10: Reasons for project failure
Top Reasons for Project Failure
1. Poor Requirement Gathering
· Unclear, incomplete, or ambiguous requirements.
· Lack of stakeholder involvement during requirement analysis.
· Constant changes (scope creep) without proper control.
2. Inadequate Planning
· Unrealistic timelines or budgets.
· No proper risk assessment or contingency planning.
· Overlooking dependencies between tasks.
3. Weak Stakeholder Engagement
· Stakeholders not identified correctly.
· Lack of regular communication with business users.
· Conflicting priorities between departments.
4. Ineffective Communication
· Misunderstandings between business and technical teams.
· No clear escalation path for issues.
· Poor documentation or updates.
5. Lack of Leadership & Governance
· Weak project sponsorship or executive support.
· Ineffective project manager or unclear decision-making authority.
· Absence of defined roles and responsibilities.
6. Resource Constraints
· Insufficient skilled resources.
· High turnover or unavailability of key team members.
· Unrealistic workload allocations.
7. Technology Failures
· Wrong choice of technology/platform.
· Poor quality of delivered code due to lack of standards.
8. Poor Risk & Change Management
· Risks not identified or mitigated early.
· Frequent uncontrolled change requests (scope creep).
· Ignoring impact analysis before implementing changes.
9. Testing & Quality Issues
· Inadequate testing coverage.
· Rushed UAT or ignored user feedback.
· Bugs found late in the cycle, leading to rework.
10. Unrealistic Expectations
· Overpromising to clients without feasibility checks.
· Underestimating complexity of tasks.
· Ignoring non-functional requirements (security, performance).
Question 11: Challenges Faced by a BA in Projects
1. Requirement Elicitation Challenges
· Stakeholders may be unclear about their needs.
· Information is scattered or inconsistent.
· Some users hesitate to share problems (fear of change/job impact).
· Difficult to extract real business needs vs. wants.
Example: Client says, “We need faster payments”, but BA must clarify if it means reducing transaction steps or improving backend processing.
2. Stakeholder Management Issues
· Identifying the right stakeholders is tricky.
· Conflicting priorities between business units.
· Resistance to change from end-users.
· Busy stakeholders not available for discussions.
Example: Finance team wants detailed logs, but IT team pushes for quick deployment without extra logging.
3. Scope Creep
· New requirements added mid-project without proper change control.
· Stakeholders keep modifying needs after sign-off.
· Difficult to balance evolving business needs with project deadlines.
Example: After approving 4 payment options, stakeholders demand adding “Crypto Payment” in the same release.
4. Communication Gaps
· Miscommunication between technical & non-technical teams.
· Ambiguity in requirement documents (different interpretations).
· Language/cultural barriers in global projects.
Example: Developer misinterprets “Net Banking” flow as only UPI payments, leaving out bank website redirects.
5. Prioritization of Requirements
· All stakeholders consider their requirement as “top priority.”
· Limited budget and time force trade-offs.
· BA must negotiate diplomatically.
Example: Marketing demands loyalty points feature, but Finance insists on fraud checks first.
6. Time Constraints
· Short deadlines make thorough analysis difficult.
· BA has to work in parallel with design/development.
· Limited time for requirement validation with users.
Example: Payments project planned for 3 months, but requirements took 6 weeks instead of 2.
7. Changing Business Environment
· Regulatory changes (e.g., RBI/PCI compliance).
· Market shifts requiring new features mid-project.
· Mergers/acquisitions altering business rules.
Example: Midway, RBI mandates additional OTP for payments, requiring redesign.
8. Technology Constraints
· Legacy systems that don’t integrate well.
· Limitations of existing platforms.
· Technical jargon confusing business stakeholders.
Example: Wallet system does not support refunds, but users demand instant refund features.
9. Conflict Resolution
· Conflicts between business and IT on feasibility.
· Team disagreements on solutions.
· BA must mediate without taking sides.
Example: Business wants “same-day settlement,” but IT says system can only do “T+1.”
10. Documentation & Traceability
· Maintaining BRD, FRS, RTM consistently updated.
· Ensuring developers/testers understand requirements correctly.
· Keeping track of changes across documents.
Example: Requirement updated in BRD but not in RTM, leading to test cases missing coverage.
11. Testing & Validation Challenges
· Translating requirements into test cases.
· Coordinating UAT with business users (often busy).
· Ensuring test data availability.
Example: Net Banking flow cannot be tested fully because bank sandbox is unstable.
12. Cultural & Organizational Barriers
· Resistance from employees used to manual processes.
· Different working cultures in multinational projects.
· Internal politics slowing decision-making.
Example: Operations team refuses to adopt the new payment dashboard, preferring Excel.
Question 12: Document naming Standards
In any project, multiple documents are created and shared among stakeholders — such as BRD (Business Requirement Document), FRS (Functional Requirement Specification), RTM (Requirements Traceability Matrix), Test Cases, Change Requests, and Project Closure reports. Without a consistent naming convention, these files can become confusing, misplaced, or duplicated. It ensure that all documents are named in a structured, uniform, and easy-to-understand manner.
Why Document Naming Standards are Important
1. Clarity & Consistency – Everyone knows what a document contains without opening it.
2. Version Control – Easy to identify the latest version of a document.
3. Search & Retrieval – Quicker access to the required files.
4. Collaboration – Reduces confusion when multiple team members work on shared files.
5. Audit & Compliance – Well-organized documentation for future reference or regulatory checks.
General Guidelines for Naming
· Use clear, descriptive titles (avoid vague names like “Doc1” or “Final”).
· Maintain a fixed sequence of elements in the file name.
· Avoid special characters (/ \ : * ? " < > |) since they cause issues in storage systems.
· Prefer PascalCase or snake_case over spaces (e.g., BusinessReq_v1.0.docx).
· Always include version number and date (if needed).
· Keep names short but meaningful (not more than 5–6 key elements).
Recommended Format
<ProjectName>_<DocumentType>_<Module/Feature>_<Version>_<Date>
Components
1. Project Name – Short code or acronym for the project.
2. Document Type – BRD, FRS, RTM, TC (Test Case), CR (Change Request), MOM (Minutes of Meeting), etc.
3. Module/Feature – (Optional) If document is specific to a module.
4. Version Number – v0.1, v1.0, v2.3 (Major.Minor format).
5. Date – YYYYMMDD (for easy sorting).
Examples
1. AgriStore_BRD_v1.0_20250820.docx
2. AgriStore_FRS_PaymentModule_v2.1_20250825.docx
3. AgriStore_RTM_v1.0_20250830.xlsx
4. AgriStore_TestCases_Checkout_v1.2_20250901.xlsx
5. AgriStore_CR_AddWalletOption_v0.1_20250901.docx
Versioning Guidelines
· v0.x → Draft versions (not signed off).
· v1.0 → First approved version.
· v1.1, v1.2 → Minor edits after approval.
· v2.0 → Major revision/new release.
Best Practices
· Keep a ‘master document index’ (Document Register) listing all documents with names, owners, and versions.
· Use shared repositories (e.g., SharePoint, Confluence, Google Drive) with folder structures aligned to naming standards.
· Clearly mark obsolete documents (e.g., by moving to “Archive” folder).
· Agree on naming standards at the start of the project with all stakeholders.
Question 13: Do’s and Don’ts of a Business Analyst
Absolutely! Let’s go through a detailed list of Do’s and Don’ts for a Business Analyst (BA). I’ll break them into categories for clarity: communication, documentation, stakeholder management, analysis, tools, and personal/professional behavior.
1. Communication
Do’s:
· Listen actively: Pay close attention to stakeholders’ needs without jumping to conclusions.
· Ask clarifying questions: Ensure you fully understand requirements before documenting them.
· Tailor communication: Adapt your communication style depending on the audience (technical team vs business stakeholders).
· Confirm understanding: Use techniques like summarizing or repeating back requirements.
· Maintain transparency: Inform stakeholders about progress, delays, and potential issues.
Don’ts:
· Don’t assume requirements without verification.
· Don’t overload stakeholders with technical jargon if unnecessary.
· Don’t ignore stakeholder concerns or feedback.
· Don’t miscommunicate timelines or scope.
2. Documentation
Do’s:
· Document clearly and concisely: Use structured formats like BRD, FRD, SRS, use cases, user stories, and workflows.
· Maintain version control: Always track changes to avoid confusion.
· Include all relevant details: Functional, non-functional requirements, constraints, and assumptions.
· Use diagrams where necessary: UML diagrams, flowcharts, wireframes, etc.
· Keep requirements testable and traceable: Helps QA and developers.
Don’ts:
· Don’t create ambiguous or incomplete documentation.
· Don’t rely solely on memory or verbal agreements.
· Don’t neglect updates when requirements change.
· Don’t ignore naming conventions or formatting standards.
3. Stakeholder Management
Do’s:
· Identify all stakeholders early and understand their influence and interest.
· Build relationships and trust with stakeholders.
· Facilitate meetings effectively (agenda, discussion, decision, follow-up).
· Manage expectations realistically regarding scope, timelines, and deliverables.
· Negotiate and resolve conflicts objectively using data or facts.
Don’ts:
· Don’t ignore key stakeholders or rely only on a single source of information.
· Don’t overpromise to satisfy stakeholders.
· Don’t bypass escalation processes when issues arise.
· Don’t let personal biases influence decisions.
4. Analysis & Requirement Gathering
Do’s:
· Conduct thorough requirement elicitation using interviews, workshops, surveys, observation, and document analysis.
· Analyze business processes and workflows to find gaps or inefficiencies.
· Prioritize requirements based on business value, risk, and feasibility.
· Validate requirements with stakeholders to avoid rework.
· Use appropriate modeling techniques: Use Case, Data Flow Diagrams (DFDs), Entity-Relationship Diagrams (ERDs), process maps, etc.
Don’ts:
· Don’t collect requirements superficially; avoid assumptions.
· Don’t ignore non-functional requirements like performance, security, and compliance.
· Don’t focus only on technical feasibility without considering business value.
· Don’t resist changes in requirements; instead, handle changes via formal change control.

