Case Study: A customer can make a payment either by Card or by Wallet or by Cash or by Net banking.

Question 1: Draw a Use Case Diagram
[image: C:\Users\venkatesh.d\Desktop\Capstone\USE CASE for Payment.png]

Question 2: Derive Boundary Classes, Controller classes, Entity Classes.
Boundary Class: Represents the interface or interaction point between the system and its external actors like customer.
· PaymentPage			UI for the customer to select payment method
· CardPaymentForm		Form to enter card details
· WalletPaymentScreen	Screen to choose and authenticate wallet
· CashPaymentInfo		Shows instructions for cash payments
· NetBankingForm		Form to log in to bank and authenticate
Controller Class: Controller classes handle user input, manage flow and coordinate between boundary and entity classes. it's the "controller" that manages the flow of actions within the use case.
· PaymentController		Main controller to handle payment processing logic
· CardPaymentController	Handles card payment flow
· WalletPaymentController	Manages wallet integration and validation
· CashPaymentController	Confirms and logs cash payment requests
· NetBankingController		Manages bank authentication and fund transfer
Entity Classes: Represents a business logic or object within the system that holds and updates data.
· Payment	Superclass with common payment attributes (amount, date, status)
· Card		Stores card details (card number, expiry, CVV)
· Wallet		Stores wallet ID, balance info
· BankAccount	Stores bank credentials, account number, IFSC
· Customer	Represents the customer (ID, name, contact info)
· Transaction	Stores transaction ID, timestamp, result

Question 3: Place these classes on a three tier Architecture.
Presentation Tier (UI Layer)
Handles user interaction and displays data. Corresponds to Boundary Classes.
· PaymentPage
· CardPaymentForm
· WalletPaymentScreen
· CashPaymentInfo
· NetBankingForm
Business Logic Tier (Application Layer)
Contains application-specific logic. Corresponds to Controller Classes.
· PaymentController
· CardPaymentController
· WalletPaymentController
· CashPaymentController
· NetBankingController
Data Tier (Persistence Layer)
Manages access to the database or other storage systems. Corresponds to Entity Classes.
· Payment
· Card
· Wallet
· BankAccount
· Customer
· Transaction

Question 4: Explain Domain Model for Customer making payment through Net Banking.
A Domain Model is a conceptual representation of real-world entities, their attributes, and relationships in a particular domain (subject area). It focuses on capturing the business logic and key concepts relevant to the system without involving technical details like databases or UI. It helps to:
· Understand what objects exist in your problem space.
· Define how they are related to each other.
· Prepare the ground for design, database structure and development.
In this case, the focus is on how a Customer makes a Payment using the Net Banking payment method.
Key Entities (Classes):
	Entity
	Attributes
	Relationships

	Customer
	customerId, name, email, mobileNumber
	Can place multiple Orders.

	Payment
	paymentId, paymentDate, amount, paymentStatus
	Associated with one Payment Method.

	NetBanking
	authentication, fundtransfer, transactionHistory
	Is one type of Payment Method.

	Bank
	bankId, bankName, IFSC
	NetBanking uses a Bank.

	Transaction
	transactionId, timeStamp, status
	Confirmation of the payment.

Domain Model Class Diagram.
[image: C:\Users\venkatesh.d\Desktop\Capstone\Domain Model.png]
Question 5: Draw a sequence diagram for payment done by Customer Net Banking
A sequence diagram is an interaction diagram that visually represents the sequence of messages exchanged between objects in a system to execute a scenario, illustrating the dynamic behaviour of a system.

