Contents
OOA concepts ,	2
UML concepts,	3
Use case:	5
Activity diagram:	5
Data flow diagram	6
Data mapping	7
data integration	7
reporting tools	7
project management tool,	8
SQL ,	8
balsamic, -	9
MS Visio	9
Axure RP,	10
Difference between Balsamic, Axure RP and Ms VIsio	11
DB design,	12
ER diagram,	13
domain model,	13
conceptual model,	14
Difference betwern ER diag, domain, conceptual	15
Modelling tools,	16
prototyping tools,	16
wireframes,	16
mock-ups and prototypes,	17
MVC architecture,	17
3 -tier architecture,	18
Difference between MVC, 3tier, EBC	18
entity class, boundary class and controller class,	19
packages,	19
subsystems.	19

[bookmark: _Toc204716438]OOA concepts ,
Object-Oriented Analysis (OOA) is the initial stage in software development that focuses on understanding and modeling a system's requirements by identifying objects and their interactions, without getting into implementation details.
Key concepts in OOA are:
1. Object:
An object is a fundamental entity in OOA, representing a specific instance of a class. It has identity (a unique identifier), state (its attributes and their values), and behavior (the operations it can perform).
Objects represent real-world entities or concepts and encapsulate their behavior and
state
Example (Mumbai Airport LMS): Client, SalesRep, Lead, MediaSite, Proposal.
2. Class:
A class acts as a blueprint or template for creating objects. It defines the common attributes and operations that objects of that class will possess.
Objects are instances of classes.

3. Attribute:
Attributes are the characteristics or properties of an object, defining its state. For example, a "Car" class might have attributes like "color", "model", and "year".

4. Operation:
Operations are the actions that an object can perform. They are also referred to as methods or services. For example, a "Car" object might have operations like "accelerate", "brake", and "turn".
5. Encapsulation:
Encapsulation is the bundling of data (attributes) and methods that operate on the data within a single unit (object). It hides the internal details of the object and allows controlled access to the object's functionality.

6. Abstraction:
Focusing on essential characteristics while hiding unnecessary details.

7. Inheritance:
Inheritance is a mechanism that allows a new class (subclass or derived class) to inherit the properties and behaviors of an existing class (base class or superclass). It promotes code reuse and supports the concept of specialization.

8. Polymorphism:
Polymorphism allows objects of different types to be treated as objects of a common type. It enables a single interface to represent different types of objects, and it can be achieved through method overloading and method overriding.

OOA relationship:
1. Association:
· Represents a general connection between objects, indicating that one object can cause another to perform an action.
· Can be unidirectional (one object initiates the action) or bidirectional (objects can interact with each other).
· For example, a "Student" object might be associated with a "Course" object, indicating a student can enroll in a course.
2. Aggregation:
· A "has-a" relationship, where one object contains or is composed of other objects.
· Represents a whole-part relationship, but the part can exist independently of the whole.
· For instance, a "Car" object might aggregate "Wheels" and an "Engine".
3. Composition:
· A stronger form of aggregation, where the part cannot exist without the whole.
· The lifetime of the part is dependent on the lifetime of the whole.
· For example, a "House" object might be composed of "Rooms", and when the house is destroyed, the rooms cease to exist.
4. Generalization (Inheritance):
· Represents an "is-a-kind-of" relationship, where a subclass inherits properties and behaviors from a superclass.
· Defines a hierarchy of classes, promoting code reuse and reducing redundancy.
· For example, a "Dog" object might inherit from a "Mammal" object, inheriting traits like having hair and giving birth to live young.
5. Dependency:
· A weaker form of association, where one object relies on another for specific functionality or information.
· It doesn't imply ownership or containment, but rather a usage relationship.
· For example, a "PrintingService" object might depend on a "Document" object to print it.

[bookmark: _Toc204716439]UML concepts,
UML:
Unified Modeling Language (UML) is a standardized modeling language that enables business analysts, developers, and stakeholders to visualize, specify, construct, and document the components of a software system.

