
A customer can make a payment either by Card or by Wallet or by Cash or by Net banking.
 Q1. Draw a Use Case Diagram - 4 Marks
Ans.
[image:]

Q2. Derive Boundary Classes, Controller classes, Entity Classes. - 4 Marks
Ans. To derive Boundary Classes, Controller Classes, and Entity Classes, we need to analyze the system in terms of the Model-View-Controller (MVC) architecture.
A. Boundary Classes: (View) (Use Case)
Boundary classes are responsible for managing the interactions between the user and the system. These classes are also responsible for communicating with the outside world (i.e., user interface, external systems, or devices).
Derivation process for Boundary Classes:
· Identify where user input is provided and where output is displayed.
· Boundary classes typically include GUI elements (like forms, buttons, and text fields) or other interfaces like REST APIs, controllers for web pages, etc.
· Examples: LoginScreen, RegistrationForm, CheckoutPage, AccountView
B. Controller Classes: (Actor and Use case relationship)
Controller classes are responsible for handling user input, processing it (often by interacting with entity classes), and returning the appropriate view (boundary class). They act as intermediaries between the boundary and entity classes.
Derivation process for Controller Classes:
· Identify the actions the system needs to perform when certain user inputs or requests are received.
· Controllers handle business logic and manipulate entities as needed.
· Examples: LoginController, OrderController, AccountController
C. Entity Classes: (Model) (Actors)
Entity classes represent the business objects and data in the system. These classes typically contain the attributes and methods that directly relate to the core functionality and business logic.
Derivation process for Entity Classes:
· Interact with Database and execute business logic.
· Identify the key objects and concepts the system deals with (e.g., User, Product, Order).
· Entity classes focus on data representation, validation, and core logic.
· Examples: User, Product, Order, Invoice.
	Boundary Classes
	PaymentoptionBoundary

	
	CardPaymentBoundary

	
	WalletPaymentBoundary

	
	CashPaymentBoundary

	
	NetBankingPaymentBoundary

	Controller Classes
	PaymentInitiatedController

	
	CardPaymentController

	
	WalletPaymentController

	
	CashPaymentController

	
	NetBankingPaymentController

	Entity Classes
	Customer

	
	Payment

	
	Card

	
	Wallet

	
	Server

Q3. Place these classes on a three tier Architecture. - 4 Marks
Ans.
	User Layer (Boundary Classes)

	PaymentMethodSelectionBoundary

	CardPaymentBoundary

	WalletPaymentBoundary

	CashPaymentBoundary

	NetBankingPaymentBoundary

	

	Business Logic Layer (Controller Classes)

	PaymentInitiatedController

	CardPaymentController

	WalletPaymentController

	CashPaymentController

	NetBankingPaymentController

	

	Data Layer (Entity Classes)

	Customer (Entity Class)

	Payment (Entity Class)

	Card (Entity Class)

	Wallet (Entity Class)

	Server (Entity Class)

Q4. Explain Domain Model for Customer making payment through Net Banking - 4 Marks
Ans. The Domain Model represents the key entities, relationships, and interactions in a specific domain of the system. In the context of a customer making a payment through Net Banking, the domain model focuses on the objects, their attributes, and how they interact during the payment process.
[bookmark: _GoBack][image:]

Q5. Draw a sequence diagram for payment done by Customer Net Banking - 4 Marks
Ans.
This diagram shows how the objects in the system interact and communicate with each other
with time to achieve specific task. Developer will draw this.
 It is used to show the ow of messages, events or actions between the objects of the system.
This diagram helps to visualize the behaviour of the system by showing the process in detai
This diagram shows how the objects in the system interact and communicate with each other
with time to achieve specific task. Developer will draw this.
 It is used to show the ow of messages, events or actions between the objects of the system.
This diagram helps to visualize the behaviour of the system by showing the process in detai
This diagram shows how the objects in the system interact and communicate with each other with time to achieve specific task. Developer will draw this. It is used to show messages, events or actions between the objects of the system. This diagram helps to visualize the behaviour of the system by showing the process in detail.
[image:]

