Question 5 – Risk Analysis - 10 Marks
List down on different risk factors that may be involved (BA Risks And process/Project Risks)
Answer:
RISK:
Risk management is a systematic process of identifying, assessing, and controlling potential threats (risks) that could negatively impact an organization's finances, operations, or strategic goals. It involves proactively developing and implementing strategies to minimize the probability of these risks occurring and to lessen their potential impact. The goal is not to eliminate all risks, but to make smart decisions about which risks accepting and which to mitigate to achieve objectives
Project Risk:
· Cost Risk: Unforeseen increases in project expenses.
· Schedule Risk: Delays in the project timeline.
· Performance Risk: The risk that the project's outcome will not meet performance standards.
· Scope Risk (Scope Creep): Uncontrolled changes or growth in the project's scope.
· Technical Risk: Problems arising from technology, development, or integration.
· Resource Risk: Lack of necessary skills, personnel, or equipment.
· External Risk: Risks originating from outside the project, like market changes, regulatory issues, or natural disasters.
BA Risk:
· Stakeholder-related risks: Lack of engagement, disagreement on requirements or priorities, non-availability, or conflicts among stakeholders.
· Requirements-related risks: Implicit or incomplete requirements, changing scope, or a lack of domain knowledge to define them properly.
· Project management risks: Inadequate planning, lack of sufficient time for analysis, or failure to manage changes effectively.
· External risks: Changes in regulatory requirements or new competitor activity.
· Operational risks: The possibility of a project disruption during or after implementation, like unexpected technical issues or business process failures.

Question 6 – Stakeholder Analysis (RACI Matrix) - 8 Marks
Perform stakeholder analysis (RACI Matrix) to find out the key stakeholders who can take Decisions and Who are the influencers.
Answer:
Stakeholder analysis: Stakeholder analysis is a process of identifying and evaluating individuals, groups, or organizations (stakeholders) who are affected by or can influence a project, policy, or initiative. It involves assessing their interests, power, motivations, and needs to understand their potential impact, allowing for better communication and engagement strategies to ensure project success or facilitate positive organizational change.
A stakeholder is anyone who has an interest in, or can affect, the outcome of a project, program, or organization. This includes:
· Individuals: Customers, employees, and managers.
· Groups: Community groups, unions, and activist organizations.
· Organizations: Government agencies, competitors, and suppliers

Below is the list of Stakeholders.
Project Stakeholders
 Business Analyst – Rohini
 Delivery Head – Mr Karthik
 Project Manager – Mr Vanadanam
 Development Team – MS Juhi, Mr. Teyson, Ms Lucie, Mr Tucker, Mr Bravo
 Testing Team - Mr Jason and Ms Alekya
 Network Admin - Mr Mike and DB Admin is John.
Business Stakeholders
Business Sponsor - Mr. Henry
Influencers - Peter, Kevin and Ben.
Finance team - Mr Pandu
Project Team - Mr Doku

	Name
	Position
	Responsible
	Accountable
	Consulted
	Informed

	Mr. Henry
	CEO
	
	
	Y
	Y

	Asita
	BA
	Y
	
	
	

	Mr, vandam
	Project manager
	
	Y
	
	

	Mr.Doku
	Finance Head Project
	
	
	
	

	Mr, pandu
	Co-Ordinator
	
	
	
	

	Kevin , Ben & Peter
	Friends
	
	
	Y
	Y

Question 8 – Four SDLC Methodologies - 8 Marks
The Committee of Mr. Henry, Mr Pandu, and Mr Dooku and Mr Karthik are having a discussion on Project Development Approach.
 Mr Karthik explained to Mr. Henry about SDLC. And four methodologies like Sequential Iterative Evolutionary and Agile. Please share your thoughts and clarity on Methodologies.
Answer:
SDLC: SDLC, or Software Development Life Cycle, is a structured, step-by-step process that guides the development of high-quality software from planning to deployment and maintenance. It provides a framework for development teams to systematically design, develop, and test software, ensuring it meets customer requirements, is delivered efficiently, and stays robust over time. The specific phases of the SDLC can vary by project, but typically include planning, analysis, design, development, testing, deployment, and maintenance
Methodologies: methodologies are structured frameworks that guide how projects are planned, executed, and closed. They provide a set of principles, processes, and techniques to help teams manage projects effectively, improve efficiency, and achieve desired outcomes.