Why it's used:
· Improved communication: UML diagrams help teams communicate and understand the design of a system more effectively.
· Reduced complexity: By visualizing complex systems, UML helps developers break down problems into manageable pieces.
· Early error detection: UML diagrams can help identify potential issues in the design before coding begins, saving time and resources.
· Better documentation: UML diagrams serve as living documentation for the system, making it easier to understand and maintain.
[image:]

· Structural diagram
a. Class Diagram
· Represents classes, their attributes, methods, and relationships.
· Defines system structure and object relationships.
b. Component Diagram
· Shows how the system is divided into modules/components and their dependencies. Useful during system architecture planning

· Behavioural diagram
· Use Case Diagram: Represents the interactions between actors and the system.
· Activity Diagram: Shows the flow of activities and decisions within a system.
· State Machine Diagram: Illustrates the different states of an object and the events that trigger transitions between states.
· Sequence Diagram: Describes the order of interaction between system objects over time.

[bookmark: _Toc204716440]Use case:
· A use case diagram is a visual representation of a system's functionality, showing how users (actors) interact with the system to achieve specific goals. It outlines the different ways a user can utilize the system without detailing the internal workings of the system itself.
Key Components of a Use Case Diagram:
· System: The box representing the system being modeled.
· Actors: External entities (users, other systems) that interact with the system.
· Use Cases: Actions or tasks that actors can perform within the system, represented by ovals.
· Relationships: Lines connecting actors and use cases, showing how they interact.
· Association: it represents a communication or interaction between an actor and a use case
· Extends: Indicates that an ("Invalid Password") use case may include (subject to specified in the extension) the behavior specified by base use case ("Login Account".)
· Include: A use case includes the functionality described in another use case as a part of its business process flow.
· Generalization: A generalization relationship is a parent-child relationship between use cases. The child use case is an enhancement of the parent use case.
Link: https://www.geeksforgeeks.org/system-design/use-case-diagram/

[bookmark: _Toc204716441]Activity diagram:
An activity diagram is a type of Unified Modeling Language (UML) diagram that visually represents the flow of actions or processes within a system. It is essentially a flowchart that illustrates the sequence of activities and decisions within a system or a specific process.
Key Components:
· Activity Nodes: These represent individual actions or steps within a process.
· Activity Flow: These are lines connecting activity nodes, showing the flow of control between actions.
· Initial Node: Indicates the starting point of the activity diagram.
· Final Node: Indicates the end of the activity diagram.
· Decision Node: Represents a point where a decision is made, leading to different paths in the process.
· Merge Node: Used to combine multiple paths into a single flow.
· Fork Node: Fork nodes are used to support concurrent activities. When we use a fork node when both the activities get executed concurrently i.e. no decision is made before splitting the activity into two parts.
· Joint Node: Join nodes are used to support concurrent activities converging into one. For join notations we have two or more incoming edges and one outgoing edge.
· Swimlanes (Partitions): We use Swimlanes for grouping related activities in one column. Swimlanes group related activities into one column or one row.

LInK: https://www.geeksforgeeks.org/system-design/unified-modeling-language-uml-activity-diagrams/

[bookmark: _Toc204716442]Data flow diagram
A Data Flow Diagram (DFD) is a graphical representation that shows how data flows within a system. It illustrates the flow of information between processes, data stores, external entities, and data itself.
Key Components of a Data Flow Diagram:
· External Entities: Represent sources or destinations of data outside the system, like users, organizations, or other systems.
· Processes: Represent actions or transformations that data undergoes within the system.
· Data Stores: Represent where data is stored (e.g., databases, files).
· Data Flows: Represent the movement of data between entities, processes, and data stores.
Types of Data Flow Diagrams:
· Logical DFDs: It mainly focuses on the system process. It illustrates how data flows in the system. Logical Data Flow Diagram (DFD) mainly focuses on high level processes and data flow without diving deep into technical implementation details.
· Physical DFDs: Physical data flow diagram shows how the data flow is actually implemented in the system. In the Physical Data Flow Diagram (DFD), we include additional details such as data storage, data transmission, and specific technology or system components. Physical DFDs are more detailed and provide a closer look at the actual implementation of the system, including the hardware, software, and physical aspects of data processing.
Levels of DFDs:
· Context Diagram (Level 0): Provides a high-level overview of the entire system as a single process, showing its interactions with external entities.
· Level 1 DFD: Breaks down the system into its main sub-processes, providing a more detailed view.
· Higher-level DFDs: Can be created to further break down processes into more granular steps.
Tools: Lucid Charts, Draw.io.