Question 6: Explain Conceptual Model for this Case
[bookmark: _GoBack]A Conceptual Model is a high-level, abstract representation of the system that captures the main concepts, relationships and rules from the real-world domain, without considering technical implementation.
It’s typically used during early stages of system design to help business stakeholders, analysts and developers understand the problem space clearly
Conceptual Model for: Customer Making Payment via Net Banking
This model explains the core business concepts and how they relate, from a domain expert's perspective — focusing on what the system should do, not how it will be done.
Key Concepts (Classes/Entities):
· Customer - The user who initiates a payment transaction
· Payment - Represents a request to pay a specific amount through a chosen method
· NetBankingAccount - Bank account used to complete the payment
· Bank - Financial institution that verifies and processes the payment
· Transaction - Record of the result of the payment process, including success or failure status
Relationships between concepts:
· A Customer can initiate multiple Payments
· Each Payment is made using one NetBankingAccount
· A NetBankingAccount is associated with a Bank
· A Transaction is generated for every Payment
Business Rules in the Model:
· A customer must have internet banking credentials to initiate payment via Net Banking.
· Only valid, active bank accounts can be used.
· Transactions are recorded only after successful verification by the bank.
· One payment creates one corresponding transaction.
Conceptual Flow Description:
· The Customer selects Net Banking as the payment method.
· Enters credentials associated with a NetBankingAccount.
· The system sends the information to the corresponding Bank for verification.
· If successful, a Payment is confirmed.
· A Transaction record is created and linked to that payment
Question 7: What is MVC architecture? Explain MVC rules to derive classes from use case diagram and guidelines to place classes in 3-tier architecture
MVC stands for Model-View-Controller — it's a software design pattern that separates an application into three interconnected components:
· Model - Represents data and business logic
· View - Handles the display/UI
· Controller - Handles input, processes it, updates model/view
Purpose of MVC:
· Separation of concerns
· Easier to maintain and extend
· Allows multiple views of the same data
· Improves testability and modularity.
MVC Rules to Derive Classes from a Use Case Diagram:
When you're working from a Use Case Diagram and moving toward classes, you can apply these principles:
	Use Case Element
	Corresponding Class Type
	Purpose

	Actors
	Boundary Classes (View Layer)
	Interfaces between users and system

	Use Cases / Flow Logic
	Controller Classes
	Orchestrates the process & logic

	Conceptual Objects / Entities
	Entity Classes (Model Layer)
	Holds data & business logic

Example: For the use case "Customer makes payment via Net Banking"
	From Use Case Diagram
	Derived Class Type
	Example Class

	Customer (Actor)
	Boundary Class
	PaymentPage, NetBankingForm

	Make Payment (Use Case)
	Controller Class
	PaymentController, NetBankingController

	Payment, Bank, Transaction
	Entity Class
	Payment, Bank, Transaction

Guidelines to Place Classes in 3-Tier Architecture:
After identifying classes, you map them to the 3-tier structure like this:
	Tier
	Typical Classes
	Responsibilities

	Presentation Layer
	Boundary Classes (UI)
	Interacts with users, handles input/output

	Business Logic Layer
	Controller Classes
	Contains core logic, decision making

	Data Layer
	Entity Classes
	Data storage, persistence, business rules

Example:
	Class
	Placed In Tier

	PaymentPage / NetBankingForm
	Presentation Tier (UI)

	PaymentController / NetBankingController
	Business Logic Tier (Controller)

	Payment, Transaction, BankAccount
	Data Tier (Entity)

Question 8: Explain BA contributions in project (Waterfall Model – all Stages)
Waterfall Model is a linear and sequential software development approach where each stage must be completed before moving to the next.
	Stage
	BA Role & Contribution

	Requirement Gathering & Analysis
	- Elicit detailed requirements from stakeholders.
- Conduct interviews, workshops, and document analysis.
- Create BRD (Business Requirement Document) and Use Case Diagrams.
- Ensure clarity, completeness, and correctness of business needs.

	System Design
	 - Collaborate with architects and designers to ensure requirements are accurately translated.
- Validate logical data models, process flows, and UML diagrams.
- Support mapping of business rules to design decisions.

	Implementation (Development)
	- Clarify requirements and address queries from developers.
- Assist in refining user stories or specifications.
- Validate whether the code is adhering to business logic during development reviews.

	Testing
	- Help QA team create Test Cases based on requirements.
- Perform Requirement Traceability Matrix (RTM) to ensure full coverage.
- Participate in User Acceptance Testing (UAT) preparation and execution.

	Deployment
	- Validate deployed solution against business goals.
- Assist in Go-Live checklists and coordinate feedback from end-users.
- Support change management and user training documentation.

	Maintenance
	- Collect user feedback post-deployment.
- Analyse change requests and document new enhancements.
- Support bug triage, root cause analysis, and communicate fixes back to business.

Question 9: What is conflict management? Explain using Thomas – Kilmann technique
Conflict Management is the process of identifying and handling conflicts fairly, efficiently and sensibly in a way that prevents escalation and leads to productive outcomes.
In any project — especially involving multiple stakeholders, departments, or teams — conflicts over ideas, resources, timelines, or priorities are natural. A Business Analyst, Project Manager, or Team Lead needs strong conflict management skills to ensure collaboration and smooth project execution.
Thomas-Kilmann Conflict Management Model
The Thomas-Kilmann Conflict Mode Instrument (TKI) is a well-known framework for understanding how people handle conflict.
It defines conflict-handling styles along two dimensions
· Assertiveness - The extent to which you try to satisfy your own concerns.
· Cooperativeness - The extent to which you try to satisfy others’ concerns.
From this, five conflict-handling styles are derived:
	Style
	Assertiveness
	Cooperativeness
	When to Use

	Competing
	High
	Low
	Quick decisions, when you’re sure you’re right.

