
QUESTION -1 A CUSTOMER CAN MAKE A PAYMENT EITHER BY CARD OR BY WALLET OR BY CASH OR BY NET BANKING.

QUESTION-2 DERIVE BOUNDARY CLASSES, CONTROLLER CLASSES, ENTITY CLASSES?
Boundary Classes: Boundary Classes are responsible for interfacing with actors (users). They handle inputs and outputs from the users and pass them to controller classes. It capture user actions and display results.
Example: Login form, customer app, payment page, search etc.
Controller Classes: Controller classes are responsible for managing the flow of control between boundary and entity classes.
They handle user inputs, apply logic, call the right business methods, and update the UI.
Example:
Payment Controller, Order Controller — these decide how to process a request and coordinate tasks.
Entity Classes: Entity classes represent the core business objects or data of the system.
They store information and contain business rules.
Example:
Customer, Payment, Order, Product
QUESTION-3 PLACE THESE CLASSES ON A THREE TIER ARCHITECTURE?
It Application can be viewed in three layers
· Application Layer
· Business Logic Layer
· Data Base Layer
These Three layer Approach we called it as “ Three –tier Architecture “.

	 Application / client / Front end Layer.
	GUI , Web Interface

	
	

	
	

	↨

	Business Logic Layer
	Application Programs, Web Pages

	
	

	
	

	↨

	Data Base Server/ Data Layer
	Data Base Management System

	
	

	
	

	
	

Application / client / Front end Layer.
It is the Top level tier . In this layer we have user interface (UI) . The Top tier interact with the Business logic layer . The duty is to collect the data and display the information.
Software’s used in this layers are HTML, JAVA, CSS JAVA SCRIPTS etc.
Business Logic Layer: Here the business logics are implemented . It is middle level tier. This layer is the heart of the application because were the information is processed . Here the business logics and rules are applied . Communication Through business logic layer and with the data tiers is through API CALLS .
Software’s used in this layers are Python , java, perl, PHP , ruby etc.
Data Layer : Here the data is stored and managed. Add, Delete and modify the data will be done in data layer. This tier is having direct communication with business logic layer but not through application layer . if they want to communicate they go through API CALLS.
Software’s used in this layers are RDBM , DBMS etc.
	CLASSES ON A THREE TIER ARCHITECTURE

	PRESENETATION LAYER/ APPLICATION LAYER

	Paymentpage

	Cardpaymentui

	Walletpaymentui

	Cash paymentui

	Netbankingpaymentui

	BUSINESS LOGIC LAYER

	Paymentcontroller

	Netbankingcontroller

	Walletcontroller

	Cardpaymentcontroller

	DATA LAYER

	Customer

	Payment

	Transction

	Card

	Walletaccount

	Bankaccount

QUESTION – 4 EXPLAIN DOMAIN MODEL FOR CUSTOMER MAKING PAYMENT THROUGH NET BANKING.
Domain Model : Each Participating class will do an action part all these classes and their action parts together will achieve functionality or task this approach we called it as Domain Model
A Domain Model describes the important things (objects) in the problem space, how they are connected, and what information they carry.
For customer making payment through Net Banking.

Here we have
· 2 Boundary classes i.e Cust paymentBC (); Payment by NetbankingBC();
· 1 Controller Class i.e Payment CC();
· 2 Entity Class i.e Customer EC(); Netbanking EC();

QUESTION- 5 DRAW A SEQUENCE DIAGRAM FOR PAYMENT DONE BY CUSTOMER NET BANKING.
SEQUENCE DIAGRAM : Sequence diagram is used primarily to show the interactions between classes in the sequential order in which those interactions occur. A sequence diagram can map a scenario described by a use case instep by step detail to define how classes collaborate to achieve your applications goals.
A Sequence Diagram is a type of UML (Unified Modeling Language) diagram that models the interaction between objects in a time-ordered sequence. It shows how and in what order different parts of a system interact to carry out a process or behavior.

a- SendCustomerPaymentDetailsToPaymentCC();
b- AddCompanyDetailsAndSendToPaymentByNetBankingBC();
c- updateTranscationDetailsToPaymentCC();
d- updateTranscationDetailsToCustomerEC();
e- updateTranscationDetailsToNetBankingEC();
f- updateTranscationDetailsToCustomerPaymentBC();