Methodologies as below:
1.Sequential – waterfall
Sequential methodology is a linear approach to software development, product development, or project management. It is called "waterfall" because each phase flows into the next one, much like a waterfall.
Here's a breakdown of the sequential phases:
1. Requirements Gathering: Collect and document the requirements of the project from stakeholders, customers, and users.
2. Analysis: Analyze the requirements to identify the scope, goals, and deliverables of the project.
3. Design: Create a detailed design of the project, including the architecture, user interface, and technical specifications.
4. Implementation: Develop the project according to the design specifications.
5. Testing: Test the project to ensure it meets the requirements and works as expected.
6. Deployment: Deploy the project to production.
7. Maintenance: Maintain and update the project as needed.
Characteristics of the Waterfall methodology:
· Linear: Each phase is completed before moving on to the next one.
· Sequential: Phases are executed in a specific order.
· Predictive: The project plan is created at the beginning, and changes are difficult to make later on.
· Phase-by-phase: Each phase is completed before moving on to the next one.
Advantages of the Waterfall methodology:
· Easy to manage: The linear approach makes it easy to manage and track progress.
· Predictable: The project plan is well-defined, making it easier to estimate costs and timelines.
· Low risk: Changes are made early on, reducing the risk of costly changes later on.
Disadvantages of the Waterfall methodology:
· Inflexible: Changes are difficult to make once the project is underway.
· High risk: If requirements are not well-defined, the project may not meet the needs of the stakeholders.
· Long development time: The linear approach can lead to a longer development time.
When to use the Waterfall methodology:
· Well-defined requirements: When the requirements are clear and well-defined.
· Low-risk projects: When the project is low-risk and changes are unlikely.
· Regulated industries: When the project is in a regulated industry, such as finance or healthcare, where changes are strictly controlled.
In summary, the Waterfall methodology is a linear approach to project management that is well-suited for projects with well-defined requirements and low risk. However, it can be inflexible and may not be suitable for projects with changing requirements or high uncertainty.
2. The Iterative Model – Rational Unified process
RUP is a software development process framework that was developed by IBM Rational (now part of IBM). It is a structured approach to software development that emphasizes iterative and incremental development, with a focus on delivering working software in short cycles.
Iterative Model in RUP
The Iterative Model is a core component of RUP. It is a software development process that involves breaking down the development process into smaller, manageable chunks, called iterations. Each iteration is a self-contained cycle of development, testing, and refinement.
Key Characteristics of the Iterative Model:
1. Iterative: The development process is broken down into multiple iterations, each with its own set of goals and deliverables.
2. Incremental: Each iteration builds on the previous one, with the goal of delivering a working software increment at the end of each iteration.
3. Refinement: Each iteration involves refining the software increment from the previous iteration, based on feedback from stakeholders and testing results.
4. Risk-driven: The iterative model is designed to mitigate risks by identifying and addressing them early in the development process.
Phases of the Iterative Model:
1. Inception: Define the project scope, goals, and deliverables.
2. Elaboration: Develop a detailed plan, including the project schedule, budget, and resource allocation.
3. Construction: Develop the software increment, including coding, testing, and integration.
4. Transition: Deploy the software increment to production, and provide support and maintenance.
Benefits of the Iterative Model:
1. Improved quality: The iterative model allows for early detection and correction of defects, resulting in higher quality software.
2. Reduced risk: The iterative model helps to mitigate risks by identifying and addressing them early in the development process.
3. Increased flexibility: The iterative model allows for changes in requirements and priorities to be accommodated more easily.
4. Faster time-to-market: The iterative model enables faster delivery of working software, which can lead to faster time-to-market.
Challenges of the Iterative Model:
1. Higher upfront costs: The iterative model requires more upfront planning and investment in infrastructure and resources.
2. Requires discipline: The iterative model requires discipline and adherence to the process, which can be challenging for some teams.
3. May not be suitable for all projects: The iterative model may not be suitable for projects with very tight deadlines or fixed requirements.
In summary, the Iterative Model is a key component of the Rational Unified Process (RUP) methodology, which emphasizes iterative and incremental development, with a focus on delivering working software in short cycles. While it offers many benefits, it also presents some challenges that need to be addressed.
3. Evolutionary - Spiral Model
The Evolutionary Spiral Model is a software development methodology that combines the iterative nature of the Evolutionary Model with the risk-driven approach of the Spiral Model. Here's an overview:
Key Characteristics:
1. Iterative Development: The Evolutionary Spiral Model involves iterative development, where the software is developed in small increments, with each iteration building upon the previous one.