[bookmark: _Toc204716443]Data mapping
Data mapping is the process of defining the relationship between data elements from different sources, essentially matching corresponding fields to facilitate data integration, migration, or transformation.
Data mapping is crucial for tasks like integrating data from different databases, migrating data to a new system, or transforming data into a format suitable for analysis.
Visual Representation: Data mapping often involves creating a visual representation (like a diagram or documentation) that outlines these connections, making it easier to understand the data flow and relationships.
Tools: Balsamiq, power bi,

[bookmark: _Toc204716444]data integration
Data Integration is the process of combining data from multiple sources into a unified view or central system. This ensures that all users—whether in operations, sales, or management—work with consistent, accurate, and up-to-date information.
Key aspects of data integration:
· Combining disparate data sources: Data integration brings together data from different systems, applications, and databases, which could be structured, unstructured, batch, or streaming.
· Creating a unified view: The goal is to provide a single, coherent view of the data, rather than having it scattered across various isolated systems.
· Ensuring data quality and consistency: Data integration often involves cleaning, transforming, and standardizing data to ensure accuracy and reliability.
· Enabling data-driven decision making: By providing a comprehensive and reliable view of the data, data integration empowers organizations to make better, faster, and more informed decisions.
· Facilitating data analysis and reporting: Integrated data is crucial for effective business intelligence, reporting, and advanced analytics.

[bookmark: _Toc204716445]reporting tools
Reporting tools are software applications that collect, process, and present data in a structured and meaningful way, often using visualizations like charts and graphs, to help users understand information and make data-driven decisions
Tools: Power Bi, Tableau,
Best Practices for Reporting
· Define Audience: Internal stakeholders vs. external clients.
· Keep It Visual: Use charts and KPIs, avoid text-heavy reports.
· Automate Refresh: Link reports to live data where possible.
· Validate Data: Ensure accuracy in totals and filters.
· Maintain Confidentiality: Mask sensitive client or pricing data as needed.

[bookmark: _Toc204716446]project management tool,
A Project Management Tool is a software application used to plan, execute, monitor, and close projects efficiently. It helps project managers, business analysts, and team members collaborate on tasks, manage timelines, allocate resources, and ensure that project goals are met within scope, time, and budget.
Key Features and Benefits:
· Task Management: Allows for creating, assigning, tracking, and prioritizing tasks, ensuring everyone knows their responsibilities and deadlines.
· Scheduling and Calendar Integration: Helps manage project timelines, deadlines, and meetings, keeping projects on track.
· Collaboration and Communication: Provides features for team members to communicate, share files, and collaborate on tasks.
· Resource Allocation: Helps manage team member availability, workload, and resource allocation to optimize project efficiency.
· Time Tracking: Allows teams to record time spent on tasks, facilitating accurate time management and billing.
· Reporting and Analytics: Provides insights into project progress, resource utilization, and overall team performance.
· Risk Management: Helps identify and manage potential risks, ensuring projects stay on course.
· Integration Capabilities: Some tools integrate with other business systems, streamlining workflows and enhancing productivity.
· Customization and Scalability: Offers customization options and scalability to adapt to the unique needs of different teams and projects.
Tools: Jira, Ms Project