QUESTION -6 EXPLAIN CONCEPTUAL MODEL FOR THIS CASE?
All Possibilities’ of doing theses Transactions ,Frequencies of doing these transactions, volumes of doing these transactions, values of doing these transactions , Geographical distribution of these transactions Entire information together we call it as CONCEPTUAL MODEL.
· It shows main entities, relationships, and interactions without going into technical details.
· It helps Business Analysts and stakeholders understand the domain and business rules clearly.
Conceptual Model Explanation for this Case:
1. Actors/Entities:
· Customer → initiates the payment.
· Payment → the core process of making a transaction.
· Payment Methods:
· Card
· Wallet
· Cash
· Net Banking
· Bank / Wallet Service Provider → validates and processes the payment for Card, Wallet, and Net Banking.
· Merchant System (Application) → receives the payment confirmation.
2. Relationships:
· Customer → makes a Payment.
· Payment → is done using one Payment Method (Card OR Wallet OR Cash OR Net Banking).
· For Card/Wallet/Net Banking, the Bank/Service Provider is involved for authentication and transaction processing.
· For Cash, payment confirmation happens directly without external validation.
3. Business Rules:
· Only one payment method is chosen per transaction.
· Payment must be validated and confirmed before order is placed.
· System must record transaction status (Success / Failure / Pending).
QUESTION-7 WHAT IS MVC ARCHITECTURE? EXPLAIN MVC RULES TO DERIVE CLASSES FROM USE CASE DIAGRAM AND GUIDELINES TO PLACE CLASSES IN 3-TIER ARCHITECTURE
MVC ARCHITECTURE : Model - View- Controller .
It Application can be viewed in three layers
· Application Layer
· Business Logic Layer
· Data Base Layer
These Three layer Approach we called it as “ Three –tier Architecture “.
If we are able to place classes in these Three – Tier Architecture layers then we can easily understand the Functionality of IT Application .
How to Identify Classes ?
Form use case if we can identify a class then we can place these classes inlayers. Now there is approach to identify the classes using use cases that approach we called it as MVC ARCHITECTURE .

MODEL – Database classes/ Entity class

VIEW - Boundary class (or) FORM CLASS

CONTROL- Controller class (Given to front end designers)
MVC RULES:
1. Combination of One actor and use case results in One Boundary class
Combination of Two actors and one use case results in Two Boundary Class
Combination of Three actors and one use case results in three Boundary class
2. Use Cases will results in Controller Class.
3. Each Actor will results in Entity Class.
· We have to take precautions while writing classes .
· We have to write three spate columns like Boundary Classes, Controller Classes and Entity Classes.
· Write Meaning Full names for classes.
· Easy way of understanding MVC is nactors = (2n+1) classes.
RULES FOR PLACING IN LAYERS :
1. Place all Entity classes in Database Layer
2. Place Primary Actor intitated to Boundary Class and Controller classes in Application layer.
3. Remaining Boundary Classes if reusable then Business Logic layer else place them in Application layer.
4. If you have to write the code of entire Business Functionality then you have to place in Application Layer
5. If you have to write the code to connect with Third party plugins then you have to place in Business logic layers.
QUESTION- 8 EXPLAIN BA CONTRIBUTIONS IN PROJECT (WATERFALL MODEL – ALL STAGES)
Water Fall Fallows Sequentional Approach
	STAGES OF WATERFALL MODEL
	RESOURCES
	ARTIFCATS

	Requirements Gathering
	BA, PM
	BRD

	Requirements Analysis
	BA , PM
	FS/FRS, SSD, SRS, RTM

	Design
	Tech Team- Sol Arch, Nw arch, DB Arch, GUI designer
	HDD/ ADD solution Document

	Development- Coding
	Programmers, Developers
	LDD/CDD Application

	Testing
	Testers
	Test Documents, Application with less errors

	Unit, component, system integration , UAT

	PROCESS- Configuration Management
	PM

	Deployment and Implementation
	Release Engineers
	

REQUIRMENTS GATHERING:
· BA will gather the requirements by stakeholder meetings, interviews, and workshops.
· In Requirements Gathering BA will gather all the requirements and prepare BRD (Business Requirement Document) .

