Q.1

2. Boundary Classes: Login Interface, Payment Method Selection Interface, Card Payment Details Interface, OTP Entry Interface, Payment Status Display, Logout Interface, Database Interface, Bank Interface.
Controller Classes: Authentication Controller, Payment Initiation Controller, Card Payment Processing Controller, OTP Validation Controller, Payment Confirmation Controller, Session Management Controller.
Entity Classes: User, Card, Wallet, BankAccount, Transaction.
Q3. Place these classes on a three tier Architecture
1. Presentation Tier (User Interface):This tier is responsible for displaying information to the user and capturing user input. The Boundary Classes primarily reside in this tier.
Login Interface: Presents the login screen with "Email ID" and "Password" fields.
Payment Method Selection Interface: Displays the options for "Card," "Wallet," "Net Banking," and "Cash."
Card Payment Details Interface: Shows the form for entering card details.
OTP Entry Interface: Presents the field for entering the OTP.
Payment Status Display: Shows whether the payment was successful, failed, or is pending.
Logout Interface: Provides the option for the user to log out.
2. Business Logic Tier (Application Tier):This tier contains the core logic of the application, processing user requests and interacting with the data tier. The Controller Classes belong to this tier.
Authentication Controller: Handles the login process, verifying user credentials.
Payment Initiation Controller: Receives the payment request and orchestrates the subsequent steps.
Card Payment Processing Controller: Manages the specific logic for card payments (e.g., validating card details, interacting with the bank interface).
OTP Validation Controller: Handles the verification of the One-Time Password received from the user.
Payment Confirmation Controller: Finalizes the payment transaction and updates the system's records.
Session Management Controller: Manages user sessions and their lifecycle.
Database Interface: While it acts as a bridge, the logic for interacting with the database (queries, data manipulation) often resides within the business logic tier or is invoked by it.
Bank Interface: The logic for communicating with the external banking system for authorization and processing resides here.
3. Data Tier (Data Access Tier):
This tier is responsible for storing and retrieving persistent data. The Entity Classes are representations of the data managed by this tier.
User: Represents the user data stored in the database.
Card: Represents stored card details (potentially tokenized or encrypted for security).
Wallet: Represents user wallet information.
Bank Account: Represents stored bank account details (again, securely managed).
Transaction: Represents the history and details of payment transactions.
 Q4. Explain Domain Model for Customer making payment through Net Banking
A Domain Model is a conceptual representation of entities and relationships in a system that helps to understand the business context. In this case, the domain is Customer Payment via Net Banking.
Difference between ER diagram and domain model-
ER Model – do not have attributes inside the box
Domain Model- do have attributes mentioned inside the box.
ER Model – it is a data modelling technique used in database design to represent tables.
Domain Model- it is a conceptual model that represents real world entities.ER Model – focuses on relationships required for storing and retrieving the data
Domain Model- It focuses on capturing the behaviour of application
ER Model –primarily used in database design
Domain Model-used throughout the software development lifecycle
[image:] Q5. Draw a sequence diagram for payment done by Customer Net Banking
[image:]

 Q6. Explain Conceptual Model for this Case
	[image:]
7. What is MVC architecture?
MVC stands for Model-View-Controller. It is a software design pattern used for developing user interfaces that separates an application into three interconnected components:
 Components of MVC:
1. Model.
Interact with the Data base and Executive business logic in the form of Raw Data and given back to Controller
2. Controller
Takes input from the client as a request parameter and transferred to the Model and takes back raw data from the model and process to the view
3. View
It convert the raw data into readable format.
what user sees on the screen
Generate User interface for user 			
1. MVC Rules to Derive Classes from Use Case Diagram:
Basic Rules
Identity Actor and Use case – This helps to understand who interact with the system
Extract Nouns – Potential use case
Potential Classes: -“Card”, “Wallet”, “Payment”, “Customer” are all nouns → These can be Model classes.
Extract Verbs → Operations or Methods:- “Make Payment”, “Select Method”, etc. → Become methods in Controller or Model.
From Your Case Study:
From the use case:
Actors:
· Customer
Use Cases:
· Make Payment by Card
· Make Payment by Wallet
· Make Payment by Cash
· Make Payment by Net Banking
Derived Classes Using MVC
Model (Business Logic & Data)
· Payment (Base Class)
· CardPayment (Subclass)
· WalletPayment (Subclass)
· CashPayment (Subclass)
· NetBankingPayment (Subclass)
· Customer
View (UI Elements)
· PaymentPageView
· PaymentSuccessView
· PaymentFailureView
Controller (Handles Input & Logic)
· PaymentController
Guidelines for Placing Classes in 3-Tier Architecture
	Layer
	Description
	Includes

	Presentation Tier
	UI shown to the user
	Views (e.g., HTML, UI Screens)

