Capstone Project 3
Q1 Draw a Use Case Diagram - 4 Marks

[image:]

[image:]
Q2. Derive Boundary Classes, Controller classes, Entity Classes. - 4 Marks
· Boundary Classes: Payment Interface, Card Interface, Wallet Interface, Net Banking Interface
· Controller Classes: Payment Controller, Transaction Controller
· Entity Classes: Customer, Payment, Transaction, Bank Details

Q3. Place these classes on a three tier Architecture. - 4 Marks
[image:]
The Three tier Architecture could be broken into below
· Presentation Layer: Payment Interface, Card Interface, Wallet Interface
· Business Logic Layer: Payment Controller, Transaction Controller
· Data Layer: Customer, Payment, Transaction, Bank Details

Q4. Explain Domain Model for Customer making payment through Net Banking - 4 Marks
The domain model represents objects involved in net banking payments, such as:
· Customer initiates payment
· Net Banking Interface facilitates transactions
· Transaction Record maintains details
· Bank Server verifies and processes the payment

Q5. Draw a sequence diagram for payment done by Customer Net Banking - 4 Marks
· Customer selects Net Banking payment method
· Payment system requests authentication from the Bank
· Bank authenticates and processes payment
· Confirmation sent to the payment system and customer

Q6. Explain Conceptual Model for this Case - 4 Marks
A conceptual model abstracts key entities and their relationships. Entities include Customer, Payment, Transaction, and Bank. Relationships:
· Customer makes a Payment
· Payment is processed through Net Banking
· Transaction is recorded
Q7. What is MVC architecture? Explain MVC rules to derive classes from use case diagram and guidelines to place classes in 3-tier architecture
MVC (Model-View-Controller) is a design pattern that separates an application into three interconnected components:
· Model: Manages data and business logic (Entity Classes)
· View: Handles UI representation (Boundary Classes)
· Controller: Processes input and coordinates Model and View (Controller Classes)
Q8. Explain BA contributions in project (Waterfall Model – all Stages)
· Requirement Gathering: Conducts stakeholder analysis, documents requirements
· Design: Assists in preparing functional specifications
· Implementation: Ensures alignment with requirements
· Testing: Validates system functionality
· Deployment: Provides user training and documentation
· Maintenance: Supports post-deployment changes
Q9. What is conflict management? Explain using Thomas-Kilmann technique
Conflict management involves resolving disputes effectively. The Thomas-Kilmann technique outlines five strategies:
· Competing
· Collaborating
· Compromising
· Avoiding
· Accommodating
Q10. List down the reasons for project failure
· Poor requirement gathering
· Lack of stakeholder involvement
· Scope creep
· Poor project management
· Inadequate testing
Q11. List the Challenges faced in projects for BA
· Unclear requirements
· Stakeholder conflicts
· Frequent changes
· Communication gaps
· Tight deadlines
Q12. Write about Document Naming Standards
· Use version control (v1.0, v2.0)
· Include document type (FRD, BRD)
· Follow consistent format (YYYY-MM-DD)
Q13. What are the Do’s and Don’ts of a Business Analyst
Do’s:
· Gather clear requirements
· Maintain good communication
· Validate requirements
Don’ts:
· Assume requirements
· Ignore stakeholder feedback
· Skip documentation
Q14. Write the difference between packages and sub-systems
· Packages: Logical grouping of classes
· Sub-systems: Independent components with defined functionalities
Q15. What is camel-casing and explain where it will be used
Camel-casing capitalizes the first letter of each word except the first (e.g., customerPayment). Used in variable and method naming.
Q16. Illustrate Development server and what are the accesses a BA has?
Development servers host test environments. BAs may have:
· Read access to test data
· Access to logs and reports
· Limited debugging permissions
Q17. What is Data Mapping?
Data mapping links data fields between source and destination. Used in migration and integration.
Q18. What is API? Explain how you would use API integration in the case of your application
An API (Application Programming Interface) allows different systems to communicate. In this case, the system must handle date format conversion between dd-mm-yyyy (local) and mm-dd-yyyy (US) by mapping and transforming data formats correctly.

image1.png
o 82 78 s ax 9o AE-L-A-L-8 s
A~Z~ &~ B Theme | =
Use Case
Type your search here 2> T e

Use Case.

Search for shapes: E

o— Interface

L communi... 4=

5 System
P = Boundary

™ Constraint [Note

2-lement 1T OR
™ Constrant | constraint

Model Explorer

3 Top Package
¥ Use Case-1
Admin
% Database
Existing Customer
£ New Customer
£ Payment Gateway/FCH
> Card
> Cash

image2.png

image3.png
Application Layer
(Front End - UIUX)
(Payments Interface/Card Interface/ Wallet Interface)

T

Business Logic
Payments Modes
CardiNet Banking/Cash/Wallet

"API Requestyt g Transaction Controller

i NG

API Response

Database Layer
MySql/Database
Mango DB/