Q6. Explain Conceptual Model for this Case.
Ans. A Conceptual Model represents a high-level abstraction of the system’s structure and functionality, focusing on what entities exist, their relationships, and the key operations, without diving into technical details. For the case where a customer can make a payment through multiple methods (Card, Wallet, Cash, or Net Banking), below is the explanation:
Explanation:
· The Customer entity initiates a payment, and each payment (transaction) is linked to a specific Payment Method.
· The Payment Method is then linked to the specific details for Card, Wallet, or Net Banking depending on what is chosen by the customer.
· The Transaction entity records the transaction details (like amount, date, status), and can be associated with the chosen payment method.
· The transaction's status reflects the outcome of the payment process (whether it was successful, pending, or failed).
This model ensures flexibility as it accommodates different payment methods and their respective details while focusing on the core entities and their relationships
Q7. What is MVC architecture? Explain MVC rules to derive classes from use case diagram and guidelines to place classes in 3-tier architecture - 8 Marks
Ans .MVC stands for Model-View-Controller, a software architectural pattern that separates an application into three interconnected components to help organize and structure the code, making it more manageable, scalable, and maintainable.
Components of MVC:
1. Model:
· Represents the data and the business logic of the application.
· It encapsulates the state of the application and the core functionality.
· The Model does not depend on the View or Controller, ensuring separation of concerns.
· In a web application, the Model usually interacts with the database to fetch or modify data.
2. View:
· Represents the UI (user interface) of the application.
· It is responsible for displaying the data that the Model provides.
· The View receives input from the user and displays the necessary information, but does not contain any business logic.
3. Controller:
· Acts as the intermediary between the Model and the View.
· The Controller handles user input, processes it (often by calling the Model to update data), and then updates the View with the new data or changes.
· It receives input from the View and updates the Model accordingly.
MVC Rules to Derive Classes from Use Case Diagram:
To effectively translate a Use Case Diagram into a set of classes using the MVC architecture, follow these rules:
1. Identify Use Cases:
· Use cases typically describe a set of functionalities or interactions between the user and the system. Each use case can help in identifying components of the MVC architecture.
2. Model Classes:
· From each use case, identify the key entities or objects (like Order, Customer, Product) that hold data. These entities will correspond to the Model classes.
· The Model should focus on representing the data structure and business logic. If there are any complex operations or rules (such as calculations or validations), they should be placed in the Model.
3. View Classes:
· Views are typically derived from the system's UI elements. Look at the user interface requirements (like UserProfilePage, Dashboard, OrderSummary) and consider how the user interacts with the system.
· For each use case, there should be a View that represents the display logic. The View listens to changes in the Model and updates the UI accordingly.
4. Controller Classes:
· The Controller is responsible for handling user input. Based on the actions the user takes, the Controller decides how the Model should change and how the View should be updated.
· For each use case, define a Controller class that handles specific actions or flows. A Controller might interact with several Views or Models to fulfill the user request.

Q8. Explain BA contributions in project (Waterfall Model – all Stages) – 8 Marks
Ans. In the Waterfall Model, a traditional software development methodology, each phase flows sequentially from one to the next, with each stage needing to be completed before moving on to the next one. Business Analysts (BAs) play an important role throughout all the stages of the Waterfall process. Their contributions ensure that the business requirements are well understood, defined, and communicated, and that the system developed aligns with the business goals and needs.
Here's a breakdown of the BA’s contributions across each stage of the Waterfall Model:

1. Requirements Gathering and Analysis (Phase 1)
Business Analyst Contribution:
· Eliciting Requirements: BAs gather detailed business requirements from stakeholders, including end-users, subject matter experts, and other business representatives. They use various techniques like interviews, workshops, surveys, and observation to collect this information.
· Documenting Requirements: BAs document these requirements in a clear and structured format, often producing Business Requirement Documents (BRD) or Requirements Specification Documents (RSD).
· Clarifying and Validating Requirements: They work closely with stakeholders to ensure the requirements are correct, complete, and feasible. This may involve refining or revising the requirements as needed.
· Prioritizing Requirements: BAs help prioritize the requirements based on business value, risk, and feasibility, which ensures that the most critical needs are addressed first.
· Defining Business Processes: BAs analyze the current business processes and help define the new or improved processes that the system will support.
Key Deliverables:
· Business Requirement Document (BRD)
· Stakeholder analysis
· Requirement traceability matrix

2. System Design (Phase 2)
Business Analyst Contribution:
· Collaborating with Architects/Designers: BAs work with system architects, UX designers, and developers to ensure that the system design aligns with the business requirements.
· Providing Input on Functional Design: The BA ensures that the functional requirements are adequately reflected in the system’s design. This may include creating use case diagrams, user stories, and detailed functional specifications.
· Reviewing Design Artifacts: BAs often participate in reviewing wireframes, UI designs, and database designs to confirm that the design meets business needs and requirements.
· Defining Non-Functional Requirements: The BA helps define non-functional requirements such as performance, scalability, security, and compliance based on the business needs.
Key Deliverables:
· Functional specification documents
· Wireframes or prototypes (if applicable)
· Use cases or user stories

3. Implementation (Phase 3)
Business Analyst Contribution:
· Clarifying Requirements During Development: During development, BAs assist developers by clarifying ambiguities in the requirements, answering questions, and ensuring that the system being built aligns with the business needs.
· Ensuring Stakeholder Alignment: BAs ensure that the development team remains aligned with the stakeholders’ expectations. This may involve regular communication and status updates.
· Supporting User Acceptance Testing (UAT) Preparation: BAs help define acceptance criteria and test scenarios for UAT, ensuring the system meets the business requirements and users’ needs.
Key Deliverables:
· Requirements traceability matrix (for tracking implementation against requirements)
· UAT scenarios or scripts
· Documentation for user training

