Q1. Draw a Use Case Diagram
A Use Case Diagram illustrates the functionality of a system from the user's perspective. It shows the actors (users or other systems) and the use cases (the functions they perform). For a customer making a payment, the core use case would be "Make Payment."



Q2. Derive Boundary Classes, Controller Classes, Entity Classes
In object-oriented analysis, a system's components are often categorized into three types of classes based on their function in a Model-View-Controller (MVC) architecture.
· Boundary Classes (View): These classes manage the interaction between the system and its actors (users or other systems). They are the interface, like a user's screen or a communication protocol. They handle the input and display the output. In this case study, a boundary class would be the Payment Page, which presents payment options to the customer and receives their input.
· Controller Classes (Controller): These classes manage the flow of the application. They receive input from the boundary classes, interpret the user's request, and coordinate with entity classes to perform the necessary actions. They are the "brains" of a specific use case. For the "Make Payment" use case, a Payment Controller would be the controller class. It would handle the logic of processing the payment.
· Entity Classes (Model): These classes represent the core data of the system and its business logic. They often correspond to objects in the real world that the system needs to track and manage. In the payment scenario, entity classes would include Customer, Payment, and Transaction. The Payment entity would hold details like the amount, payment method, and status.

Q3. Place These Classes on a Three-Tier Architecture
A three-tier architecture is a client-server architecture in which the user interface, business logic, and data storage are developed and maintained as separate modules. This separation allows for easier scalability and maintenance. The three tiers are the Presentation Tier, Application Tier, and Data Tier.
· Presentation Tier (UI Layer): This is the top-most tier and contains the user interface. It communicates directly with the user. The Boundary Classes (PaymentPage) would reside here.
· Application Tier (Business Logic Layer): This is the middle tier and contains the business logic of the system. It processes user input, orchestrates tasks, and makes decisions based on the business rules. The Controller Classes (PaymentController) and the Entity Classes (Customer, Payment, Transaction) would reside here.
· Data Tier (Database Layer): This is the bottom-most tier and contains the database management system (DBMS) and the data. The data is stored and managed here. The Entity Classes (Customer, Payment, Transaction) would be physically stored in this tier, although their logic and manipulation are handled in the Application Tier.

Q4. Explain Domain Model for Customer Making Payment Through Net Banking
A 
Domain Model is a visual representation of the conceptual classes or real-world objects in the problem domain. It focuses on the relationships and attributes of these objects, showing what they are and how they connect, without detailing the system's operations.
For a customer making a payment via Net Banking, the domain model would include:
· Customer: The person initiating the payment.
· Attributes: Name, Customer ID.
· Payment: The transaction being made.
· Attributes: Payment ID, Amount, Date, Status.
· Net Banking: The method of payment.
· Attributes: Bank Name, Account Number.
The relationships would be:
· A Customer makes a Payment.
· A Payment is made using Net Banking.
This model would be represented using a class diagram showing these classes, their attributes, and the associations between them.

Q5. Draw a Sequence Diagram for Payment Done by Customer Net Banking
A 
Sequence Diagram shows the order of interactions between objects in a system for a specific scenario. It emphasizes the time-based sequence of messages exchanged between objects.



Q6. Explain Conceptual Model for This Case
A Conceptual Model is a high-level representation that identifies the key concepts and their relationships within a system. It is a more abstract view than a domain model, focusing on the concepts themselves rather than detailed attributes or implementation specifics. It helps to clarify the overall system and its purpose.
For this case study, the conceptual model would highlight the main concepts:
· Customer: The user of the system.
· Payment: The core action or transaction.
· Payment Methods: The different ways a payment can be made (Card, Wallet, Cash, Net Banking).
The model would show that a Customer initiates a Payment, and that a Payment can be processed through various Payment Methods. It would represent the "is a" relationship (e.g., "Pay by Card is a Payment Method"). The purpose of the model is to ensure everyone involved has a shared understanding of the fundamental concepts before moving to more detailed design.