2. Risk-Driven Approach: The Spiral Model's risk-driven approach is incorporated, where the development process is driven by the need to mitigate risks and uncertainties.
3. Spiral Phases: The model consists of multiple spiral phases, each representing a cycle of development, with four main activities:
· Planning: Identify the objectives, constraints, and risks for the current iteration.
· Risk Analysis: Analyze the risks and develop strategies to mitigate them.
· Engineering: Develop the software increment, using the strategies developed in the risk analysis phase.
· Evaluation: Evaluate the software increment, identify lessons learned, and plan for the next iteration.
4. Evolutionary Nature: The model is evolutionary, meaning that the software is developed in small increments, with each iteration building upon the previous one, and the requirements are refined and updated as the project progresses.
Phases of the Evolutionary Spiral Model:
1. Initialization: Define the project scope, goals, and constraints.
2. Spiral Phase 1: Develop the initial software increment, focusing on the most critical features.
3. Spiral Phase 2: Refine the software increment, based on feedback from stakeholders and users.
4. Spiral Phase 3: Continue to refine and expand the software increment, incorporating new features and requirements.
5. Spiral Phase n: Repeat the spiral phases until the software meets the desired level of quality and functionality.
Advantages:
1. Flexibility: The Evolutionary Spiral Model allows for flexibility in responding to changing requirements and risks.
2. Risk Management: The model's risk-driven approach helps to identify and mitigate risks early in the development process.
3. Iterative Development: The iterative nature of the model allows for continuous improvement and refinement of the software.
Disadvantages:
1. Complexity: The model can be complex to manage, especially for large projects.
2. Resource-Intensive: The iterative nature of the model can require significant resources and time.
3. Difficulty in Predicting Outcomes: The evolutionary nature of the model can make it challenging to predict the final outcome.
When to Use:
1. High-Risk Projects: The Evolutionary Spiral Model is suitable for high-risk projects, where the requirements are uncertain or changing.
2. Complex Systems: The model is suitable for complex systems, where the development process requires a high degree of flexibility and adaptability.
3. Rapidly Changing Requirements: The model is suitable for projects with rapidly changing requirements, where the development process needs to be agile and responsive.
4. Agile
Agile methodology is an iterative and incremental approach to software development and project management that emphasizes flexibility, collaboration, and rapid delivery. It was first introduced in the Agile Manifesto in 2001 by a group of software developers.
Core Values of Agile Methodology:
1. Individuals and Interactions: People and communication are more important than processes and tools.
2. Working Software: Working software is more important than comprehensive documentation.
3. Customer Collaboration: Collaboration with customers and stakeholders is more important than contract negotiation.
4. Responding to Change: Responding to change is more important than following a plan.
Agile Principles:
1. Customer Satisfaction: Deliver working software that meets customer needs.
2. Welcome Change: Embrace change and be flexible.
3. Deliver Working Software: Deliver working software in short iterations.
4. Business People and Developers: Collaborate with business people and developers.
5. Face-to-Face Conversation: Use face-to-face conversation for communication.
6. Working Software: Measure progress by working software.
7. Sustainable Development: Promote sustainable development.
8. Continuous Attention: Pay continuous attention to technical excellence and good design.
9. Simplicity: Keep things simple.
10. Self-Organizing Teams: Encourage self-organizing teams.
11. Regular Reflection: Reflect on processes and improve them regularly.
12. Continuous Improvement: Continuously improve processes and practices.
Agile Methodologies:
1. Scrum: A framework for managing and completing complex projects using iterative and incremental practices.
2. Kanban: A visual system for managing work, emphasizing continuous flow and limiting work in progress.
3. Lean: A methodology that aims to minimize waste and maximize value.
4. Extreme Programming (XP): A methodology that emphasizes technical practices such as pair programming and continuous integration.
5. Crystal: A family of agile methodologies tailored to specific project and organizational requirements.
Agile Roles:
1. Product Owner: Responsible for defining and prioritizing product backlog.
2. Scrum Master: Facilitates Scrum process and removes impediments.
3. Development Team: Responsible for developing software.
4. Stakeholders: Provide input and feedback on the project.
Agile Ceremonies:
1. Sprint Planning: Plan the work for the upcoming sprint.
2. Daily Scrum: Daily meeting to discuss progress and plans.
3. Sprint Review: Review the work completed during the sprint.
4. Sprint Retrospective: Reflect on the sprint and identify areas for improvement.
Benefits of Agile Methodology:
1. Faster Time-to-Market: Deliver working software quickly.
2. Improved Collaboration: Encourages collaboration among team members and stakeholders.
3. Increased Flexibility: Respond to change quickly.
4. Higher Quality: Focus on delivering working software.
5. Reduced Risk: Identify and mitigate risks early.
Challenges of Agile Methodology:
1. Cultural Shift: Requires a cultural shift from traditional waterfall approach.
2. Team Buy-In: Requires team buy-in and commitment.
3. Scalability: Can be challenging to scale agile to large teams and projects.
4. Documentation: Can be challenging to maintain documentation.
5. Metrics: Can be challenging to measure progress and success.