5. Tools & Technology
Do’s:
· Use BA tools effectively: JIRA, Confluence, Balsamiq, Lucidchart, MS Visio, SQL, Excel, etc.
· Maintain proper documentation repositories for easy access.
· Learn new tools and stay updated on industry best practices.
· Use templates for efficiency and consistency.
Don’ts:
· Don’t rely only on manual tracking; avoid chaotic spreadsheets.
· Don’t misuse tools beyond their intended purpose.
· Don’t ignore training or certifications that improve efficiency.
6. Professional Behavior & Ethics
Do’s:
· Maintain professionalism in interactions with stakeholders and team members.
· Be neutral and objective; avoid personal opinions affecting analysis.
· Respect confidentiality of sensitive business data.
· Be proactive in identifying risks or issues.
· Continuously improve skills and knowledge.
Don’ts:
· Don’t take sides in internal conflicts; stay objective.
· Don’t exaggerate or manipulate information to make things look better.
· Don’t delay reporting issues due to fear of blame.
· Don’t ignore ethical practices or compliance standards.
7. Project Lifecycle Engagement
Do’s:
· Participate actively in all SDLC phases: Requirement gathering, analysis, design, testing, deployment, and support.
· Collaborate closely with developers, testers, project managers, and stakeholders.
· Ensure that delivered solutions meet documented requirements.
Don’ts:
· Don’t disappear after requirement gathering; BA involvement is critical throughout.
· Don’t ignore testing or UAT feedback.
Question 14: Difference between packages and sub-systems