Q7. What is MVC Architecture? Explain MVC Rules to Derive Classes from Use Case Diagram and Guidelines to Place Classes in 3-Tier Architecture
MVC (Model-View-Controller) is a software design pattern that separates an application into three interconnected components to isolate internal representations of information from the ways information is presented to and accepted from the user. This separation allows for parallel development and a more organized code base.
· Model: Manages the data and business logic. It notifies the view of any data changes.
· View: Displays the data from the model to the user. It is responsible for the presentation layer.
· Controller: Acts as an intermediary between the model and the view. It receives user input from the view and translates it into actions for the model.
Deriving Classes from a Use Case Diagram Using MVC Rules:
· Boundary Classes (Views): For every actor-to-use-case relationship in the diagram, you derive a Boundary Class. This class represents the interface through which the actor interacts with the system. For our "Customer Make Payment" use case, the Payment Page is the boundary class.
· Controller Classes (Controllers): For each Use Case, you derive a Controller Class. This class manages the business logic and flow of that specific use case. The Payment Controller is the controller for the "Make Payment" use case.
· Entity Classes (Models): For each real-world Noun or object in the use case description, you derive an Entity Class. These classes hold the data and core business logic. From the description, "customer" and "payment" are nouns, leading to the Customer and Payment entity classes.
Guidelines to Place Classes in a 3-Tier Architecture:
· Presentation Tier: All Boundary Classes (Views) go here. They are the front-end components that users interact with.
· Application Tier: All Controller Classes (Controllers) and the logic of Entity Classes (Models) go here. This is the central hub where business rules are applied and the flow is managed.
· Data Tier: The persistence of the Entity Classes (Models) resides here. This is the database layer where data is stored and retrieved. The application tier communicates with this layer to access and manipulate data.

Q8. Explain BA Contributions in Project (Waterfall Model - All Stages)
Business Analyst (BA) plays a crucial role in all stages of the Waterfall Model, a sequential development process where each phase must be completed before the next begins.

	Stage
	Activities
	Artifacts Produced/Contributed
	Resources or Inputs

	Requirement Gathering & Analysis
	Elicit requirements from stakeholders (interviews, workshops, surveys)
- Document business needs
- Analyze business processes & gaps
- Define scope & constraints
- Prioritize requirements
	Business Requirement Document (BRD)
- Stakeholder Analysis
- Requirement Traceability Matrix (RTM - initial version)
- Use Case Diagrams / Models
- Process Flow Diagrams
	Business Stakeholders
- End Users
- Project Sponsor
- Domain SMEs

	System Design
	Support architects/designers with requirement clarifications
- Validate design against requirements
- Ensure business rules are included
- Review prototypes/wireframes for alignment
	Updated RTM
- Functional Specification Document (FSD)
- Data Models (if BA is involved)
- UI/UX Mockups Validation Notes
	Solution Architects
- Technical Leads
- UX/UI Designers
- QA Lead (for early test planning)

	Implementation (Development)
	Clarify requirements during coding
- Answer developer queries
- Manage requirement changes (CRs)
- Ensure requirements compliance
	Updated Requirement Clarification Logs
- Change Request Documents
- Updated RTM (with CR links)
	Developers
- Technical Lead
- Configuration Manager

	Testing (Verification & Validation)
	Support QA in understanding requirements
- Review & validate test cases
- Perform UAT prep & coordination
- Validate defect impact on business needs
	Test Case Review Sign-off
- UAT Scenarios & Scripts
- Defect Triage Reports
- Updated RTM with test coverage
	QA/Test Team
- UAT Users
- Project Manager
- Business Stakeholders

	Deployment
	Support release planning
- Validate readiness against business requirements
- Participate in go/no-go decisions
- Support change management & training
	Release Notes Review
- User Training Materials (support)
- Updated RTM (finalized)
- Transition Document (handover)
	Release Manager
- Ops/Support Team
- Training Team
- Business Stakeholders

	Maintenance & Support
	Support issue analysis & impact assessment
- Validate production defects vs requirements
- Assist in change requests for enhancements
- Capture new requirements for future versions
	Defect/Enhancement Logs
- Change Request Documentation
- Updated Requirement Backlog (future scope)
- Lessons Learned Document
	Support Team
- End Users
- Product Owner (if transitioning to Agile later)
- Business Stakeholders