[bookmark: _Toc204716448]balsamic, -
Requirement gathering + Deign phase
In projects using the Waterfall model, especially during the Design Phase, Balsamiq allows the Business Analyst to:
· Visualize system screens (e.g., dashboards, forms)
· Simulate user interactions
· Clarify UI-related requirements
· Gather early feedback from stakeholders
Q1. What is Balsamiq and where do we use it?
A: Balsamiq is a low-fidelity wireframing tool used to create rough sketches of software screens. In a Waterfall project, it is used in the Design phase to visualize screen layout and interactions.
Q2. Why is Balsamiq important in Business Analysis?
A: It helps bridge the communication gap between technical and non-technical stakeholders by providing a clear visual representation of UI before development begins.
Q3. How is Balsamiq different from tools like Figma or Axure?
A: Balsamiq is used for early-stage, quick wireframes, while Figma and Axure are higher-fidelity tools often used for UI design or more detailed prototyping.
Q4. Can Balsamiq be used in Agile projects?
A: Yes, but it’s more commonly used in Waterfall or hybrid models where wireframes are finalized early and handed off.

[bookmark: _Toc204716449]MS Visio,
Analysis + Design
It enables users to create a wide variety of professional diagrams, including flowcharts, organizational charts, network diagrams, data flow diagrams, UML diagrams, and more.
· Modeling Business Processes
· Creating Data Flow Diagrams (DFDs)
· Drawing Use Case diagrams, Activity diagrams, or Sequence diagrams (from UML)
· Designing System Architectures
· Representing Entity-Relationship Diagrams (ERDs)
· Visualizing Organizational Hierarchies
· Showing Process Flows (SOPs, workflows)
Q1. What is MS Visio and how is it used by a Business Analyst?
A: MS Visio is a diagramming tool used by BAs to create visual models like process flows, DFDs, use case diagrams, and ERDs. It helps document and communicate system design and requirements clearly.
Q2. What are some diagrams you created in Visio for your Waterfall project?
A: I created Data Flow Diagrams to show lead-to-proposal flow, ER diagrams for database structure, and Use Case Diagrams to visualize system-user interactions.
Q3. How is Visio different from Balsamiq?
A: Visio is used for technical and process modeling (DFDs, ERDs, UML), while Balsamiq is used to mock up UI/UX wireframes.
Q4. Can MS Visio be used in Agile projects?
A: Yes, although it's more prominent in Waterfall. In Agile, simpler or more collaborative tools like Lucidchart or Miro are often used, but Visio is still helpful for modeling complex systems.

[bookmark: _Toc204716450]Axure RP,
Axure RP (Rapid Prototyping) is a wireframing and prototyping tool used to design and visualize interactive, high-fidelity user interfaces and simulate real user flows without any coding.
· Create detailed wireframes with real-time user flow simulations
· Build prototypes for UI/UX review without involving developers
· Validate and clarify functional requirements early in the SDLC
· Save time and cost by catching UI/UX issues before development begins
Q1. What is Axure RP and how is it used in Business Analysis?
A: Axure RP is a prototyping tool used to create interactive wireframes and simulate user flows. BAs use it to visualize requirements, validate UI behavior, and communicate system functionality with stakeholders and developers.
Q2. How did you use Axure RP in your Waterfall project?
A: I used Axure RP to create a working prototype of the Lead Submission Form and Media Proposal Preview in the LMS project. This helped clarify requirements and got early approval from stakeholders.
Q3. What are the benefits of Axure RP over Balsamiq?
A: Unlike Balsamiq, Axure offers interactivity (clicks, logic, conditional flows) and a more realistic preview of how the system will behave. It's ideal for functional validation.
Q4. Can Axure RP be used in Agile projects?
A: Yes. In Agile, it helps quickly demonstrate evolving features as interactive sprints progress, allowing Product Owners and BAs to validate MVPs and gather early feedback.