	Collaborating
	High
	High
	When you want win-win solutions, shared goals.

	Compromising
	Medium
	Medium
	Temporary solutions, both sides give and take.

	Avoiding
	Low
	Low
	When the issue is trivial or emotions are high.

	Accommodating
	Low
	High
	When the relationship matters more than the issue.

Example:
Situation: Two developers disagree on which design pattern to use for payment module logic.
· If the BA wants to ensure the fastest delivery with one person’s idea, they may use Competing.
· If the BA wants both developers to work out a design that blends both views, they use Collaborating.
· If the deadline is near and the choice is not critical, they could suggest Compromising.
· If the disagreement is minor and can be deferred, Avoiding is used.
· If maintaining team harmony is more important than this one technical choice, the BA might suggest Accommodating.
Question 10: List down the reasons for project failure
Top Reasons for Project Failure
	Reason
	Description

	Unclear Requirements
	Poorly defined, incomplete or changing requirements.

	Lack of Stakeholder Involvement
	Key users or decision-makers are not actively engaged.

	Unrealistic Planning
	Deadlines, budgets or resources are underestimated.

	Scope Creep
	Continuous addition of new features without proper control.

	Poor Communication
	Misunderstandings or gaps between team, stakeholders, or clients.

	Inadequate Risk Management
	Failing to identify and mitigate risks early.

	Weak Project Management
	Poor planning, tracking, and leadership by the PM.

	Technical Challenges
	Overcomplicated solutions or reliance on unstable technologies.

	Budget Overrun
	Costs exceed estimates due to poor planning or scope changes.

	Resource Constraints
	Shortage of skilled people or lack of critical tools.

	Lack of Prioritization
	Teams work on low-value features while neglecting critical tasks.

	Inadequate Testing
	Software is deployed without thorough validation or UAT.

	Poor Change Management
	Teams fail to adapt when requirements or environments evolve.

	Lack of Executive Support
	No visible or active support from sponsors or management.

	User Resistance to Adoption
	Solution is delivered but users reject or avoid it.

Question 11: List the Challenges faced in projects for BA
	Challenge
	 Description

	Unclear or Evolving Requirements
	Stakeholders often don’t fully know what they want at the start or requirements change mid-project.

	Stakeholder Conflicts
	Different stakeholders have conflicting expectations and priorities.

	Poor Communication Channels
	Misunderstandings or delays due to unclear or broken communication flow.

	Incomplete Business Knowledge
	BA may lack domain knowledge, especially in new industries or technical contexts.

	Tight Deadlines / Time Pressure
	Business pressure to deliver fast often affects quality or thoroughness of analysis.

	Scope Creep
	Continuous addition of new features beyond original plan, leading to project overrun.

	Technical Complexity
	BA must bridge the gap between technical teams and non-technical stakeholders, which is challenging when solutions are highly technical.

	Organizational Resistance to Change
	Employees and stakeholders often resist new systems or process changes.

	Budget Constraints
	Solution expectations may exceed what’s affordable for the project.

	Lack of Stakeholder Availability
	Stakeholders are too busy or disengaged, delaying requirement gathering and validation.

	Changing Business Environment
	Business goals or market conditions change mid-project, forcing requirement revisions.

	Misinterpretation of Requirements
	Developers or testers misunderstand written or verbal requirements, causing rework.

	Balancing Business Needs vs. Technical Limitations
	Sometimes the business wants something that isn’t technically feasible (or affordable), and the BA must manage expectations.

Question 12: Write about Document Naming Standards
Document Naming Standards are a set of rules and conventions that help ensure files are consistently named, so they are easy to:
· Identify, Retrieve, Sort, Share and Maintain.
This is especially important in collaborative environments like projects, software development, audits and knowledge management.
Why Are Naming Standards Important?
· Improves Search ability: Easier to locate the right document.
· Reduces Duplication: Avoids creating multiple versions of the same document.
· Provides Context: Clear names tell the user what’s inside the file.
· Simplifies Version Control: Makes tracking document revisions easy.
· Promotes Collaboration: Everyone can follow a unified structure.
Common Document Naming Format:
[ProjectCode]_[DocumentType]_[Subject/Title]_[Version]_[Date/Author]
Example: SCRUMFD_BRD_PaymentModule_V1.0_20250411_JSmith.docx
Best Practices for Document Naming:
· Be Clear & Descriptive — the name should reflect the document’s purpose.
· Avoid Special Characters — use underscores _ or dashes - instead of / \ : * ? " < > |.
· Use Date Format YYYYMMDD — for chronological sorting.
· Include Version Control — e.g., V1.0, V2.1.
· Use Standard Abbreviations — e.g., BRD (Business Requirements Document), SRS (Software Requirements Specification), UAT (User Acceptance Testing).
· Keep It Consistent — apply the same rule across teams, folders, and projects.