REQUIRMENT ANALYSIS :
· BA will analyze the requirements and write the FRD(Functional Requirement Document).
· Technical Team will write Non Functional Requirements – SSD (Supplementary Support Document) .
· BA will add functional requirements FRD and non functional requirements SSD to form SRS (Software Requirement Specifications).
· Later BA will take sign off from the client on SRS.
· BA will write RTM (Requirement Traceability Matrix) referring to SRS.
DESIGN:
· BA works with Designers and Architectures to ensure that the design meets the business needs .
· BA will validate wireframes, ER diagrams and data flow diagrams
DEVELOPMENT –CODING:
· Clarifies requirements related doubts while designing.
· Ensure business needs and workflows are correctly understood by programmers and developers.

TESTING :
· BA will assist the team in test cases and user acceptance criteria.
· Participate in UAT (user Acceptance Test) with end users to validate system functionality.
DEPLOYMENT AND IMPLEMENTATION:
Deployment is nothing but Moving the code from the development to production.
Implementation means running the code in production for the very first time we called it as implementation. Both are taken care by release Engineers.
· BA prepares training manuals and releases notes.
· Support go live activities by addressing last minute clarifications.
At every stage of the Waterfall Model, the BA ensures that the solution being built is aligned with business needs. From requirements gathering to Implementation , the BA acts as a bridge between stakeholders and the technical team, minimizing gaps, reducing risks, and ensuring successful project delivery.
QUESTION-9 WHAT IS CONFLICT MANAGEMENT? EXPLAIN USING THOMAS – Skillman TECHNIQUE.
Conflict Management is the process uses to identify, analyze, and resolve disagreements between stakeholders, development teams, or business units to ensure smooth project progress.
Thomas –Skillman Technique:

[image:]

X-Axis indicates BA –cooperation(low to high)
Y-Axis Indicates Assertiveness/Process/Domain Knowledge(low to high)
1. When the Co-operation is low and Assertiveness is Low , we call it as “AVOID”
2. When the co-operation is High and Assertiveness is Low, we call it as “ACCOMMODATE”
3. When the co-operation is Low and Assertiveness is High, we call it as “ COMPETE”
4. When the co-operation is High and Assertiveness is High, we call it as “ COLLABORATE”
5. When both are at medium we call it as “ COMPROMISE”

QUESTION-10 . LIST DOWN THE REASONS FOR PROJECT FAILURE?
· IMPROPER REQUIREMENT GATHERING: If requirements are not clearly defined then it leads to misinterpretation.
· CONTINUOUS CHANGE IN REQUIREMENTS: constant scope changes disrupt sprint plans and lead to rework
· LACK OF USER INVOLVEMENT: Delayed responses or Minimal involvement from key roles like admin or regional admin can slow down the requirements gathering and sign off process.
· POOR COMMUNICATION: If BA fails to act as a proper bridge between stakeholder and developers, misunderstandings arise.
· Inadequate domain knowledge – Lack of understanding of the food delivery ecosystem , like how orders routed or how cod works.
· Poor Documentation – Missing or unclear documentation leads to confusion during development and testing.
· Weak user story mapping – without properly written and prioritized user stories , team may miss important features .
· Lack of proper UAT planning – Delay in involving stakeholders in user acceptance testing can result in late stage issue or rejections.
· Unrealistic Timelines – On delivery dates without considering team capacity lead to rushed work and poor quality.

QUESTION – 11 List the Challenges faced in projects for BA?
	CHALLENGES AREAS OF BA
	EXPLINATION

	Lack of training
	In fast-paced Agile projects like Scrum Foods, BAs are expected to understand domain knowledge quickly. Lack of initial training in logistics or delivery mechanisms can impact requirement quality.

	Obtaining sign-off on requirements
	Stakeholders often delay sign-offs due to unclear priorities or lack of time, affecting Sprint Planning and delivery.

	Change Management – with respect to cost and timelines
	Stakeholders may request changes after development starts. Managing these changes without impacting timelines and budget is a major challenge.

	Coordination between developers and testers
	Miscommunication can arise if user stories are not clearly understood by both developers and testers. Regular clarification and sync-ups are necessary.

	Conducting Meetings
	Ensuring effective Daily Scrums, Sprint Planning, and stakeholder meetings, especially with multiple roles like Delivery Boys, Restaurants, and Admins, can be difficult.