[bookmark: _Toc204716451]Difference between Balsamic, Axure RP and Ms VIsio
	Feature/Aspect
	Balsamiq
	Axure RP
	MS Visio

	Primary Use
	Wireframes and UI sketches
	Interactive prototypes with functionality
	Flowcharts, UML, ERD, and architecture diagrams

	Fidelity
	Low (hand-drawn style)
	High (realistic and clickable UIs)
	Medium to high (technical but static diagrams)

	Interactivity
	❌ No interactivity
	✅ Clickable mockups, dynamic panels
	❌ Mostly static diagrams

	Logic & Conditions
	❌ None
	✅ Yes (variables, conditions, page transitions)
	❌ Not supported

	User Testing Simulation
	❌ Not suitable
	✅ Ideal for simulating user flows
	❌ Not suitable

	Collaboration
	✅ Good (cloud sharing available)
	✅ Very good (Axure Cloud or shared URLs)
	✅ Via Microsoft 365/SharePoint

	Learning Curve
	Very Easy
	Medium to Hard (more powerful features)
	Medium

	Best For
	Quick brainstorming, stakeholder review
	Validating functionality before development
	Process modeling, system architecture diagrams

	Export Options
	PNG, PDF
	HTML, PDF, Word
	PNG, PDF, Visio file

	Agile Suitability
	✅ Great for early sprint planning
	✅ Ideal for MVP simulation and sprint demos
	✅ Used for backlog planning and architecture

	Waterfall Suitability
	✅ For early requirement sketches
	✅ For formal UI validation and sign-offs
	✅ For detailed SDLC documentation

[bookmark: _Toc204716452]DB design,
Database design is the process of planning and structuring how data will be stored, organized, and accessed within a database. It ensures that data is logically stored, avoids redundancy, and supports all business and system requirements efficiently.
· Understand business data requirements.
· Collaborate with DB architects/DBAs to model the data.
· Validate the structure using ER diagrams or data models.
Phases of Database Design
1. Requirements Analysis
· Understand what data needs to be stored.
· Identify entities, attributes, and relationships.
· Example: In the LMS project, identify entities like Client, Campaign, Media Type, Zone, Proposal.
2. Conceptual Design
· Use high-level modelling (usually ER diagrams) to represent business concepts.
· No focus on technical details like table names or data types yet.
· Focus: What data and how they relate.
3. Logical Design
· Translate ER diagrams into relational models (tables, fields, primary keys, foreign keys).
· Normalize data to reduce duplication.
· Example: Create tables like Client, Proposal, Campaign, MediaZone, etc.
4. Physical Design
· Add data types, constraints, indexes, and performance optimization.
· Platform-specific (Oracle, MySQL, SQL Server).
· BA role: Ensure that business rules are preserved (e.g., date ranges for campaigns, zone-wise media capacity).
Key elements:
	Element
	Description

	Entity
	Represents a real-world object (e.g., Client, Campaign).

	Attribute
	Properties of an entity (e.g., Client Name, Start Date).

	Primary Key
	Unique identifier for a record (e.g., Proposal_ID).

	Foreign Key
	Links between tables (e.g., Client_ID in Proposal Table).

	Relationship
	Connection between two entities (e.g., One client can have many proposals).

	Normalization
	Breaking down data to reduce redundancy and improve consistency.

Role of BA
	Activity
	BA Contribution

	Requirements gathering
	Capture data needs from stakeholders.

	Data modelling
	Collaborate with DB designers to validate data relationships.

	Validation
	Ensure the schema meets business and reporting needs.

	Communication
	Translate complex schema for non-technical stakeholders.

[bookmark: _Toc204716453]ER diagram,
An Entity-Relationship (ER) Diagram is a visual representation of data and the relationships between data objects (entities) in a system. It helps stakeholders, developers, and datfabase designers understand the system’s data structure at a high level.
Why ER Diagrams Are Important for Business Analysts
· Simplifies complex data requirements
· Helps validate business logic with stakeholders
· Forms the foundation for database design
· Acts as a blueprint during system development
Types of Relationships
· One-to-One (1:1): One client has one login credential.
· One-to-Many (1:N) One client can have many proposals.
· Many-to-Many (M:N): One proposal may contain many media types; a media type may be included in many proposals.
Tools: Lucid charts, Draw.io, Ms Visio