4. Integration and Testing (Phase 4)
Business Analyst Contribution:
· Participating in System Testing: BAs ensure that the developed system undergoes adequate testing (e.g., system testing, integration testing) to verify that it meets business requirements.
· Defining Test Cases: Based on the requirements, BAs contribute to the creation of test cases and assist the QA team in identifying business-critical scenarios to test.
· Facilitating User Acceptance Testing (UAT): BAs often take the lead in organizing and facilitating UAT. They work with end-users to ensure that the system is tested in a real-world scenario and meets the business objectives.
· Ensuring Quality Assurance: BAs ensure that the product delivered is of high quality by reviewing testing results and helping resolve issues that could affect the business needs.
Key Deliverables:
· Test cases for UAT
· Test results and issue logs
· Feedback from stakeholders

5. Deployment (Phase 5)
Business Analyst Contribution:
· Supporting User Training: BAs are involved in preparing training materials for end-users, ensuring they understand how to use the system to meet business needs.
· Monitoring the Transition: BAs assist in the transition from the old system to the new one, ensuring that business processes are not disrupted. They might help coordinate the deployment plan and provide feedback on the system’s effectiveness during the rollout.
· Managing Change Management: BAs ensure that users are ready for the change, addressing concerns, and managing any resistance to the new system.
Key Deliverables:
· Training materials and user guides
· Deployment plan
· Change management plan

6. Maintenance and Support (Phase 6)
Business Analyst Contribution:
· Gathering Feedback for Continuous Improvement: After the system is live, the BA continues to interact with users and stakeholders to gather feedback on system performance and functionality. This feedback helps inform future enhancements.
· Defining Enhancement Requirements: If new features or improvements are requested, BAs help define these requirements and prioritize them based on business needs.
· Ensuring Ongoing Alignment with Business Goals: BAs ensure that the system evolves in line with any changes in business processes, regulations, or objectives.
Key Deliverables:
· Enhancement requests and new business requirements
· Post-implementation review and lessons learned
· Ongoing support documentation

Summary of BA Contributions in Waterfall:
· Throughout all stages of the Waterfall Model, the BA plays a critical role in ensuring that the project stays aligned with the business needs and objectives.
· In the early stages, BAs gather and define the business requirements and ensure that the system design addresses those needs.
· During development, BAs continue to clarify requirements, ensure business alignment, and define test cases for UAT.
· In the later stages, BAs support the deployment, assist with training, and gather feedback to guide maintenance or enhancements.
By playing this central role, BAs bridge the gap between business stakeholders and the development team, ensuring that the delivered solution is effective, usable, and meets the original business goals.

