Nurturing Process Capstone Project3 Part 1 of 2 V2D2 August 2024
Case Study 1 (Q1-Q6 - 24 Marks)
A customer can make a payment either by Card or by Wallet or by Cash or by Net banking.
Q1. Draw a Use Case Diagram - 4 Marks
[image:]
Q2. Derive Boundary Classes, Controller classes, Entity Classes. - 4 Marks

Boundary Classes: Used to handle interactions between the system and external actors.
[image:]
· Payment Page UI
· Card Payment UI
· Wallet Payment UI
· Net Banking UI
· Cash Payment UI
Controller classes: Acts as an Intermediaries between boundary and entity classes.
[image:]
· Payment Controller
· Transaction Manager
Entity Classes: Represent the core data and business logic of the application.
[image:]
· Customer
· Payment
· Transaction
· Wallet
· Bank Account
· Card Details
Q3. Place these classes on a three tier Architecture. - 4 Marks
Presentation Layer: This layer helps providing the user interface to interact with the system.
· Payment Method Selection Boundary
· Card Payment Boundary
Business Layer: This layer Contains the core logic and rules of the application.
· Payment Controller
· Transaction Manager
Data Layer: This provides Stores and retrieves all application data.
· Customer
· Payment
· Transaction
· Wallet
· Bank Account
· Card Details
Q4. Explain Domain Model for Customer making payment through Net Banking - 4 Marks
Domain Model: A Domain Model is a conceptual representation that defines the structure, relationships, and behaviors of entities within a specific problem domains.
[image:]
 Q5. Draw a sequence diagram for payment done by Customer Net Banking - 4 Marks
Sequence diagram: A sequence diagram is a type of interaction diagram used in software engineering and systems design to illustrate how processes operate with one another and in what order.
[image:]
[image:]
Q6. Explain Conceptual Model for this Case - 4 Marks
A Conceptual model is high-level representation of a system that helps in understanding, visualizing and communicating the essential aspects of a domain.
It provides a clear and simplified view of the domain, making it easier to understand.
Key Elements of a conceptual model:
1. Entities:
· Customer
· Transaction
· Payment Method (Card, Wallet, Cash, Net banking)
2. Attributes:
· Customer ID
· Name
· Email
· Phone number
3. Relationships:
· Customer initiates Payment
· Payment processed through payment method
· Each Payment generates a Transaction
Q7. What is MVC architecture? Explain MVC rules to derive classes from use case diagram and guidelines to place classes in 3-tier architecture - 8 Marks
MVC Architecture & Class Derivation Rules
MVC Architecture:
· Model: Business logic and data (e.g., Payment, Customer)
· View: UI elements (e.g., Payment page)
· Controller: Handles user input and connects Model to View
Deriving Classes from Use Case Diagram:
· Identify Boundary classes from UI elements
· Identify Control classes from use case flows
· Identify Entity classes from business domain
Placing Classes in 3-Tier Architecture:
· Presentation Tier: Views and Boundary classes
· Logic Tier: Controllers
· Data Tier: Entity classes, database objects
Q8. Explain BA contributions in project (Waterfall Model – all Stages) – 8 Marks
Answer: BA (Business Analyst) contributions in the Waterfall model
	Stage
	Activities
	Artifacts & Resources

	Pre Project
	Identify business need, perform feasibility analysis
	Feasibility Study Document, Business Case, SWOT Analysis

	Planning
	Define scope, timeline, resource needs, BA effort estimation
	Project Plan, Scope Statement, Stakeholder List

	Project Initiation
	Conduct stakeholder analysis, define goals, set initial requirements context
	Stakeholder Register, RACI Matrix, Initial Requirements List

	Requirements Gathering
	Conduct workshops, interviews, surveys; elicit functional and non-functional reqs
	Business Requirements Document (BRD), Meeting Notes, Use Case Diagrams

	Requirements Analysis
	Validate, prioritize, model requirements; resolve conflicts
	SRS (Software Requirements Specification), Process Flows, Data Models

	Design
	Support UI/UX discussions, validate business logic
	Wireframes, Prototypes, Domain Models, Design Review Notes

	Development
	Clarify requirements to dev team, manage requirement changes
	Change Request Logs, Requirements Traceability Matrix (RTM)

	Testing
	Support test case creation, validate functional coverage, defect triaging
	Test Scenarios, UAT Scripts, Defect Logs, RTM

	UAT (User Acceptance Testing)
	Assist in UAT planning, coordinate business stakeholders, validate that solution meets needs
	UAT Plan, UAT Feedback Document, Sign-off Document