[bookmark: _Toc204716454]domain model,
Requirement + Design
A Domain Model is a visual and conceptual representation of real-world objects (entities), their attributes, and the relationships between them in the business context. It describes what the system is about and defines the vocabulary and structure for understanding and discussing the business domain.
It focuses on business concepts, rules, and logic—not on technical implementation like databases or interfaces.
Importance of a Domain Model for Business Analysts
· Helps capture business understanding early in the project.
· Serves as a bridge between business users and technical teams.
· Used to create a common language for all stakeholders.
· Forms the foundation for designing use cases, ER diagrams, and class models.

Q1. What is a Domain Model and how is it different from a Data Model?
A: A domain model captures real-world business objects and their logic, while a data model focuses on how those objects are stored in a database (tables, keys, types).
Q2. How did you use a Domain Model in your LMS Project?
A: We used the domain model to map all key entities like Client, Campaign, Proposal, Media, and Zone. This helped clarify relationships and identify missing business rules before preparing BRD and use cases.
Q3. Who contributes to building the Domain Model?
A: The Business Analyst typically creates the first draft, then reviews it with SMEs, developers, and QA teams.
Tools: Lucid charts, Draw.io, Ms Visio

[bookmark: _Toc204716455]conceptual model,
Requirement Analysis + System Design + Development	
It helps visualize the business environment in a platform-agnostic way. It is also called a Conceptual Data Model when used in the context of databases.
Purpose of a Conceptual Model in Business Analysis
· To communicate business structure clearly with stakeholders.
· Acts as a foundation for further modeling like Logical and Physical Data Models.
· To bridge the gap between business users and technical teams.
· Used during the Requirement Analysis phase of the Waterfall model.
Q1: What is the difference between a Domain Model and a Conceptual Model?
A: The Domain Model focuses on business objects and logic (including behavior sometimes), while the Conceptual Model focuses only on data structure (entities, attributes, relationships).
Q2: Where did you use the Conceptual Model in your LMS project?
A: We used it in the Requirements phase to define the key business entities like Client, Campaign, and Media, and to understand how they are related before moving to the Logical Data Model and BRD.
Q3: Can you explain why Conceptual Models are platform-independent?
A: Because they do not include database implementation details like data types, storage engines, or constraints. They only represent the business structure, making them suitable for all platforms.
Tools: Lucid charts, Draw.io, Ms Visio
Q1: Is the ER diagram the same as a conceptual model?
A: No. ER diagrams are technical and include keys/data types, whereas conceptual models are high-level, non-technical representations.
Q2: Which diagram would you show to a non-technical client?
A: Conceptual Model – it's easy to understand and focuses on business terms.
Q3: How is the domain model different from the conceptual model?
A: The domain model may include class behavior and operations, while the conceptual model only includes data and relationships.

[bookmark: _Toc204716456]Difference betwern ER diag, domain, conceptual
	Aspect
	ER Diagram
	Domain Model
	Conceptual Model

	Purpose
	Represents data and relationships visually
	Represents real-world objects & logic
	Represents high-level business data structure

	Focus
	Database structure
	Business concepts and relationships
	Business entities and their relationships

	Used By
	DB designers, developers
	BAs, architects, SMEs
	BAs, architects, stakeholders

	Diagram Type
	Technical
	Semi-technical
	Business-oriented

	Includes
	Entities, attributes, primary/foreign keys
	Classes, objects, behavior (in some cases)
	Entities, attributes, relationships

	Abstraction Level
	Low to medium (technical)
	Medium to high (depends on detail)
	High (non-technical)

	Behavior Included?
	❌ No
	✅ Sometimes (class methods, operations)
	❌ No

	Relationships
	Mandatory with cardinality
	Logical relationships (is-a, has-a)
	Logical high-level associations