Q9. What is conflict management? Explain using Thomas – Kilmann technique.
Ans. Conflict Management refers to the process of handling, resolving, or managing conflicts in a way that reduces negative outcomes and encourages positive outcomes in both interpersonal and group interactions. In a project or business setting, conflicts can arise due to differences in goals, interests, opinions, or personalities. Effective conflict management is crucial for maintaining team harmony, ensuring smooth project execution, and improving communication.
The Thomas-Kilmann Conflict Mode Instrument (TKI) is a widely used model for understanding and managing conflict. It was developed by Kenneth W. Thomas and Ralph H. Kilmann in the 1970s and identifies five different conflict-handling modes that individuals use based on their concern for self (assertiveness) and concern for others (cooperativeness).
Five Conflict Modes in the Thomas-Kilmann Model:
1. Competing (Assertive, Uncooperative):
· Description: In this mode, a person seeks to satisfy their own interests at the expense of others. It's a win-lose approach where one party strives to "win" the conflict, often without considering the other party’s concerns.
· When to Use: Competing is useful when quick, decisive action is necessary, such as in emergencies or when a clear decision is needed.
· Example: A manager might decide to implement a policy immediately for the greater good of the company, even if some team members disagree.
2. Accommodating (Unassertive, Cooperative):
· Description: In this mode, an individual puts the needs or desires of others above their own. It’s a win-lose approach where one party sacrifices their interests to accommodate the other.
· When to Use: Accommodation is useful when maintaining harmony is more important than winning the argument or when the issue at hand is not as important to you as it is to the other party.
· Example: A team member may agree with a manager’s decision, even if they personally disagree, to avoid conflict and keep the peace.
3. Avoiding (Unassertive, Uncooperative):
· Description: Avoiding is when individuals ignore or avoid the conflict entirely. There is no attempt to address the conflict or to meet the needs of either party. This results in a lose-lose situation.
· When to Use: Avoiding can be effective when the conflict is trivial or when you need time to gather more information before addressing the issue.
· Example: A team member ignores a disagreement about a small detail in a report, deciding it’s not worth addressing right now.
4. Collaborating (Assertive, Cooperative):
· Description: Collaborating involves working together with the other party to find a solution that fully satisfies the concerns of both parties. It’s a win-win approach where both sides seek to resolve the conflict through cooperation and compromise.
· When to Use: Collaboration is ideal when the issue is complex and both parties have important concerns that need to be addressed.
· Example: Two departments work together to design a process that incorporates the needs of both departments, finding a mutually beneficial solution.
5. Compromising (Moderately Assertive, Moderately Cooperative):
· Description: Compromising seeks a middle ground where both parties give up something in order to reach a resolution. It's a win-lose solution, but with both sides gaining something.
· When to Use: This mode is useful when both parties have equally important goals, and a quick resolution is needed, but collaboration or competition is not viable.
· Example: Two team members may agree to divide a project in half when they can’t agree on one approach, each making concessions to meet in the middle.
Q10. List down the reasons for project failure .
Ans.
1. Poorly Defined Objectives and Scope:
· Reason: Lack of clear goals and scope can lead to confusion and misalignment among stakeholders. Without a clear vision, it's hard to deliver what the business truly needs.
· Impact: Results in scope creep, missed deadlines, and unmet expectations.
· Solution: Establish clear, measurable project objectives and document the scope from the start.
2. Inadequate Stakeholder Engagement:
· Reason: Not involving key stakeholders early or keeping them engaged throughout the project can result in misunderstanding, misalignment, or lack of support for the project.
· Impact: This leads to poor decision-making, lack of buy-in, and resistance to change.
· Solution: Engage stakeholders regularly, hold review meetings, and keep them informed at every stage.
3. Poor Project Planning:
· Reason: Insufficient planning and poor estimation of resources, time, and costs can lead to project failure. Skipping steps like risk management or resource allocation can leave the team unprepared for challenges.
· Impact: Missed deadlines, resource shortages, and failure to meet quality standards.
· Solution: Develop a comprehensive project plan that includes timelines, milestones, resource allocation, risk management strategies, and dependencies.
 4. Unrealistic Deadlines and Budget:
· Reason: Setting unrealistic timelines and budgets without proper consideration for the complexity of the project often leads to failure.
· Impact: Compromised quality, team burnout, and inability to meet expectations.
· Solution: Set realistic timelines and budgets based on thorough planning, and allow room for unforeseen challenges.
 5. Lack of Communication:
· Reason: Inadequate communication among project team members, stakeholders, and other involved parties can lead to misunderstandings, missed requirements, and delays.
· Impact: Confusion, misaligned priorities, and frustration among team members and stakeholders.
· Solution: Establish clear communication channels, hold regular status meetings, and keep all parties informed of progress and issues.
6. Scope Creep:
· Reason: Uncontrolled changes to the project scope—either due to shifting requirements or stakeholders adding new features—can derail a project.
· Impact: Delays, resource strain, and project costs increasing beyond the budget.
· Solution: Define scope early, and have a change management process in place to evaluate and approve any changes.
7. Lack of Risk Management:
· Reason: Failure to identify, assess, and plan for potential risks during the project lifecycle can lead to major issues that threaten the project's success.
· Impact: Unforeseen issues derail progress, cause delays, and increase costs.
· Solution: Implement a risk management plan that identifies potential risks, outlines mitigation strategies, and assigns responsibility for monitoring.
8. Inadequate Resources:
· Reason: Insufficient resources—whether human, technological, or financial—can result in delays, decreased quality, and increased pressure on the project team.
· Impact: Inability to deliver the project on time, within budget, or at the desired quality level.
· Solution: Ensure proper resource allocation and availability before starting the project, and continuously monitor resource needs.
9. Lack of Skilled Team Members:
· Reason: Not having the right skills on the team can slow down progress and lead to poor-quality deliverables.
· Impact: The team may struggle with solving technical challenges or meeting project requirements.
· Solution: Assemble a skilled and experienced team, provide training as needed, and seek external expertise if required.
10. Ineffective Project Leadership:
· Reason: Poor leadership can lead to lack of direction, low morale, and confusion regarding priorities.
· Impact: The project may lack a clear vision, and the team may struggle to work efficiently, leading to delays and dissatisfaction.
· Solution: Ensure the project manager or leader has strong leadership, communication, and decision-making skills, and can motivate the team.
11. Inflexibility to Change:
· Reason: Rigidly sticking to the initial plan without adjusting to evolving requirements, market changes, or unexpected challenges can hinder project success.
· Impact: The project may become outdated or irrelevant, failing to meet the business needs or respond to shifting conditions.
· Solution: Foster an Agile or flexible approach, allowing for periodic reviews and adjustments to the project as necessary.
12. Poor Quality Assurance and Testing:
· Reason: Skipping thorough testing or not dedicating enough time to quality assurance can lead to defects in the final product.
· Impact: The final deliverable may fail to meet user needs or business requirements, leading to dissatisfaction and rework.
· Solution: Incorporate quality assurance and testing throughout the project lifecycle, with thorough UAT (User Acceptance Testing) before final delivery.
13. Misaligned Team and Stakeholder Expectations:
· Reason: Different team members or stakeholders having misaligned expectations can cause confusion and conflict, often resulting in wasted time and effort.
· Impact: Delays, rework, and reduced effectiveness in meeting the project objectives.
· Solution: Regularly manage expectations through clear and frequent communication, and ensure alignment from the outset.
14. Technological Challenges:
· Reason: Using outdated or incompatible technologies, or failing to account for technological limitations, can cause issues during development and deployment.
· Impact: Delays, technical debt, and potential system failures.
· Solution: Ensure that technology is selected based on business needs and scalability, and that teams have the necessary technical expertise to work with it.
15. Vendor or Third-Party Issues:
· Reason: Dependence on external vendors or third-party service providers can introduce delays, quality issues, or coordination problems.
· Impact: Delays in deliverables, quality concerns, or contractual disputes.
· Solution: Carefully manage vendor relationships, set clear expectations, and have contingency plans for potential issues.