	Aspect
	Package
	Sub-System

	Definition
	A package is a grouping mechanism to organize related classes, interfaces, or other UML elements into a single unit.
	A sub-system is a higher-level modular unit representing a functional part of the system with well-defined interfaces. It often contains multiple packages or classes.

	Purpose
	To manage complexity by logically grouping related elements and controlling dependencies.
	To decompose the system into manageable functional components that can be developed, deployed, and maintained independently.

	Granularity
	Lower-level abstraction; deals with classes, interfaces, and sometimes other packages.
	Higher-level abstraction; represents functional modules or domains within the system.

	Relationship
	Packages can contain other packages (nested packages) or classes; primarily for organization and namespace management.
	Sub-systems may contain multiple packages or classes and define functional boundaries; often maps to real-world components or modules.

	UML Representation
	Shown as a folder-like icon with the package name on top.
	Shown as a rectangle with the «subsystem» stereotype or sometimes a package icon with «subsystem» label.

	Dependency
	Packages can depend on other packages to show usage or import relationships.
	Sub-systems interact through defined interfaces, showing functional dependencies between modules.

	Example
	In an e-commerce system: Payment Package, User Management Package, Order Package.
	In the same system: Payment -Subsystem (may include Payment Package, Refund Package), User Sub-system (may include User Profile Package, Authentication Package).