	Making sure status reporting is effective
	Reporting progress clearly and accurately using tools like Sprint Burn down Charts is essential but time-consuming.

	Driving clients for UAT completion
	Clients like Admin or Regional Admin may not prioritize UAT on time, delaying final sign-offs and releases.

	People Management (coordinating with different people and different teams)
	Coordinating with the Scrum Team, QA, Devs, and diverse stakeholders like Restaurants, Customers, and Business Owners requires strong communication and time management.

	Overall making sure project health is in good shape and delivered as per the timelines without issues
	Tracking the entire Scrum lifecycle, removing blockers, managing changes, and ensuring all sprint goals are met while keeping all parties aligned is a continuous challenge.

QUESTION-12 Write about Document Naming Standards?
Document Naming Standards are rules and guidelines used for creating consistent, meaningful, and easy-to-identify names for project documents.
They ensure that everyone in the team can easily locate, identify, and manage documents throughout the project lifecycle.
Document Name standards
Project name –Document Name- version- draft.ext
Example:
OPRQ785-BRD-V1-D1.dox
PQUI856-SRS-V1-D1.dox
BHANU74-FRD-V1-D1.dox
QUESTION -13 What are the Do’s and Don’ts of a Business analyst?
	S.NO
	Dos
	Don’ts

	1
	Go to the client with a plain mind — no assumptions.
	Never say NO to the client.

	2
	Listen carefully and completely before speaking.
	Do not assume anything “by default.”

	3
	Ask questions only after the client finishes explaining.
	Never imagine solutions based on GUI/screens.

	4
	Question everything, even the existence of existence.
	Don’t interrupt the client while they’re explaining the problem.

	5
	Consult an SME for clarifications in requirements.
	Don’t give solutions based on past experience or assumptions.

	6
	Understand every client’s problem is unique.
	Don’t be distracted by add-on functionalities.

	7
	Focus on important and truly required requirements.
	Don’t imagine solutions on screen basis.

QUESTION-14 Write the difference between packages and sub-systems ?
Components: Collection of Classes called components .The component diagram has main icon of rectangle that has 2 rectangles overlaid on its left side.
[image:]
Packages: Collection of components which are not reusable in nature called packages.
[image:]
Subsystem: Collection of reusable components are called subsystem.
	Feature
	Package
	Sub-system

	Definition
	A Package is a UML grouping mechanism used to organize related classes, interfaces, or diagrams.
	A Sub-system is a higher-level, independent unit of a system with defined behavior and interfaces.

	Purpose
	Helps in logical organization of model elements.
	Represents a functional division of the entire system.

	Scope
	Focuses on grouping for modularity and manageability.
	Focuses on partitioning the system into functional units.

	Content
	May contain classes, interfaces, components, use cases, or other packages.
	May include multiple packages, components, and interfaces.

	Visibility
	Typically internal structure-focused; not necessarily exposed externally.
	Exposes defined interfaces for communication with other sub-systems.

	Reuse
	Less focused on reuse; mainly for organization.
	Can be reused in other systems if designed generically.

	Dependency Management
	Shows dependencies between packages.
	Manages interface-based communication between sub-systems.

QUESTION -15 WHAT IS CAMEL-CASING AND EXPLAIN WHERE IT WILL BE USED?
Camel-Casing is a naming convention in programming where multiple words are written together without spaces, and each word after the first begins with a capital letter.

It is called “camel case” because the capital letters in the middle of the word resemble the humps of a camel

Entire first word will be in lowercase and subsequent words first letter should be in upper case. There will be no gap in between words.
Example : getEmpId();turnLeftAndSlowDown();.
USES: names of the documents , databases, API’S, Programming languages etc.

QUEST ION – 16 ILLUSTRATE DEVELOPMENT SERVER AND WHAT ARE THE ACCESSES DOES BUSINESS ANALYST HAS?
A Development Server is an environment where the software application is first developed and tested internally by the development team. It usually connects with a test database (not production data) to avoid risks.
A Development Server is where developers build and test the application. A Business Analyst only has read-only and validation access (not coding or configuration rights) to ensure requirements is correctly implemented.
Accesses does BA HAS:
1. Read Only access to application build
2. Access to Test Data
3. Access to logs or Error Messages
4. Requirement Validation Access
5. Collaboration of tools and documentation.
QUESTION – 17 WHAT IS DATA MAPPING?
Data Mapping is the process of matching fields from one data source to another so that data can be transferred, transformed, or integrated correctly between systems.
The process of analyzing, defining, and documenting how data from one system (source) corresponds to another system (target) so that integration, migration, or reporting can happen correctly.