Q11. List the Challenges faced in projects for BA – 6 Marks
Ans. Business Analysts (BAs) often face various challenges in projects, as they play a critical role in bridging the gap between business needs and technical solutions. Here are some of the most common challenges BAs encounter during projects:
1. Ambiguous or Unclear Requirements:
· Challenge: One of the biggest challenges is dealing with vague, incomplete, or conflicting requirements from stakeholders.
· Impact: This can lead to misunderstandings, misaligned expectations, and scope creep.
· Solution: Constantly communicate with stakeholders, use techniques like workshops or interviews, and clarify any ambiguities through prototyping or iterative feedback.
2. Stakeholder Alignment:
· Challenge: Aligning different stakeholders with varying interests, priorities, and views can be difficult.
· Impact: This can lead to delays, disagreements, or shifting project goals.
· Solution: Engage stakeholders early, facilitate discussions to prioritize requirements, and manage expectations through regular updates and reviews.
3. Changing Requirements (Scope Creep):
· Challenge: As projects progress, stakeholders may introduce new or changing requirements, leading to scope creep.
· Impact: This can delay the project, increase costs, and complicate the solution design.
· Solution: Establish clear project scope upfront, have a change management process in place, and ensure that any changes are documented, evaluated, and approved.
4. Lack of Clear Communication:
· Challenge: Communication gaps between business and technical teams can create confusion, leading to errors in requirements or implementation.
· Impact: Miscommunication can result in the development of a solution that doesn’t meet the business needs or expectations.
· Solution: Foster regular communication between teams, use tools like user stories or visual aids (flowcharts, mockups) to bridge the gap, and encourage open dialogue.
5. Time Constraints and Deadlines:
· Challenge: Tight project timelines can pressure BAs to rush through the requirements gathering and analysis process, resulting in incomplete or poor-quality documentation.
· Impact: This can lead to errors, missed requirements, and delays later in the project.
· Solution: Prioritize tasks, manage time effectively, and use Agile or iterative approaches to deliver value incrementally.
6. Resistance to Change:
· Challenge: Stakeholders or end users may be resistant to new systems, processes, or technologies, especially if they are unfamiliar or disruptive to their current ways of working.
· Impact: Resistance can lead to low adoption rates, dissatisfaction, and lack of engagement.
· Solution: Engage stakeholders early, address their concerns, offer training and support, and involve them in the solution development to ensure their buy-in.
7. Conflicting Stakeholder Priorities:
· Challenge: Different stakeholders often have conflicting priorities or goals, making it difficult to define a unified set of requirements.
· Impact: This can delay decision-making, create friction among stakeholders, and impact project outcomes.
· Solution: Facilitate discussions to identify common ground, use prioritization techniques like MoSCoW, and document trade-offs clearly to reach consensus.
8. Limited Access to Key Stakeholders:
· Challenge: Sometimes, key stakeholders or subject matter experts (SMEs) are not available or difficult to reach, making it hard to gather necessary information.
· Impact: This can slow down the requirement-gathering process and lead to gaps in understanding.
· Solution: Establish clear communication channels early, schedule regular meetings, and utilize other resources like documentation or surveys if direct access is limited.
9. Lack of Data or Incomplete Data:
· Challenge: In some projects, data required for analysis may be incomplete, outdated, or inaccessible.
· Impact: This can hinder accurate analysis and lead to poor decision-making.
· Solution: Work closely with data teams to identify available data, use data cleansing methods, and supplement missing data with stakeholder input or assumptions.
10. Balancing Technical Constraints with Business Needs:
· Challenge: Ensuring that business requirements are feasible within technical constraints (e.g., budget, system capabilities, timelines) can be difficult.
· Impact: If technical limitations aren’t properly communicated or understood, it can result in unrealistic expectations and frustration.
· Solution: Collaborate closely with technical teams to understand limitations, set realistic expectations, and propose solutions that balance business needs with technical feasibility.
11. Inadequate Tools or Resources:
· Challenge: A lack of appropriate tools or resources can slow down the BA’s ability to document, analyze, or communicate effectively.
· Impact: It can lead to inefficiency and frustration, especially when working with large or complex projects.
· Solution: Advocate for the tools and resources you need, and make use of collaborative platforms (e.g., Jira, Confluence) to streamline documentation and feedback.
12. Lack of Clear Business Process Understanding:
· Challenge: Sometimes, BAs may struggle to understand the existing business processes or workflows, which can lead to misaligned solutions.
· Impact: Poorly designed solutions that don't fit the existing business environment can result in failure.
· Solution: Spend time understanding current processes through process mapping, shadowing employees, or reviewing historical documentation before suggesting improvements.
13. Technical Debt:
· Challenge: In projects where legacy systems or outdated technologies are involved, there may be significant technical debt that hinders new development.
· Impact: This can delay the project, increase maintenance costs, and limit the effectiveness of the final solution.
· Solution: Work with technical teams to identify and address technical debt early, and factor it into the solution design to ensure a sustainable long-term solution.
14. Working with Unclear or Changing Project Goals:
· Challenge: If project goals are not well-defined or are constantly evolving, it can be difficult to gather accurate requirements and define the project’s scope.
· Impact: Lack of clarity can lead to a project that doesn't meet the original business objectives and may require rework.
· Solution: Help clarify goals early in the project by working with key stakeholders to set clear objectives, and ensure that any changes to goals are managed carefully through proper change control processes.