Question 9 – Waterfall RUP Spiral and Scrum Models – 8 Marks
They discussed models in SDLC like waterfall RUP Spiral and Scrum. You put forth you’re understanding on these models
When the APT IT SOLUTIONS company got the project to make this online agriculture product store, there is a difference of opinion between a coupleof SMEs and the project team regarding which methodology would be more suitable for this project. SMEs are stressing using the V model and the project team is leaning more onto the side of waterfall model. As a business analyst, which methodology do you think would be better for this project?
Answer:

Models: models provide frameworks and approaches for planning, organizing, and controlling projects. models offer different strategies for managing projects, with some emphasizing sequential steps while others focus on iterative development and flexibility.
V-Model:
The V-Model is a software development process model that is used to plan and manage the development of software applications. It is also known as the Vee Model or Verification and Validation Model.
The V-Model is a sequential model, meaning that each phase is completed before moving on to the next one. The model is shaped like a "V" because it starts with requirements gathering at the top, then moves down through the design and development phases, and finally back up through the testing and validation phases.
Here are the phases of the V-Model:
1. Requirements Gathering: This is the first phase of the V-Model, where the requirements of the software application are gathered and documented.
2. System Design: In this phase, the overall system architecture is designed, including the hardware and software components.
3. Architecture Design: The architecture design phase involves designing the detailed architecture of the software application.
4. Module Design: In this phase, the individual modules of the software application are designed.
5. Coding: The coding phase involves writing the code for the software application.
6. Unit Testing: Unit testing involves testing individual units of code to ensure they are working correctly.
7. Integration Testing: Integration testing involves testing the integration of multiple units of code to ensure they are working together correctly.
8. System Testing: System testing involves testing the entire software application to ensure it meets the requirements.
9. Acceptance Testing: Acceptance testing involves testing the software application to ensure it meets the user's requirements.
10. Deployment: The final phase of the V-Model is deployment, where the software application is deployed to the production environment.
The V-Model is a linear model, meaning that each phase is completed before moving on to the next one. This can make it difficult to make changes to the software application once it has been developed.
Advantages of the V-Model:
1. Easy to understand and implement
2. Simple to manage and track progress
3. Ensures that each phase is completed before moving on to the next one
Disadvantages of the V-Model:
1. Linear approach can make it difficult to make changes
2. Does not allow for iteration or feedback
3. Can be time-consuming and expensive to make changes
When to use the V-Model:
1. Small to medium-sized projects
2. Projects with well-defined requirements
3. Projects with a fixed timeline and budget
When not to use the V-Model:
1. Large and complex projects
2. Projects with unclear or changing requirements
3. Projects that require iteration and feedback