	Business Logic Tier
	Core application logic
	Controllers, Services

	Data Access Tier
	Handles data storage/retrieval
	Models interacting with DB

How to Place Our Classes:
	Class
	Tier

	Customer
	Data Access Tier

	Payment
	Data Access Tier

	CardPayment
	Data Access Tier

	WalletPayment
	Data Access Tier

	PaymentController
	Business Logic Tier

	PaymentPageView
	Presentation Tier

	PaymentSuccessView
	Presentation Tier

	PaymentFailureView
	Presentation Tier

Q8. Explain BA contributions in project (Waterfall Model – all Stages)

Requirements Gathering: - BA will gather requirements from Client by using elicitation techniques results BRD Doc.
Requirements Analysis: - Analyze and Document the business needs in the Form of BRD and SRS Documents
· BA will prepare the FRS and gather NFS from the technical team results SSD Doc
· BA will combine both FRS and SSD and SRS
· Doc Sign off From the client i.e SRS
· BA Will prepare RTM according to SRS
Design:-
Collaborate with solution architects and designers to ensure requirements are accurately interpreted.
HDD,ADD and solution document will be generated here done by the tech team.
Highlevel Design Doc.: -BA Collaborate with designers, architects, and developers to translate requirements into system design.
BA Ensure that the design aligns with the documented requirements and addresses stakeholder needs.
Development
The Development phase include implementation. It involves coding the software based on the design specifications.
Programmers or developer are involved in this phase.
Here BA acts as a mediator between the development team and the stakeholders.
BA clarifies the requirements, check if the development is going on right track or not.
BA also participates in scrum meeting
Testing: - In the testing phase, the software is tested as that it meets the requirements and is free from defects.
Testers are involved in this phase.
Test Case Doc is generated
BA Works with testing team to ensure that the solution meets requirements
BA facilitate UAT
BA helps the users to know the functionality of the system and also helps them to use the system
Deployment:-
Once the software has been tested and approved, it is deployed to the production environment.
BA ensures that there is smooth transition from development phase to the production phase.

Implementation-
This is the final stage of waterfall model. It involves running the code for the very first time in production phase. Release manager handles this phase.
BA will Update documentation and requirements specifications to reflect changes in the system over time
Maintenance-
Running the code for second time in the production phase is called maintenance. This is done by support team

9 What is Conflict Management?
Conflict management means handling problems or fights between people in a smart and peaceful way. The goal is to solve the issue without making things worse.
Thomas-Kilmann Technique: - This technique says there are 5 ways people usually deal with conflict. It’s like choosing a style based on how much you care about:
· Your own needs (called Assertiveness)
· The other person’s needs (called Cooperativeness)
The 5 Conflict Styles (with examples):
Competing
· Focus: Only on yourself
· Like: “I’m right. I want to win!”
· Example: You insist your idea is best in a team meeting and don’t listen to others.
· Use when: It's urgent or you need to make a strong decision fast.
Collaborating
· Focus: You and the other person
· Like: “Let’s find a win-win solution!”
· Example: You and your teammate work together to create a plan that makes both happy.
· Use when: Both sides have important needs, and you want the best solution.

Compromising
· Focus: Both, but a little give and take
· Like: “Let’s meet halfway.”
· Example: You and your friend decide to split time between two ideas.
· Use when: You need a quick and fair solution.
Avoiding
· Focus: Neither
· Like: “Let’s not talk about it.”
· Example: You stay quiet and don’t join the discussion to avoid conflict.
· Use when: The issue is small or not worth your time right now.
Accommodating
· Focus: Only on the other person
· Like: “It’s okay, we’ll do it your way.”
· Example: You let your coworker lead the project because it means more to them.
· Use when: You want to keep peace or when it’s not a big deal to you.

10. List down the reasons for project failure
· Improper Req Gathering
· Continuous change in requirements from Clint
· Lack of user involvement
· Lack of Executive support
· Improper planning
· Poor communication between Ba and stakeholder and Ba and Tech Team
· Lack of risk management
11. List the Challenges faced in projects for BA
· Lack of training
· Obtaining Sign off on Doc
· Change Management
· Coordination between developers and Testers
· Conducting Meetings
· Driving clients for UAT
· People Management
12. Write about Document Naming Standards
As per IEEE:- Institute of electrical and electronics Engineering
[ProjectID][Document Type]V[x]D[y].extension
Ex:- SF1FRSV1D1.Doc
13. What are the Do’s and Don’ts of a Business analyst
· Never say no to client
· There is no word called by default
· Never imagine anything in terms of GUI
· Question the existence of existence
· Requirement hurried project buried.
· Never criticize the stakeholder.
· Always appreciate the stakeholder, even for small efforts.
· Be like a lotus in mud
· Never try to give solutions to the client right away
14. Write the difference between packages and sub-systems

	Packages
	Subsystems

	Collections of components which are not reused in nature
	Collections of components which are reused in nature

	They are application based
	They are Product Based, bheavior

15. What is camel-casing and explain where it will be used
Camel casing is a naming convention used in programming where
· Multiple words are joined without spaces, and
· Each word (except the first, in lowerCamelCase) starts with a capital letter.
This Camel Casing is a method used as a communication technique or transfer of info between two class
Programming (Code)
OOP
Database
16. Illustrate the development server, and what are the accesses that the business analyst has?
Development server: It’s a platform for developers and tester where they will develop and test the code and Fix issue
BA will have access to public Doc and Code and Testing in Development server