12. Write about Document Naming Standards .
Ans. Document Naming Standards are a set of conventions and guidelines used to create consistent, clear, and organized names for project-related documents. These standards are essential for ensuring that files can be easily located, understood, and managed by all team members and stakeholders. Using proper naming conventions helps avoid confusion, duplication, and errors, especially when managing large volumes of documentation.
A well-established Document Naming Standard ensures that each document is uniquely identified and categorized in a way that makes sense for the project, department, or organization.
Key Elements of Document Naming Standards:
When defining document naming standards, consider the following components:
1. Project Identifier:
· Include a unique identifier for the project or initiative to ensure the document is associated with the correct project.
· Example: Project Code, Name, or ID (e.g., ABC123 or CRM_Implementation).
2. Document Type:
· The type of document should be clearly indicated in the file name (e.g., BRD for Business Requirements Document, SRS for Software Requirements Specification, TDR for Technical Design Report).
· Example: BRD, FRS, UAT, Test_Plan.
3. Version Number:
· Include a version number to track different iterations of a document. This is especially important for evolving documents like requirements, designs, and test plans.
· Example: v1.0, v2.1, v3_final.
4. Date:
· Including the date in the file name helps in sorting documents chronologically and ensures you are referencing the latest version.
· Date format should be consistent, preferably using YYYY-MM-DD for clarity.
· Example: 2025-01-28, Jan2025.
5. Document Title or Description:
· A brief title or description of the document’s content, which helps in identifying the document's purpose.
· Example: Requirements_Gathering or Test_Cases.
6. Status (Optional):
· Indicate the current status of the document (e.g., Draft, Final, Approved).
· Example: BRD_Draft, SRS_Final, Test_Cases_Approved.
7. Author or Owner (Optional):
· In some cases, including the author's initials or team name can help identify who is responsible for the document.
· Example: BRD_JohnDoe_v2.0.
8. Confidentiality Level (Optional):
· If the document contains sensitive information, a confidentiality tag such as Confidential or Internal can be included.
· Example: Financial_Report_Confidential.
Q13. What are the Do’s and Don’ts of a Business analyst ?
Ans. As a Business Analyst (BA), there are key practices to follow in order to be effective and ensure that you provide value to the organization. Here’s a breakdown of the Do’s and Don’ts for a Business Analyst:
Do's of a Business Analyst:
1. Understand the Business Context:
· Do: Take time to understand the business domain, processes, and overall goals of the organization. This helps in aligning your analysis with business objectives and contributes to finding the best solutions.
· Example: Conduct interviews with stakeholders to understand their goals and pain points.
2. Engage Stakeholders Early:
· Do: Involve key stakeholders early in the process. Ensure you know who the decision-makers, subject matter experts (SMEs), and end users are, and gather their feedback consistently throughout the project.
· Example: Hold regular meetings or workshops to capture feedback and ensure alignment.
3. Document Clearly and Precisely:
· Do: Maintain clear, concise, and organized documentation (requirements, use cases, user stories, etc.). Well-documented requirements will help avoid confusion and ensure that all stakeholders are on the same page.
· Example: Use tools like Jira, Confluence, or Excel to document requirements and keep everything accessible.
4. Focus on Problem Solving:
· Do: Focus on solving business problems rather than just gathering requirements. Always keep the end goal in mind, and look for solutions that are feasible, cost-effective, and scalable.
· Example: Offer alternatives or improvements to proposed solutions if you see potential enhancements or risks.
5. Communicate Effectively:
· Do: Be an effective communicator. Act as a liaison between business stakeholders and technical teams. Tailor your communication to the audience, whether they’re technical or non-technical.
· Example: Use diagrams, flowcharts, or wireframes when discussing solutions with non-technical stakeholders.
6. Prioritize Requirements:
· Do: Prioritize requirements based on business value, feasibility, and urgency. Work with stakeholders to identify the must-have versus nice-to-have features.
· Example: Create a MoSCoW (Must have, Should have, Could have, Won't have) list to categorize requirements.
7. Embrace Continuous Learning:
· Do: Stay updated with industry trends, new tools, and methodologies. Being adaptable and continuing your professional development will help you provide more value to the organization.
· Example: Attend webinars, certifications, and workshops on Agile, Scrum, or relevant software tools.