Question 13: What are the Do’s and Don’ts of a Business Analyst?
Do’s of a Business Analyst
	Do
	 Why it Matters

	Understand the Business Need
	Focus on solving the real problem, not just writing requirements.

	Communicate Clearly
	Use precise, unambiguous language in all documents and meetings.

	Listen Actively
	Give stakeholders space to express their needs without assumptions.

	Ask Questions
	Clarify uncertainties early to avoid misunderstandings later.

	Use Visual Models
	Diagrams (UML, flowcharts, mockups) help explain complex ideas.

	Prioritize Requirements
	Help the team focus on what's valuable, feasible, and time-sensitive.

	Maintain Documentation
	Keep BRDs, SRS, Use Cases, and Change Logs up-to-date.

	Facilitate Collaboration
	Be the bridge between business users and technical teams.

	Adapt to Change
	Requirements often evolve — stay flexible and responsive.

	Support Testing and UAT
	Help validate whether the solution meets business expectations

Don’ts of a Business Analyst
	Don’t
	 Why it's a Mistake

	Assume Requirements are Obvious
	Always verify and document, even if something seems "obvious."

	Ignore Stakeholder Conflicts
	Misaligned stakeholder expectations cause project failure.

	Overcomplicate Solutions
	Simplicity saves time, cost, and confusion.

	Jump to Solutions Too Soon
	Understand the problem fully before proposing solutions.

	Use Technical Jargon with Business Users
	Keep language accessible to your audience.

	Neglect Documentation Updates
	Outdated documents lead to rework and errors.

	Be Rigid with Change
	Projects evolve — being inflexible can block progress.

	Work in Isolation
	Frequent communication avoids misunderstandings.

	Ignore Business Constraints
	Requirements must respect time, budget, and resource limits.

	Forget to Validate Requirements
	Unverified requirements can lead to delivering the wrong solution.

Question 14: Write the difference between packages and sub-systems
	Package
	 Sub-System

	Grouping of related code classes to simplify organization. (Think of it like folders on your computer.)
	A complete functional block that can stand on its own or interact with others. (Think of it like a whole "mini-application" inside a bigger application.)

	A Package is a logical grouping of related classes, interfaces, or components in software.
	A Sub-System is a self-contained, larger, independent part of a system designed to perform a specific business function.

	Scope: Small scale - groups classes for better organization and manageability.
	Scope: Large scale - can include multiple packages, modules, and interfaces.

	Purpose: Organize code, reduce complexity and improve maintainability.
	Purpose: Divide system into independent, manageable chunks - improves architecture scalability.

	Ex: com.project.payment (package for payment classes)
	Ex: Payment Processing System (sub-system for handling all payment operations).

	Contains classes, interfaces, sometimes other packages.
	Contains packages, components, classes and even other sub-systems.

	Supports modularity at the code level (usually for developers).
	Supports modularity at the architectural level (for designers, architects and BAs).

	Fine-grained.
	Coarse-grained.

	Drawn as a small folder icon (usually).
	Represented as a component with interfaces and dependencies.

Question 15: What is camel-casing and explain where it will be used
Camel-Casing is a naming convention used in programming where:
· The first word starts with a lowercase letter.
· Each subsequent word starts with an uppercase letter.
· No spaces, hyphens, or underscores are used.
Example: userName, customerPaymentInfo, totalAmount etc.
Camel-casing is widely used in software development for:
	Use Case
	 Example

	Variable Names
	orderAmount, userName

	Function / Method Names
	processPayment(), getDetails()

	Object Names
	customerData, paymentStatus

	JSON Keys
	{ "orderId": 1234 }

Camel-Case is used for?
· Improves Readability — Easy to distinguish words in a single identifier.
· Avoids Spaces & Special Characters — Perfect for programming languages.
· Consistency — Makes code easier to maintain and understand across teams.
Camel-Casing is a standard practice in most modern programming languages for naming variables and functions, especially in: Java, JavaScript, Python, C#.