Q9. What is Conflict Management? Explain using Thomas-Kilmann Technique
Conflict management is the process of addressing disagreements or disputes between two or more parties to reach a resolution. Effective conflict management can lead to stronger relationships, improved problem-solving, and better outcomes.
The Thomas-Kilmann Conflict Mode Instrument (TKI) identifies five different styles of conflict resolution based on two dimensions: assertiveness (the degree to which a person tries to satisfy their own concerns) and cooperativeness (the degree to which a person tries to satisfy another's concerns).
The five conflict styles are:
1. Competing (High Assertiveness, Low Cooperativeness): A win-lose approach where an individual pursues their own concerns at the other's expense. This is useful in emergencies or when a quick, decisive action is needed.
2. Accommodating (Low Assertiveness, High Cooperativeness): A lose-win approach where an individual neglects their own concerns to satisfy the other person's. This is appropriate when the issue is more important to the other party or to maintain harmony.
3. Avoiding (Low Assertiveness, Low Cooperativeness): A lose-lose approach where an individual sidesteps or postpones the conflict. This is useful when the issue is trivial or when more time is needed to gather information.
4. Collaborating (High Assertiveness, High Cooperativeness): A win-win approach where both parties work together to find a solution that fully satisfies both their concerns. This is ideal for complex issues but requires significant time and effort.
5. Compromising (Medium Assertiveness, Medium Cooperativeness): A partial win-partial win approach where both parties give up something to find a mutually acceptable solution. This is often used as a quick, temporary solution or when both parties are equally powerful.

Q10. List Down the Reasons for Project Failure
Project failures can stem from a variety of reasons, often a combination of factors. Some of the most common reasons include:
· Poorly defined requirements: Unclear, incomplete, or changing requirements are a primary cause. Without a solid understanding of what the project needs to achieve, success is impossible.
· Poor communication: Lack of communication between team members, stakeholders, and management can lead to misunderstandings, duplicated effort, and missed deadlines.
· Lack of stakeholder involvement: Projects often fail when key stakeholders are not engaged in the process and do not provide timely feedback.
· Unrealistic timelines and budgets: Overly optimistic schedules or inadequate funding can lead to rushed work, compromised quality, and project abandonment.
· Lack of skilled resources: A team without the necessary skills or experience to complete the project is a recipe for failure.
· Poor project management: Ineffective leadership, a lack of clear roles and responsibilities, and poor risk management can derail a project.
· Scope creep: The uncontrolled expansion of the project's scope after it has begun, leading to increased costs and delays.
· Technological challenges: Choosing the wrong technology or facing unforeseen technical issues can halt progress.
· Lack of change management: Failing to plan for and manage the organizational changes that come with a new system can lead to user resistance and a lack of adoption.

Q11. List the Challenges Faced in Projects for BA
Business analysts face numerous challenges throughout a project:
· Managing stakeholder expectations: Stakeholders often have conflicting needs and expectations, and it's the BA's job to manage these and find a balanced solution.
· Dealing with changing requirements: Requirements can change due to market shifts, new business needs, or evolving technology. A BA must be flexible and able to manage these changes effectively.
· Ambiguous or incomplete information: BAs often work with stakeholders who may not know exactly what they want or who provide vague information. Extracting clear and complete requirements can be difficult.
· Acting as a liaison: BAs act as the bridge between technical and business teams. They must be able to communicate complex technical concepts to non-technical stakeholders and vice-versa, which can be challenging.
· Securing buy-in and sign-off: Getting stakeholders to agree on a final set of requirements and sign off on documentation can be a lengthy and difficult process.
· Resistance to change: Users and stakeholders may be resistant to new systems or processes, making it difficult for the BA to gain their support and ensure a smooth transition.
· Lack of authority: A BA often has a lot of responsibility without much formal authority, requiring them to use persuasion and negotiation skills to influence outcomes.