8. Test and Validate Solutions:
· Do: Ensure that the solution meets the business requirements by testing and validating it before it goes live. This could include user acceptance testing (UAT) or functional testing.
· Example: Work with end users to validate the solution and gather feedback before the final rollout.
Don’ts of a Business Analyst:
1. Don’t Assume Without Clarification:
· Don’t: Never assume things without confirming with stakeholders. Assumptions can lead to miscommunication, incorrect requirements, and missed expectations.
· Example: Don’t assume that everyone is aligned on the definition of "user-friendly" – always confirm expectations and definitions.
2. Don’t Overlook the Small Details:
· Don’t: Ignore small details or edge cases. Even if they seem insignificant, they might have a major impact later on.
· Example: If a user has specific accessibility needs, don’t overlook those when gathering requirements.
3. Don’t Focus Only on the Immediate Problem:
· Don’t: Get tunnel vision and only focus on the immediate issue. Consider the bigger picture and think long-term when designing solutions.
· Example: Don’t only look at short-term fixes for a business problem; think about scalability and future growth.
4. Don’t Ignore Stakeholder Input:
· Don’t: Dismiss or ignore feedback from stakeholders. Their input is critical to understanding the full scope of the problem and the required solution.
· Example: If a key stakeholder expresses concern, take the time to listen and understand their perspective.
5. Don’t Rely Solely on Written Requirements:
· Don’t: Rely only on documentation for understanding requirements. It's important to validate the requirements with stakeholders, observe workflows, and ask clarifying questions.
· Example: Participate in shadowing business users to see how they interact with current systems or processes.
6. Don’t Avoid Conflict:
· Don’t: Shy away from conflicts or disagreements. Disputes can often lead to valuable insights. Address issues promptly and constructively.
· Example: If there’s a conflict between technical and business teams, mediate discussions to find a workable compromise.
7. Don’t Work in Isolation:
· Don’t: Work alone without consulting with other team members. Collaboration is key to understanding the full scope of a project and ensuring its success.
· Example: Avoid working on your own – collaborate with developers, testers, and other business analysts regularly.
8. Don’t Forget to Track Changes:
· Don’t: Overlook managing changes to requirements. Ensure that any changes are properly tracked, documented, and communicated to all relevant stakeholders.
· Example: If a business requirement changes mid-project, ensure that this change is communicated and documented, and that the project plan is updated.
Conclusion:
A successful Business Analyst must strike a balance between good communication, deep understanding of the business needs, problem-solving skills, and technical knowledge. By following the Do's and avoiding the Don’ts, a BA can play a pivotal role in ensuring that the right solutions are delivered in a timely and efficient manner.
Q14. Write the difference between packages and sub-systems.
Ans.
Packages:
· Definition: A package is a collection of related classes, interfaces, or functions grouped together. It is mainly used in object-oriented programming (OOP) languages, such as Java, C#, or Python, to organize code into modular units.
· Purpose: Packages are used to group related classes or components together to maintain better organization, reusability, and easier maintenance of the code.
· Scope: A package typically operates within the same application or project and helps in structuring and managing code more effectively.
· Example: In Java, you might have packages like:
· com.companyname.model (for data models)
· com.companyname.controller (for controllers or business logic)
· Granularity: Generally more granular, focused on organizing individual pieces of functionality within the system.
Sub-System:
· Definition: A sub-system is a larger, self-contained component or part of a bigger system, often representing a specific functional area or domain within the overall system. It can be composed of several packages, classes, and other components.
· Purpose: Sub-systems are used to break down a large system into independent, functional units, each of which can be developed, maintained, and deployed separately.
· Scope: A sub-system typically refers to a larger boundary, which might span multiple packages or even multiple microservices in a distributed system.
· Example: In an e-commerce system, sub-systems could include:
· User Management Sub-system (handling user authentication, profiles, etc.)
· Order Processing Sub-system (handling order creation, payment, shipment, etc.)
· Granularity: Sub-systems are generally larger than packages and may be composed of multiple smaller components (including packages) that work together to fulfill a broader function.
Key Differences:
	Aspect
	Package
	Sub-system