Question 16: Illustrate Development server and what are the accesses does business analyst has?
What is a Development Server?
A Development Server is an environment where software applications are built, tested, and validated before they are moved to production (live environment).
It’s mainly used by:
· Developers (to write and test code),
· Testers (to validate features),
· Business Analysts (to verify business logic implementation),
· And sometimes Product Owners (for review).
What Access Does a Business Analyst (BA) Have on a Development Server?
	Type of Access
	 Purpose

	Read/Review Access
	YES - To review how the application looks & behaves against documented business requirements.

	Test Data Input Access
	YES - To enter dummy data and simulate user/business scenarios for validation.

	Requirement Verification
	YES - Confirm that features are built as per Business Requirement Document (BRD) or Use Cases.

	Code-Level Access
	NO - that’s the developer's responsibility.

	Bug Logging & Reporting
	YES - If BA finds mismatches between business rules and implementation, they log issues (usually in tools like JIRA, Bugzilla).

	Demo/Walkthrough Access
	YES - Sometimes BAs use the Dev server to conduct internal demos for stakeholders or UAT preparation.

	Deployment Control
	NO - BAs usually do not handle code deployments — DevOps or developers manage that.

Why is BA Access to the Development Server Important?
· Early Validation: BAs can spot requirement gaps early in the Dev stage.
· Effective Communication: If something isn’t implemented as intended, the BA can immediately inform developers.
· Preparation for Testing: BAs often support testers by helping clarify acceptance criteria on the actual build.
· Demo Readiness: BAs ensure the application flows make sense before stakeholder presentations.

Question 17: What is Data Mapping?
Data Mapping is the process of matching fields from one data source to another - ensuring data is correctly transferred, transformed, and used between systems, databases, or formats.
In short, Data Mapping defines how data in one place corresponds to data in another place.
Why is Data Mapping Important?
· When you move data from one system to another.
· When you integrate two applications (like CRM to ERP).
· When you perform data migration or data transformation.
· When generating reports that pull data from multiple sources.
Example:
	Source System (CRM)
	Target System (ERP)

	FirstName
	Customer_Name

	PhoneNumber
	Contact_Number

	EmailID
	Customer_Email

	AddressLine1 + AddressLine2
	Full_Address

Data Mapping Used for?
	Scenario
	Purpose

	Data Migration
	Moving data between old and new systems.

	System Integration
	Connecting different applications.

	ETL Process
	Extract, Transform, Load pipelines in data warehousing.

	Reporting / Analytics
	Combining data from multiple sources for insights.

Benefits of Data Mapping:
· Ensures data consistency.
· Reduces human error in migrations or integrations.
· Simplifies complex data transfers.
· Enables automated data transformations.

Question 18: What is API. Explain how you would use API integration in the case of your application Date format is dd-mm-yyyy and it is accepting some data from Other Application from US whose Date Format is mm-dd-yyyy?
API stands for Application Programming Interface. It’s like a messenger or bridge that allows two software applications to talk to each other, exchange data and perform operations without needing to know the internal details of each system.
Simply Example: Think of an API as a waiter in a restaurant:
You (the client) place an order → the waiter (API) takes your request → the kitchen (server) prepares your food → the waiter brings it back to you.
In Software Terms:
When two systems (your application & another application) need to exchange data:
· Your app sends a request to the other app via an API.
· The API returns data or a result back.
Given Case: Date Format Problem
Your Application's Date Format: dd-mm-yyyy
US Application's Date Format: mm-dd-yyyy
If you integrate with their API and directly accept their date values without handling the difference, it will cause:
· Invalid data.
· Date parsing errors.
· Wrong report outputs.
How to Handle This via API Integration:
Step 1: Receive Data via API, with US Format (MM-DD-YYYY)
Step 2: Apply Date Conversion Logic
When your application receives the data, you should:
· Parse the incoming date.
· Detect the format (mm-dd-yyyy from US).
· Convert it to your required format (dd-mm-yyyy).
Step 3: Store or Display Converted Date
Now your application uses the correct date format for:
· Storing in your database.
· Displaying to users.
· Passing to other internal modules.

image1.png
|

Customer

CASH Payment ||

")\ Payment /‘

AN

Nake Payment

Choose paymet
Option

A

\ / WALLET

N

J

Server

image2.png
Customer Payments Transaction

PK | Customerd [——— PK | Paymentid PK | Transactionid
Name Amount TmeStamp
Phone No Date —H | staws
Email Status ReferenceNumber
Bank NetBankingService

PK | Bankid
BankName Authentication
Branch FundTransfer
IfscCode Transactionkistory

image3.png
%

Customer T

Login

Payments

Netbanking

Bank

Transaction

authentication()

selectpayment)

makePayment)

verityAccount)

ransactonConfirmation()

processPayment)