· Packages = Logical grouping of classes/interfaces (for organization and manageability).
· Sub-systems = Functional units of the system (for modularity and independent development).

Question 15: Camel casing and its usage
Camel-casing is a naming convention in programming and documentation where the first letter of the first word is lowercase, and the first letter of each subsequent word is uppercase, with no spaces or special characters.
It looks like the humps on a camel, hence the name.
Example:
· FirstName
· CustomerAddress
· TotalAmountPaid
Types of Camel Case
1. Lower Camel Case (common in variables and methods)
· First letter lowercase, subsequent words capitalized.
· Example: orderId, calculateTotalAmount()
2. Upper Camel Case (also called Pascal Case, common in class names)
· First letter of all words capitalized.
· Example: CustomerDetails, PaymentProcessor
Camel-Casing Usage
	Usage Area
	Purpose / Example

	Programming Variables
	Naming variables in code. Example: userEmail, totalPrice.

	Methods / Functions
	Naming functions in languages like Java, JavaScript, C#. Example: calculateInterest(), getCustomerDetails().

	Class Names (Upper Camel Case)
	Naming classes or objects. Example: BankAccount, PaymentGateway.

	Database Columns / Fields
	Some developers use camel-case for column names. Example: firstName, accountBalance.

	APIs / JSON / XML Keys
	Camel-case is commonly used in API responses or JSON keys. Example: { "userName": "JohnDoe" }.

	Documentation / UML
	Naming entities, attributes, and operations in diagrams. Example: orderDate, customerID.

Camel-casing is widely used in software development, databases, and documentation

Question 16: Development server and the accesses to a BA
1. What is a Development Server?
A Development Server is a server environment used by developers to build, test, and debug applications before deploying them to testing (QA), UAT, or production environments.
· Purpose:
· To provide a safe space to develop and test features without affecting the live system.
· Allows collaboration between developers, testers, and BAs during the development phase.
· Key Characteristics:
· Contains latest builds/code that may be unstable.
· Supports debugging tools and logs.
· Often mirrors production in terms of architecture, but data may be sanitized or dummy data.
· Restricted to development and testing personnel.
· Example in Context:
In a banking application, a developer may implement a new “Funds Transfer” feature on the development server. The BA can then access the server to verify if the business requirements are implemented correctly.
2. Typical Access of a Business Analyst on a Development Server
BAs are not developers, so their access is usually read-only or limited. The purpose is to review, validate, and provide feedback.
	Access Type
	Description / Purpose

	Read-Only Access
	View application features, workflows, screens, and reports. Cannot make code changes.

	Requirement Validation Access
	Test whether business requirements, use cases, and user stories are implemented as expected.

	Data Access (Limited / Sample Data)
	Use test data or masked production data to validate processes.

	Report / Dashboard Access
	Verify reports or analytics as per business needs.

	Issue Logging / Feedback
	Identify defects or gaps in business functionality and log them (e.g., in JIRA).

	Collaboration Access
	Participate in sprint reviews, demo sessions, and walkthroughs with developers/testers.

BAs usually cannot access production servers directly due to security and compliance rules. They only get limited or masked access to development or UAT servers.

Question 17: Data Mapping
Sure! Let’s discuss Data Mapping in the context of your scenario (like a Business Analyst working on a development project, e.g., payment system or agriculture store).

1. What is Data Mapping?
Data Mapping is the process of matching fields from one data source to another, ensuring that data flows correctly between systems, modules, or databases.
· It defines relationships between source data (input) and target data (output).
· Ensures that data is correctly transformed, integrated, or migrated according to business rules.
Example Concept:
· Source: Customer Name in one database
· Target: Full Name in another database
· Mapping: Customer Name – Full Name
2. Importance of Data Mapping
· Ensures data integrity across systems.
· Helps in system integration (e.g., CRM → ERP → Payment Gateway).
· Facilitates migration of legacy data to new systems.
· Ensures reports and analytics use accurate data.
· Supports requirement validation for Business Analysts.
3. How it applies in this Scenario
Let’s assume scenario is the “Online Agriculture Store” or payment system:
	Source
	Target
	Mapping Purpose

	FarmerID (Farmer DB)
	CustomerID (Order System)
	Connect farmer with order history

	ProductCode (Inventory DB)
	ItemID (Order Module)
	Ensure correct products are billed