17.What is Data Mapping?
 Data Mapping is a process of connecting data from one place to another place. So that you can properly communicate in another system or process
Just like Translating from one language to another language, here we transfer data from one format to another.
Why
To ensure that the data is correctly transferred or transform and understood when moving from one system to another
Where it is used
Data migration
Data Integration
ETL process
API
Example
You have data in Excel like this:
	First Name
	Last Name
	Phone

	John
	Smith
	12345

You want to send it to a CRM tool that uses this format:
Full Name	Contact Number
John Smith	12345
Data Mapping:
Full Name = First Name + Last Name
Contact Number = Phone
18. What is API. Explain how you would use API integration in the case of your application format is dd-mm-yyyy and it is accepting some data from Other Application from US whose Date Format is mm-dd-yyyy
API (Application Programming Interface) is a set of rules and protocols that allows two software applications to communicate with each other.
Think of it as a messenger that takes your request to a system, tells it what you want, and then brings the response back.
API integration is the process of connecting two or more applications via their APIs to share data or functionalities seamlessly.
Example: API Integration in My Application (Date Format Handling)
Let’s say we’re building an Indian food delivery app that accepts date input in dd-mm-yyyy format (Indian format). Now, we’re integrating with a partner app from the US that sends date in mm-dd-yyyy format.

image2.png
L

User
Userld string
Username string
Password string
FullName string
Email string
PhoneNumber |string

owns-

Account
Accountld string
Balance number
AccountType |string
Userld string

Tuses"

PaymentTransaction

NetBankingServices

Serviceld
ServiceName
Description

string
string
string

involved_in-

Transactionld
FromAccountld
ToAccountld
Amount
TransactionDate
Status

string
string
string
number
datetime
string

+H—"verifies"

"supports"

o

Authentication

Authld

Userld
AuthMethod
LastAuthTime

string
string
string

datetime

image3.png
Customer ‘ NetBanking BankServer ‘ Merchant
I I I
Initiate payment | |
| | Send payment request | |
—
| I
Payment authorization
| e !
Authorization success_ |
| Confirm payment | |
: Lxecule payment transaction :
| | _ _Transferfunds
| | Transaction acknowledg a
|y ——
: l Transaction complete l

I
Pwen! successful confirmati | |
1

BankServer

‘ Merchant

image4.png
Net Bankin
System

owns initiates

Bank

transfers
funds to

results in

Transaction

image1.emf
Payment Diagram

User

Data Base

Login

Email ID

Password

«uses»

«uses»

Make Payment

Card

Wallet Net Banking cash

«extends»

«extends»

«extends»

«extends»

Select Card

Payments

EntersCard Details

Validating Card

Details

Entering otp

-End31

*

-End32

*

-End33

*

-End34

*

Bank

-End35

*

-End36

*

-End37

*

-End38

*

Payment Status

Logout

-End39

*

-End40

*

-End41

*

-End42

*

-End43

*

-End44

*

-End45

*

-End46

*

-End47

*

-End48

*

-End49

*

-End50

*

-End53

*

-End54

*

Email Conformation

-End55

*

-End56

*

oleObject1.bin
System

Customer

Use Case

DB

PCH

Login

Email ID

Password

«uses»

«uses»

Payment

Card

Wallet

Net Banking

Registration

Email ID

Password

«uses»

«uses»

COD

«inherits»

«inherits»

«uses»

«uses»

Card payment

Card Number

CVV

Holder Name

«inherits»

«inherits»

«inherits»

Validation

OTP

Expiry Date

«inherits»

«uses»

Payment
Conformation

Email

SMS

«inherits»

«inherits»

Logout

Existing Customer

-End1

*

-End2

*

-End3

*

-End4

*

-End5

*

-End6

*

-End7

*

-End8

*

-End9

*

-End10

*

-End11

*

-End12

*

-End13

*

-End14

*

-End15

*

-End16

*

-End17

*

-End18

*

-End19

*

-End20

*

-End21

*

-End22

*

-End23

*

-End24

*

-End25

*

-End26

*

-End27

*

-End28

*

-End29

*

-End30

*

Use Case

Payment Diagram

User

Data Base

Login

Email ID

Password

«uses»

«uses»

Make Payment

Card

Wallet

Net Banking

cash

«extends»

«extends»

«extends»

«extends»

Select Card
Payments

-End37

EntersCard Details

*

-End38

Validating Card
Details

Entering otp

*

Payment Status

Logout

-End31

*

-End32

*

-End33

*

-End34

*

Bank

-End35

*

-End36

*

-End39

*

-End40

*

-End41

*

-End42

*

-End43

*

-End44

*

-End45

*

-End46

*

-End47

*

-End48

*

-End49

*

-End50

*

-End53

*

-End54

*

Email Conformation

-End55

*

-End56

*