	Definition
	A grouping of related classes/functions
	A larger, self-contained functional unit of a system

	Scope
	Narrower, focused on organizing code
	Broader, representing a significant functional area

	Granularity
	Fine-grained (smaller, specific)
	Coarse-grained (larger, more complex)

	Components
	Usually contains classes or methods
	Composed of multiple components, possibly including several packages

	Usage
	Used to structure code at the class/function level
	Used to break down a larger system into manageable functional areas

	Example
	com.companyname.model
	E-commerce system, Payment processing, User management

In summary:
· Packages are a way to organize code within a system, making it more modular and maintainable.
· Sub-systems are higher-level components that might be composed of multiple packages and represent a larger, more distinct functionality within the system.
Q15. What is camel-casing and explain where it will be used?
Ans. Camel casing (or camelCase) is a style of writing where multiple words are combined into one, with the first word in lowercase and the subsequent words starting with uppercase letters. The idea is to resemble the humps of a camel, hence the name "camel case."
For example:
· userName
· totalAmount
· orderDetails
Where Camel Casing Is Used:
1. Programming (Variable and Function Naming):
· Camel case is commonly used in many programming languages (such as JavaScript, Java, Python, and C#) for naming variables, functions, methods, and properties.
· Example: In JavaScript, you might see:
javascript
Copy
let userAge = 25;
function calculateTotalPrice() { ... }
2. APIs:
· In RESTful API design, camel case is often used for endpoint parameters and query string variables.
· Example: GET /users/{userId}/orderHistory
3. Object-Oriented Programming:
· It's a common convention for class methods or instance variables to be named in camel case.
4. File Names in Some Environments:
· Some systems and programming languages (e.g., JavaScript or Node.js) use camel case for naming files, particularly when working with modules or components.
5. Configuration Files:
· For JSON or YAML files, camel casing is often used to maintain consistency in key names.
· Example in JSON:
json
Copy
{
 "userName": "JohnDoe",
 "userAge": 30
}
In general, camel casing helps to keep names compact and readable, and it's a widely adopted convention in coding practices.
Q16. Illustrate Development server and what are the accesses does business analyst has?
Ans. A development server is a server environment where software applications are developed, tested, and deployed during the early stages of the project lifecycle. It is distinct from production and staging servers, which are used for more refined testing and live use. The development server is typically used by developers to w		rite and test code, and may also be used by the quality assurance (QA) team for preliminary testing before moving to staging and production.
Key characteristics of a development server include:
· It usually contains the latest version of the application code, which may not yet be fully tested.
· It is typically less stable than a staging or production server since developers frequently deploy new changes to test features or fixes.
· It is more flexible, allowing developers to make quick changes and test them in real-time.
· The development server often has a separate database or mock data to test new features in isolation from real-world data.
Very few limited access to server like:
A. Read only Access
B. Collaborative Access
C. Limited configuration Access

Q17. What is Data Mapping?
Data mapping is the process of creating a correspondence between two distinct data models or structures. In simple terms, it involves identifying how data from one system (such as a source database, file, or application) maps to another system (like a target database, file, or application). This is a key task in data integration, migration, or transformation projects.
For example, if you're moving data from one database to another, data mapping would ensure that the fields in the source (e.g., "customer_name" in the source system) correspond to the correct fields in the target system (e.g., "full_name" in the destination system).
Data mapping is essential for:
· Ensuring data compatibility
· Facilitating smooth data transfers
· Enhancing data quality and consistency
· Reducing the risk of errors during the transformation or migration process

Q18. What is API. Explain how you would use API integration in the case of your application Date format is dd-mm-yyyy and it is accepting some data from Other Application from US whose Date Format is mm-dd-yyyy 10 Marks.
Ans. An API (Application Programming Interface) is a set of rules and protocols that allows different software applications to communicate with each other. It defines the methods and data formats that applications can use to request and exchange information. APIs enable software systems to interact seamlessly, even if they are built using different technologies or platforms.
In the context of web APIs, they allow systems to retrieve, send, or modify data over the internet using standard protocols like HTTP and data formats such as JSON or XML.

Using API Integration to Handle Date Format Differences
In your scenario, you have an application where the expected date format is dd-mm-yyyy, but it is receiving data from another application in the US where the date format is mm-dd-yyyy. To ensure smooth integration and avoid errors due to mismatched date formats, you can use an API to handle the conversion process.
Steps for API Integration:
1. Receive the Data via the API:
· Your application will call an API endpoint from the US-based application to get data.
· The data you receive may include a date in the mm-dd-yyyy format.
2. Parse and Convert the Date Format:
· Once the date is received, your application can parse the date string (in the mm-dd-yyyy format) and convert it into the required dd-mm-yyyy format.
3. Send Converted Data to Your Application:
· After converting the date format, you can send the modified data to your internal application, ensuring that the date is now in the correct dd-mm-yyyy format.
4. Handle Date Conversion via API:
· If the conversion needs to happen through an external API (for example, a date formatting API), you could use an API to convert the date. However, for simplicity, date format conversion is often done programmatically within your application.

image1.png
Payment Application

Enz “Enda

Payment Iniated

View Payment Option

image2.png
Customer Bank
[S40) [Cx Name [Contact Details [Address [A/C Number Bank NamlLocation |Branch Code

Payment Account
Payment ID_|Amount __[Payment Date |Status [AICno_[AJc Type [Balance [AC holder Name

|
Net Banking Senice Authentication
[Authentication|Fund Transfe]A/C managemenfTX History User NamdPassword [OTP
Transaction
[TXID__[Receipent Detaill Amount[Time Stamy |

image3.png
L

e

Transaction

Request for Money

B e T o

(— % — KK~ XK~ KR~ KK

B e e R S 3

Saved

g
@
o e e e X M e e K 32 Bk 6 M K
F H g
Laex § 3 2
O[3 & <
N 3 N
o| & g £
&1k g 7
S5 3
3 s -5
P H F]
a ..x..x.*‘.u..xw*.u. — %~ ..x:x.xm.x..x.k..x.x.k:x.x »
E 3 £
il £ 5%] £
LS R H £
clal E|8lel £ 5
els] glzlg = 8
518 S|glg £ H
a2 b g
3l 2z 2 s
Sa B 3
g1a m Bl
y] b]
L B i T T o T T
g
Lx—x