Q12. Write About Document Naming Standards
Document Naming Standards are a set of rules used to ensure consistency, clarity, and organization in naming project documents. A good standard makes it easy for anyone on the team to find, identify, and understand what a document is and its version history.
Key components of a standard document name often include:
· Project Code/Name: A short, unique identifier for the project (e.g., PAY-SYS).
· Document Type: A code or a short name for the type of document (e.g., BRD for Business Requirements Document, SRS for System Requirements Specification).
· Version Number: A version indicator (e.g., V1.0, V2.1). This is crucial for tracking changes and ensuring everyone is working on the latest version.
· Date: The date the document was created or last modified (e.g., YYYYMMDD format).
· Title/Description: A concise description of the document's content.
Example Naming Convention: [ProjectCode]_[DocumentType]_[DocumentTitle]_[Version]_[Date]
· Example: PAY-SYS_BRD_CustomerPayment_V2.1_20250919.docx

Q13. What are the Do's and Don'ts of a Business Analyst
A successful business analyst relies on a specific set of practices and behaviors.
Do's
· Do listen actively: Pay close attention to stakeholders to understand their needs and concerns fully.
· Do ask probing questions: Go beyond surface-level answers to uncover the root cause of a problem and get to the real requirements.
· Do maintain clear and concise documentation: Write requirements and other documents in a way that is easy for both technical and business audiences to understand.
· Do build strong relationships: Foster trust and rapport with stakeholders, developers, and project managers.
· Do manage expectations: Be transparent about what can and cannot be achieved, and communicate project status clearly.
· Do validate requirements: Always verify the documented requirements with stakeholders to ensure accuracy and completeness.
Don'ts
· Don't assume anything: Never make assumptions about what a stakeholder wants or needs. Always verify.
· Don't act as a project manager: While a BA supports the project, their primary role is not to manage tasks, schedules, or budgets.
· Don't get bogged down in technical details: A BA's focus should be on the business requirements, not on how the system will be technically implemented.
· Don't promise a solution without proper analysis: Avoid committing to a solution until you have fully understood the problem.
· Don't neglect communication: Lack of communication is a common reason for project failure. Always keep lines of communication open.

Q14. Write the Difference Between Packages and Sub-systems
In software design and modeling, 
packages and sub-systems are both used for organizing and grouping elements, but they have distinct purposes and implications.
Packages: A package is a general-purpose grouping mechanism. It is used to organize model elements like classes, use cases, or other packages. It is purely a logical construct for organizing a model and does not imply any behavioral or structural relationships. Think of it as a folder in a file system. Packages do not have their own behavior; they simply contain other elements.
· Sub-systems: A sub-system is a more specific and powerful grouping mechanism. It represents a component that has its own encapsulated behavior and well-defined interface. A sub-system is a system within a larger system. It hides its internal implementation details from the outside world and provides a set of services through its public interface. A sub-system can be developed, tested, and deployed as a self-contained unit.
Key Differences:
· Behavior: A sub-system has behavior; a package is just a container for organizing elements.
· Interface: A sub-system has a defined interface; a package does not.
· Encapsulation: A sub-system encapsulates its contents and hides its internal workings; a package does not.
· Purpose: Packages are for logical organization and namespace management. Sub-systems are for decomposition, modularity, and managing complexity.

Q15. What is Camel-Casing and Explain Where it Will Be Used
Camel-casing (or camelCase) is a naming convention where the first letter of the first word is in lowercase, and the first letter of every subsequent word is in uppercase, with no spaces between words. The name comes from the "humps" created by the capital letters.
Example: paymentController, customerPayment, calculateTotalAmount
Where it is Used:
Camel-casing is widely used in programming and system design, particularly for naming variables, functions, and methods.
· Variable Names: It's the standard for naming variables in languages like Java, JavaScript, and C#. For example, userName, totalPrice.
· Function/Method Names: It's used for naming functions or methods to make them more readable. For example, processPayment(), validateInput().
· Instance Fields/Attributes: In object-oriented programming, instance variables of a class are often named using camel-casing, such as customerId, accountBalance.
· API and File Naming: While not universally applied, some APIs and systems use camel-casing for their resource names.
Camel-casing improves code readability and reduces the chance of errors from misreading variable names.