	Example (BA’s Data Mapping Table):

	Source System Field
	Target System Field
	Business Rule / Transformation

	Cust_ID
	Customer ID
	Direct Mapping

	Cust_Name
	Full Name
	Direct Mapping

	DOB (DD-MM-YYYY)
	DateofBirth (MM-DD-YYYY)
	Format Conversion

QUESTION – 18 WHAT IS API. EXPLAIN HOW YOU WOULD USE API INTEGRATION IN THE CASE OF YOUR APPLICATION DATE FORMAT IS DD-MM-YYYY AND IT IS ACCEPTING SOME DATA FROM OTHER APPLICATION FROM US WHOSE DATE FORMAT IS MM-DD-YYYY.
API- Application Programming Interface. It is a third party , we need to understand 3rd party addresses to the system for the we use API’S.
API (Application Programming Interface) is a set of rules, protocols, and tools that allows two different applications or systems to communicate with each other. It acts as a bridge between systems, enabling data exchange securely and efficiently without exposing internal code or logic.
API Integration
API Integration means connecting two or more systems/applications so they can exchange data automatically via APIs.
It ensures seamless communication between different platforms, even if they follow different data structures, formats, or technologies.
How to Use API Integration in Case Scenario: Date Format Issue
· When your system receives the date via API, create a middleware logic that validates and converts the incoming date into the required format.
· Your application (Scrum Foods) accepts Date Format: DD-MM-YYYY (Indian format).Another application from the US is sending data in MM-DD-YYYY format. If directly integrated, the system will misinterpret dates.
For example:
· 05-07-2025 →
· In US Format (MM-DD-YYYY): July 5, 2025
· In Indian Format (DD-MM-YYYY): 7 July , 2025
· This causes data inconsistency and errors.
image3.emf
APPLICATION LAYER

BUSINESS LOGIC LAYER

DATA BASE LAYER

customer ENTITY CLASS

NETBANKING ENTITY

CLASS

PAYMENT CONTROLLER CLASS

CUST PAYMENT BOUNDARY CLASS

PAYMENT BY NETBANKING BOUNDAYR CLASS

/ A

oleObject3.bin
APPLICATION LAYER

BUSINESS LOGIC LAYER

DATA BASE LAYER

customer ENTITY CLASS

NETBANKING ENTITY CLASS

PAYMENT CONTROLLER CLASS

CUST PAYMENT BOUNDARY CLASS

PAYMENT BY NETBANKING BOUNDAYR CLASS

/ A

image4.emf
custpaymentBC

paymentbyNBBC

paymentCC

customerEC NetbankingEC custpaymentBC

paymentCC

a

b

d

c()

e

f

return message

return message

selfcheck or validation

oleObject4.bin
custpaymentBC

a

b

c()

d

e

f

paymentbyNBBC

paymentCC

customerEC

NetbankingEC

custpaymentBC

paymentCC

return message

return message

selfcheck or validation

image5.png
numz<—AmImuun>

HIGH

MEDIUM

Low

COMPETE

O

AvOID

COLLABORATE

O

MPROMISE

Low MEDIUM

BA -COOPERATION

/ACCOMODATE

HIGH

image6.png
Componentt

image7.png
/

Package!

image1.emf
LOGIN PAGE

make payment

WALLET DEBIT CARD CREDIT CARD NET BANKING

«extends»

«extends»

«extends»

«extends»

CASH

«extends»

CUSTOMER

-End1

*

-End2

*

«uses»

oleObject1.bin
LOGIN PAGE

make payment

WALLET

DEBIT CARD

CREDIT CARD

NET BANKING

«extends»

«extends»

«extends»

«extends»

«uses»

CASH

«extends»

CUSTOMER

-End1

*

-End2

*

image2.emf
customer

payment

Net Banking

«extends»

«extends»

oleObject2.bin
customer

payment

Net Banking

«extends»

«extends»