	Data Types / Keys
	✅ Yes
	❌ No (abstracted)
	❌ No

[bookmark: _Toc204716457]Modelling tools,
Requirements gathering + System design + Development + Testing
Modelling tools are software applications that help Business Analysts, System Architects, and Developers visually represent systems, business processes, data flows, and requirements in the form of models (diagrams, charts, wireframes, etc.).
Model types:
· Use case diag: Identify actors and system interactions
· Data flow diag: Show how data flows through the system
· ER diag: Represent database structure
· Class diag: Object- orientation structure representation
· Process flow: Visualize end-to-end business processes
· Wireless: Screen layout or UI mocks ups
· Activity: Show dynamic workflows of a system
Tools: Ms Visio, Lucid chart, Balsamiq, Axure RP, Draw.io
[bookmark: _Toc204716458]prototyping tools,
Prototyping tools are digital applications that help Business Analysts and UX designers visualize and simulate the look, feel, and flow of a software application before actual development begins. These tools help create screen layouts, navigation flow, and interactions.
They are used to:
· Convert business requirements into visual user interfaces
· Help stakeholders visualize the system early in the lifecycle
· Reduce misunderstandings and mismatches in expectations
· Support feedback gathering before coding
Tools: Balsamiq, Axure Rp, Figma
[bookmark: _Toc204716459]wireframes,
A wireframe is a visual guide that outlines the basic structure and layout of a website, application, or user interface. It's a blueprint that focuses on functionality and content placement, without the visual design details like colors, typography, or imagery
—such as buttons, menus, images, and text—without focusing on design aesthetics (e.g., color or branding).
Structure and Layout: Wireframes define the placement of elements like navigation menus, buttons, images, and content sections, ensuring a clear and logical structure.
Functionality: They illustrate how users will interact with the interface, including navigation paths and potential interactions.
Types of Wireframes:
· Low-fidelity: Basic and rough mockups, often hand-drawn, focusing on the core structure.
· High-fidelity: More detailed representations, potentially including some visual elements and interactions.

[bookmark: _Toc204716460]mock-ups and prototypes,
Mockups and prototypes are both design tools used in product development, but they serve different purposes.
Mockups are static, high-fidelity visual representations of a design, showcasing its appearance and branding elements. Usually high-fidelity, meaning they closely resemble the final product. Static, meaning they don't allow for user interaction or testing functionality.
Used for gathering feedback on the visual aspects of a design, ensuring brand consistency, and communicating the design vision to stakeholders.
Prototypes are interactive models that allow for user testing and validation of functionality. Can range from low-fidelity (basic sketches) to high-fidelity (interactive simulations). Allow for user interaction, simulating how the product will work.
Used for user testing, identifying usability issues, and validating the overall user flow.

[bookmark: _Toc204716461]MVC architecture,
Requirement + Design + Development
It is a software architectural pattern that divides an application into three interconnected parts: the Model, the View, and the Controller.
Model: Represents the data and business logic of the application. It handles data storage, retrieval, and manipulation. The model interacts with the database and gives the required data back to the controller.
View: Responsible for presenting the data to the user and handling user input. It's the user interface (UI) of the application.
It is used for all the UI logic of the application. It generates a user interface for the user.
Controller: Acts as the intermediary between the Model and the View. It receives user input from the View, updates the Model, and then updates the View based on the changes in the Model.
It processes all the business logic and incoming requests, manipulates data using the Model component, and interact with the View to render the final output
Django, CherryPy,
	Component
	Responsibility

	Model
	Handles data, business logic, and rules of the application

	View
	The user interface, displays data and takes user input

	Controller
	Acts as an intermediary between Model and View; processes input and updates both

[bookmark: _Toc204716462]3 -tier architecture,
A three-tier architecture is a software design pattern that divides an application into three logical tiers or layers: presentation, application, and data. This separation improves modularity, scalability, and maintainability of the application.
Presentation Tier (User Interface):
This tier is responsible for how users interact with the application. It handles user input, displays information, and communicates with the application tier.
Application Tier (Business Logic):
This tier contains the core logic of the application. It processes requests from the presentation tier, performs calculations, and manages data manipulation.
Data Tier (Database):
This tier is responsible for storing and managing the application's data. It includes the database server and any data access layers.
[bookmark: _Toc204716463]Difference between MVC, 3tier, EBC
	Feature
	MVC Architecture
	3-Tier Architecture
	Entity-Boundary-Controller (EBCC)