Q16. Illustrate Development Server and What are the Accesses Does a Business Analyst Have?
A development server is a computing environment used by a software development team to create, test, and debug applications before they are deployed to a production environment. It's a non-production server where code is actively being built and tested.
Key characteristics of a development server include:
· It often contains a replica of the production database structure, but with sample or dummy data.
· It's used for unit testing, integration testing, and early-stage system testing.
· It's a sandbox environment where developers can experiment without the risk of affecting the live system.
BA Accesses on a Development Server:
A business analyst typically has limited, non-intrusive access to the development server. Their primary purpose for accessing it is for verification and validation, not for coding or system administration.
· Read-Only Access to the Application: The BA needs to access the application to perform Functional Testing and User Acceptance Testing (UAT). They use the application as if they were an end-user to verify that the implemented features meet the documented requirements.
· Read-Only Access to Database (in some cases): A BA might be given read-only access to the development database to verify that data is being stored correctly. For example, they might check if a new customer record or a payment transaction is correctly recorded.
· No write access or system-level access: A BA should not have the ability to change code, modify the database structure, or perform any system administration tasks on the server. This is to prevent accidental changes that could disrupt the development process.
· Access to logs: In some cases, a BA might have access to specific application logs to help debug issues or analyze user behavior, but this is less common than application access.

Q17. What is Data Mapping
Data mapping is the process of matching data fields from one source system to the corresponding data fields in a target system. It's a fundamental step in many data-related tasks, such as data migration, data integration, and data warehousing.
The goal of data mapping is to create a set of rules that define how data will be transformed and moved from its source to its destination. This can be as simple as a one-to-one mapping (e.g., Source.FirstName -> Target.FirstName) or more complex, involving data transformations (e.g., combining Source.First and Source.Last to create Target.FullName).
Key aspects of data mapping include:
· Source Data Analysis: Understanding the structure and content of the source data.
· Target Data Analysis: Understanding the structure and requirements of the target system.
· Mapping Rules: Creating a set of rules that dictate how data will be moved and transformed.
· Documentation: Creating a data map document that clearly shows the relationships and rules.

Q18. What is API. Explain How You Would Use API Integration in the Case of Your Application
An 
API (Application Programming Interface) is a set of rules and protocols that allows different software applications to communicate and interact with each other. It defines how one piece of software can request services from another, without needing to know the internal workings of that software. APIs act as a contract for data exchange.
API Integration in the Application Case Study:
The case study describes a local application that uses the dd-mm-yyyy date format but needs to accept data from another application in the US, which uses the mm-dd-yyyy format. An API integration would be the perfect solution to handle this data exchange and transformation.
Here's how this would work:
1. Define an API Contract: The team would define an API endpoint on the local application that the US application can call to send its data. This API would specify the data fields it expects, including the date, and the expected format.
2. API Call: When the US application wants to send data (e.g., a transaction record), it would make an API call to the local application's endpoint, sending the date in the mm-dd-yyyy format.
3. Data Transformation within the API: The local application's API would receive the data. Before processing it, it would contain logic (likely in a controller class) to transform the date format. It would parse the incoming mm-dd-yyyy string and convert it into a dd-mm-yyyy format.
4. Process Data: The local application would then proceed with its business logic using the correctly formatted date.
5. API Response: The API would then send back a response to the US application, indicating whether the data was successfully received and processed.
This approach ensures seamless communication between the two systems, even with different data formats, and it's a very common use case for APIs

image1.emf
Payment Application

payment initiation

view payment

options

Via Cash

Via Net Banking via Upi Wallet

Debit/Credit Card

«inherits»

«inherits»

«inherits»

«inherits»

customer

server

-End1

*

-End2

*

-End3

*

-End4

*

-End5

*

-End6

*

-End7

*

-End8

*


oleObject1.bin
System


Payment Application


payment initiation


Use Case


view payment
options


Via Cash


Via Net Banking


via Upi Wallet


Debit/Credit Card


«inherits»


«inherits»


«inherits»


«inherits»


customer


server


-End1


*


-End2


*


-End3


*


-End4


*


-End5


*


-End6


*


-End7


*


-End8


*



image2.emf
customer console Net Banking Gateway Bank Portal

1:login request

4:diaplay()

2:validity

3:profile request

5:trasfer request

6:trasfer

7:success

8:Acknowledgement


oleObject2.bin
customer console


Sequence


Net Banking Gateway


Bank Portal


5:trasfer request


6:trasfer


7:success


1:login request


4:diaplay()


2:validity


8:Acknowledgement


3:profile request