Waterfall Model:
The Waterfall Model is a linear software development process model that follows a sequential approach. It is one of the oldest and most traditional models used in software development.
Here's a brief overview of the Waterfall Model:
Phases:
1. Requirements Gathering: Collect and document the requirements of the project.
2. Analysis: Analyze the requirements and create a detailed specification of the software.
3. Design: Create a detailed design of the software, including the architecture and user interface.
4. Implementation: Write the code for the software.
5. Testing: Test the software to ensure it meets the requirements.
6. Deployment: Deploy the software to the production environment.
7. Maintenance: Maintain the software and fix any bugs or issues that arise.
Characteristics:
1. Linear approach: Each phase is completed before moving on to the next one.
2. No overlap: There is no overlap between phases.
3. No iteration: Once a phase is completed, it is not revisited.
4. Predictable: The Waterfall Model is predictable, and the outcome is known at the beginning of the project.
Advantages:
1. Easy to manage: The Waterfall Model is easy to manage, as each phase has a clear start and end point.
2. Predictable: The outcome is predictable, and the project timeline is well-defined.
3. Low risk: The Waterfall Model is a low-risk approach, as each phase is completed before moving on to the next one.
Disadvantages:
1. Inflexible: The Waterfall Model is inflexible, and changes are difficult to make once a phase is completed.
2. High risk of failure: If a phase is not completed correctly, the entire project can fail.
3. Long development time: The Waterfall Model can result in a long development time, as each phase must be completed before moving on to the next one.
When to use:
1. Well-defined requirements: The Waterfall Model is suitable for projects with well-defined requirements.
2. Low-risk projects: The Waterfall Model is suitable for low-risk projects, where the outcome is predictable.
3. Small projects: The Waterfall Model is suitable for small projects, where the development time is short.

Scrum Model:
The Scrum model is a framework used in Agile project management to facilitate teamwork, accountability, and iterative progress toward well-defined goals. It emphasizes teamwork, accountability, and iterative progress toward well-defined goals. Here's an overview of the Scrum model:
Key Components:
1. Product Owner (PO): Responsible for defining and prioritizing the product backlog, which is a list of features or user stories to be developed.
2. Scrum Master (SM): Facilitates the Scrum process, ensures the team follows the framework, and removes impediments that block progress.
3. Development Team: A cross-functional team of developers, testers, and designers who work together to develop the product.
4. Sprint: A time-boxed period (usually 2-4 weeks) during which the team works on a specific set of tasks from the product backlog.
Scrum Process:
1. Sprint Planning: The team plans the work to be done during the upcoming sprint, selecting tasks from the product backlog.
2. Daily Scrum: A 15-minute meeting where team members share their progress, plans, and any obstacles.
3. Sprint Execution: The team works on the tasks selected during sprint planning.
4. Sprint Review: The team demonstrates the work completed during the sprint to stakeholders.
5. Sprint Retrospective: The team reflects on the sprint, identifying what went well and what can be improved.
Artifacts:
1. Product Backlog: A prioritized list of features or user stories to be developed.
2. Sprint Backlog: A list of tasks to be completed during the sprint.
3. Increment: The working product increment delivered at the end of each sprint.
Scrum Values:
1. Focus: Prioritize work and minimize distractions.
2. Commitment: Team members commit to completing the work planned during the sprint.
3. Courage: Team members are encouraged to take risks and speak up when needed.
4. Openness: Transparency and open communication among team members and stakeholders.
5. Respect: Team members respect each other's opinions and expertise.
Benefits:
1. Improved Team Collaboration: Scrum encourages teamwork and collaboration.
2. Increased Transparency: Stakeholders are informed about progress and changes.
3. Faster Time-to-Market: Scrum's iterative approach allows for faster delivery of working software.
4. Adaptability: Scrum allows for changes in requirements and priorities.
By following the Scrum model, teams can deliver working software in short cycles, respond to change quickly, and continuously improve their processes.