	Focus
	UI and interaction structure
	Logical/physical deployment structure
	Object-oriented interaction & class modeling

	Layers / Classes
	Model, View, Controller
	Presentation, Business Logic, Data
	Entity, Boundary, Controller

	Used In
	Web/mobile app development
	Enterprise-level software applications
	UML modeling, OOA

	Scope
	Mostly code-level
	Application-level deployment
	Design-time analysis & documentation

	Example Use Case
	Web framework (like Django, Rails)
	Banking system across web/backend/DB
	Modeling an ATM system or patient registration

[bookmark: _Toc204716464]entity class, boundary class and controller class,
Entity Class:
· Represents the core data and logic of the system. These are often persistent objects that store information related to the business domain (e.g., Customer, Order, Product).
· Can contain business rules and logic related to how that data is manipulated.
· Examples: Customer, Product, Order, Transaction.
Boundary Class:
· Handles interactions with the outside world, acting as an interface between the system and its environment.
· Includes user interfaces, gateways, and communication protocols.
· Ensures that changes to external systems or user interfaces don't directly affect the core business logic.
· Examples: User Interface (UI), Database Gateway, Server Proxy.

Controller Class:
· Manages the flow of information and operations between boundary and entity classes.
· Orchestrates the execution of use cases and business logic.
· Acts as a mediator, receiving requests from boundary objects and coordinating the necessary actions with entity objects.
· Examples: Product Listing Controller, Product Purchase Controller, Product Review Controller.
[bookmark: _Toc204716465]packages,
A package is a grouping mechanism in UML used to logically organize related classes, interfaces, use cases, components, or other UML elements.
Key Features:
· Helps in managing complex models.
· Provides namespace control.
· Supports encapsulation and modular development.
[bookmark: _Toc204716466]subsystems.
A subsystem is a self-contained module within a system that performs a distinct set of functions and communicates with other subsystems via well-defined interfaces.
Key Features:
· Has its own internal architecture.
· Provides clear interfaces for communication with other parts.
· Can be developed and tested independently.
· Often implemented as a component or microservice in modern architectures.

[bookmark: _Toc204716447]SQL ,
SQL (Structured Query Language) is a standard programming language designed for managing and manipulating relational databases. It allows users to retrieve, (Create) insert, update, and delete data stored in relational database systems like MySQL, Oracle, SQL Server, PostgreSQL, etc.
Key functions of SQL include:
Data Definition Language (DDL): Used for defining and managing the database structure, such as creating, altering, and dropping tables, indexes, and views. Commands like CREATE, ALTER, DROP, TRUNCATE, RENAME define or modify database structure .
Data Manipulation Language (DML): Used for manipulating data within the database, including inserting new records, updating existing ones, and deleting data. Commands such as INSERT, UPDATE, DELETE (and sometimes SELECT) change or add data.
Data Query Language (DQL): Used for retrieving data from the database based on specified criteria. This is often referred to as "querying" the database. Specifically for retrieving data via SELECT
Data Control Language (DCL): Used for managing database permissions and security, such as granting or revoking user access to specific data or operations. GRANT, REVOKE manage user permissions and access control
User friendly, efficient management, flexible syntax, clear executions

JIRA

Tableau
2

image1.png
Steps to Create UML Diagrams

@ step1

Identify the
Purpose

& steps
Choose a UML
Modeling Tool

52 stepo

Validate
and Review

UML Diagrams

& step2

Identify Elements
and Relationships

(] step6

Create the
Diagram

[®, step10
Refine
and Iterate

oo Step3

Select the Appropriate
UML Diagram Type

B step7

Define Element
Properties

& stepn

Generate
Documentation

stepa

Create a
Rough Sketch

I% steps

Add Annotations
and Comments