	PaymentMode (Payment Gateway)
	TransactionType (Accounting System)
	Track payments by type (Card/Net Banking/Wallet)

	DeliveryAddress (Order Form)
	ShippingAddress (Logistics DB)
	Ensure correct delivery location

	OrderDate (Frontend Form)
	OrderTimestamp (Backend DB)
	Keep date-time consistent for reporting

4. BA’s Role in Data Mapping
1. Identify Source and Target Systems:
· Understand where the data originates and where it goes.
2. Define Mapping Rules:
· Which fields map to which fields.
· Include transformations (e.g., DateFormat: DD/MM/YYYY → YYYY-MM-DD).
3. Validate Data Flow:
· Check if data appears correctly in the target system.
· Identify discrepancies or missing fields.
4. Document Mapping:
· Maintain a Data Mapping Document (DMD) for reference.
5. Support Testing:
· Ensure QA can verify data correctness using mapping rules.
Question 18: Application Programming Interface
API (Application Programming Interface) is a set of rules and protocols that allows two different software applications to communicate and exchange data.
· Think of it as a messenger between applications.
· APIs define how requests are made, what data is sent, and how responses are returned.
· They are widely used for integrating external systems, services, and applications.
Example:
· Your Agriculture Store app wants to fetch fertilizer inventory from a supplier’s system.
· You call the supplier’s API with a request (e.g., GET /inventory) and receive a response in JSON or XML.
2. API Integration in Your Application
API integration allows your system to exchange data seamlessly with other systems. In your case:
· Scenario:
· Your app (India) uses Date format: dd-mm-yyyy.
· Another application (US system) sends data in Date format: mm-dd-yyyy.
· You need to integrate the data correctly without errors.
Steps for API Integration with Date Transformation:
Step 1: Understand the API
· Check the documentation of the US application API.
· Identify:
· Endpoint URL (e.g., https://usapp.com/orders)
· Data format (JSON/XML)
· Required fields (OrderID, CustomerName, OrderDate, etc.)
Step 2: Retrieve Data via API
· Your application sends an HTTP request to the US application API.
· Example (JSON request/response):
Step 3: Transform Data to Local Format
· Since the system uses dd-mm-yyyy, the date must be converted using transformation logics
· This ensures that all date-dependent operations (like sorting, filtering, reporting) work correctly.
Step 4: Save Data in Your System
· After conversion, save the data logic in the database
Step 5: Automate & Validate
· Automate API integration with scheduled jobs or triggers.
· Validate:
· All required fields are correctly mapped.
· Date conversion works for all edge cases (e.g., 12-31-2025 to 31-12-2025).
· Log errors if API fails or data is invalid.
3. BA’s Role in API Integration
· Requirement Analysis: Define which data is needed from external APIs.
· Data Mapping: Map source fields (US system) to target fields (local system).
· Validation Rules: Ensure data formats (like Date) are converted correctly.
· Testing: Work with QA to validate API integration and data consistency.
· Documentation: Maintain API integration document with endpoints, fields, formats, and transformations.
Page 32 of 32

image3.emf
Customer BankServer PaymentController UI TansactionDB

Validate Payment Details

Verify Credentials

Payment Denied

Display Payment Success

Notify Payment Denied

Show Error

Initiate Payment

Payment Successfull

Payment Approved

Transaction Recorded

Show Denial Message

Submit Payment Details

Record Transaction

Customer

BankServer PaymentController

UI TansactionDB

oleObject2.bin
Customer

Sequence

BankServer

PaymentController

UI

TansactionDB

Initiate Payment

Submit Payment Details

Validate Payment Details

Show Error

Verify Credentials

Payment Denied

Notify Payment Denied

Payment Approved

Transaction Recorded

Payment Successfull

Display Payment Success

Show Denial Message

Record Transaction

Customer

BankServer

PaymentController

UI

TansactionDB

image1.emf
System

customer

payment

*

*

payment gateway

*

*

card

cash wallet

netbanking

oleObject1.bin
System

customer

Use Case

payment

*

*

payment gateway

*

*

card

cash

wallet

netbanking

image2.jpeg
Customer

Customer ID Customer Name | Customer Contact | Customer Address | Customer Address
v
Payment
Payment date Payment ID Amount Payment status
v
Net-banking
Authorization Fund Transfer Transaction History Manage Funds
v
Transactions
Transactions Recipient Amount Transfer Authorization