Spiral Mode:
The Spiral Model is a software development process model that combines elements of both the Waterfall and Prototyping models. It was first introduced by Barry Boehm in 1986.
Key Characteristics:
1. Iterative and Incremental: The Spiral Model is an iterative and incremental approach, where the software is developed in a series of spirals, with each spiral representing a phase of the project.
2. Risk-Driven: The model is risk-driven, meaning that the development process is guided by the level of risk associated with each phase.
3. Combines Waterfall and Prototyping: The Spiral Model combines the linear and sequential approach of the Waterfall model with the iterative and incremental approach of the Prototyping model.
Phases of the Spiral Model:
1. Planning: Identify the objectives, constraints, and alternatives for the project.
2. Risk Analysis: Identify and analyze the risks associated with the project.
3. Engineering: Develop the software, using the results of the risk analysis to guide the development process.
4. Evaluation: Evaluate the software, using the results of the engineering phase to identify any issues or problems.
5. Prototyping: Create a prototype of the software, using the results of the evaluation phase to guide the development of the prototype.
Advantages:
1. Risk Management: The Spiral Model is well-suited for projects with high levels of risk, as it allows for iterative and incremental development.
2. Flexibility: The model is flexible and can be adapted to changing project requirements.
3. Improved Quality: The iterative and incremental approach of the Spiral Model can lead to improved software quality.
Disadvantages:
1. Complexity: The Spiral Model can be complex and difficult to manage, especially for large projects.
2. Time-Consuming: The iterative and incremental approach of the model can be time-consuming and may lead to delays.
3. High Cost: The Spiral Model can be more expensive than other software development models, due to the iterative and incremental approach.
When to Use the Spiral Model:
1. High-Risk Projects: The Spiral Model is well-suited for projects with high levels of risk, such as those with complex or uncertain requirements.
2. Large Projects: The model can be used for large projects, where the iterative and incremental approach can help to manage complexity.
3. Projects with Changing Requirements: The Spiral Model is flexible and can be adapted to changing project requirements.

RUP Model:
The Rational Unified Process (RUP) model is a software development process framework that was developed by Rational Software Corporation (now part of IBM). It is a structured approach to software development that emphasizes the importance of iterative and incremental development, risk management, and continuous improvement.
Key Principles of RUP:
1. Iterative Development: Break down the development process into smaller, manageable iterations, each with its own set of goals and deliverables.
2. Incremental Development: Deliver working software in increments, with each increment building on the previous one.
3. Risk Management: Identify and mitigate risks throughout the development process.
4. Continuous Improvement: Continuously evaluate and improve the development process.
Phases of RUP:
1. Inception: Define the project's vision, scope, and objectives.
2. Elaboration: Develop a detailed plan, including the project's architecture, requirements, and timeline.
3. Construction: Build the software, using iterative and incremental development.
4. Transition: Deploy the software to production and provide support.
Workflows of RUP:
1. Business Modeling: Define the business requirements and processes.
2. Requirements: Gather and document the functional and non-functional requirements.
3. Analysis and Design: Develop a detailed design and architecture for the software.
4. Implementation: Write the code and build the software.
5. Test: Test the software to ensure it meets the requirements.
6. Deployment: Deploy the software to production.
7. Configuration and Change Management: Manage changes to the software and its configuration.
Roles in RUP:
1. Project Manager: Oversees the project and ensures it is delivered on time, within budget, and to the required quality.
2. Business Analyst: Defines the business requirements and processes.
3. Software Architect: Develops the software architecture and design.
4. Software Developer: Writes the code and builds the software.
5. Tester: Tests the software to ensure it meets the requirements.
Benefits of RUP:
1. Improved Quality: RUP's iterative and incremental approach ensures that the software is thoroughly tested and meets the requirements.
2. Reduced Risk: RUP's risk management approach identifies and mitigates risks throughout the development process.
3. Increased Productivity: RUP's structured approach ensures that the development process is efficient and effective.
4. Better Communication: RUP's emphasis on documentation and communication ensures that all stakeholders are informed and aligned throughout the development process.
Limitations of RUP:
1. Complexity: RUP can be complex and difficult to implement, especially for small projects.
2. Rigidity: RUP's structured approach can be inflexible and may not adapt well to changing requirements.
3. Overhead: RUP requires significant overhead in terms of documentation, meetings, and process management.
Overall, RUP is a comprehensive software development process framework that emphasizes iterative and incremental development, risk management, and continuous improvement. While it has its limitations, it can be an effective approach for large, complex projects that require a structured and disciplined approach.

As a BA I would be choosing Waterfall methodology because: It is a simple & easy to understand model. The complete process is divided into several phases. One phase should be completed to reach the next phase.
 The first phase is requirement gathering and analysis. The requirements are then documented. It is called the Software Requirement Specification (SRS). The next is the swot system design phase. It is to design the entire software architecture. Next phase is the implementation phase. It is to start coding the small units. These units are combined to form the complete system and tested in the integration and testing phase. After the testing is completed, the software is distributed to the market. The activities such as maintenance of the software and adding new features come under deployment and maintenance.

Question 10 – Waterfall Vs V-Model - 5 Marks
20Write down the differences between waterfall model and V model.
Answer:
	Aspect
	Waterfall Model
	V Model

	Cost
	The cost of Waterfall model is low.
	V-model is expensive.

	Simplicity
	Simplicity of Waterfall model is simple.
	Simplicity of V-model is Intermediate

	Flexibility
	Flexibility of Waterfall model is Rigid.
	Flexibility of V-model is Little flexible.

	Phases
	There is no way to return to the earlier phase.
	There is no such constraint in V-model.

	Execution Process
	Waterfall model is a sequential execution process.
	It is also a sequential execution process

	Linear Movement of Steps
	Waterfall model’s steps move in a linear way.
	V-model’s steps don’t move in linear way.

	Reusability
	Re-usability of Waterfall model is Limited.
	V-model can be Re-use for some extent.

	User Involvement
	User involvement in Waterfall model is only in beginning.
	User involvement in V-model is also only in beginning.

	Testing Activities Start
	In Waterfall model testing activities start after the development activities are over.
	In V-model testing activities start with the first stage.

	Success Guarantee
	Guarantee of success through Waterfall model is low.
	Guarantee of success through V-model is high.

	Process
	Waterfall model is a continuous process.
	V-model is a simultaneous process.

	Defects
	Software made using Waterfall model, the number of defects are less in comparison of software made using V-model.
	Software made using V-model, the number of defects are greater in comparison of software made using Waterfall model.

	Requirement Specification
	Requirement specification in Waterfall model is necessary in beginning.
	Requirement specification in V-model is also necessary in beginning.

	Customer Involvement
	Less customer involvement.
	More customer involvement as compared to waterfall model.

	Testing during Development
	It is not possible to test a software during its development.
	There is possibility to test a software during its development.

	Identification of Defects
	Identification of defects is done in the testing phase.
	Identification of defects can be done from the beginning.

	Debugging
	Debugging is done after the last phase.
	Debugging can be done in between phases.

	Usage
	Waterfall model is less used now-a-days in software engineering.
	V-model is widely used in software engineering, healthcare and aerospace.

Question 11 – Justify your choice - 3 Marks
As a BA, state your reason for choosing one model for this project.
Answer:
As a BA I would be choosing Waterfall methodology
Waterfall model is an easy to understand and simple model. The complete process is divided into several phases. One phase should be completed to reach the next phase. The first phase is requirement gathering and analysis. The requirements are then documented. It is called Software Requirement Specification (SRS). The next is the system design phase. It is to design the entire software architecture. Next phase is the implementation phase. It is to start coding the small units. These units are combined to form the complete system and tested in the integration and testing phase. After the testing is completed, the software is distributed to the market. The activities such as maintenance of the software and adding new features come under deployment and maintenance. This model is appropriate for small projects and when the requirements are very clear.