Q9. What is conflict management? Explain using Thomas – Kilmann technique – 6 Marks
Conflict Management – Thomas-Kilmann Technique
Conflict management refers to the process of handling disagreements or clashes between individuals or groups in a constructive way. Conflicts are natural in any team or organization and, if managed well, can lead to growth, innovation, and better decisions.
One of the widely accepted models for understanding conflict behavior is the Thomas-Kilmann Conflict Mode Instrument (TKI). It outlines five different conflict-handling styles based on two dimensions: assertiveness and cooperativeness.
Thomas-Kilmann Conflict Styles:
1. Competing
· High assertiveness, low cooperativeness
· Focuses on winning the conflict at the cost of others
· Used in emergencies or critical decisions
Example: Manager enforcing a deadline regardless of team concerns
2. Collaborating
· High assertiveness, high cooperativeness
· Focuses on a win-win situation
· Ideal for complex scenarios where everyone’s input is valuable
Example: Business Analyst mediating between developers and users to refine a feature
3. Compromising
· Moderate assertiveness and cooperativeness
· Each party gives up something to reach a mutually acceptable solution
· Used when time is limited and resolution is needed quickly
Example: Dividing features between two releases to satisfy stakeholders
4. Avoiding
· Low assertiveness, low cooperativeness
· Delaying or ignoring the conflict
· Useful when the issue is minor or when emotions are too high
Example: BA choosing not to interfere in a technical disagreement temporarily
5. Accommodating
· Low assertiveness, high cooperativeness
· Sacrificing one’s own needs to satisfy the other party
· Used to preserve relationships or when the issue is more important to the other party
Example: Agreeing with a client’s request for a small change to build goodwill
5 Steps of Conflict Resolution:
1. Identify the Conflict
· Understand what the disagreement is about, who is involved, and its impact.
2. Discuss the Details
· Open communication to clarify perceptions and feelings from all parties.
3. Agree on the Root Problem
· All stakeholders must reach a consensus on what the actual conflict is.
4. Explore All Possible Solutions
· Brainstorm multiple alternatives together without judging them initially.
5. Negotiate and Finalize the Solution
· Select the best solution through negotiation that satisfies all and prevents future conflicts.
Role of BA in Conflict Management:
· Acts as a neutral facilitator
· Ensures objective analysis
· Promotes collaborative resolution
· Maintains documentation for traceability
Q10. List down the reasons for project failure – 6 Marks
Reasons for Project Failure
Projects may fail due to a combination of strategic, operational, and technical issues. Below are the key reasons for project failure
1. Poor Planning
Lack of a clear project roadmap, unrealistic timelines, or inadequate resource estimation can lead to confusion and delays. Without proper planning, project teams struggle to manage tasks effectively.
2. Unclear Objectives and Requirements
When business objectives and requirements are not well-defined or documented, the team might deliver something that doesn’t meet stakeholder expectations. This misalignment often results in rework and dissatisfaction.
3. Inadequate Risk Management
Failure to identify and mitigate potential risks at the beginning can lead to major disruptions later. Risks such as dependency delays, vendor failures, or regulatory issues can derail the project.
4. Poor Communication
Ineffective communication between stakeholders, team members, and departments leads to misunderstandings, duplicated efforts, and errors. It also causes delay in decision-making and status tracking.
5. Scope Creep
Continuous addition of new requirements without formal change management leads to uncontrolled growth in scope. This affects the project timeline, budget, and quality.
6. Lack of Stakeholder Engagement
If stakeholders are not actively involved during key stages (like requirement gathering or testing), the final output might not meet business expectations, resulting in rejection or rework.
7. Resource Constraints
Limited availability of skilled personnel, budget cuts, or over-allocation of team members can impact the quality and delivery timeline of the project.
8. Technical Challenges
Choosing inappropriate technologies, integrating with legacy systems, or facing unexpected technical complexities can increase development time and cost, and sometimes make the project unviable.
Q11. List the Challenges faced in projects for BA – 6 Marks
Challenges Faced in Projects for a Business Analyst (BA)
1. Unclear or Changing Requirements
One of the most common challenges for a BA is dealing with vague, incomplete, or frequently changing requirements. This makes it difficult to define the scope and can lead to confusion, rework, and delays in project delivery.
2. Managing Stakeholder Expectations
Stakeholders often have different priorities, perspectives, and understanding of the solution. A BA must balance conflicting interests and ensure that expectations are realistic and aligned with project objectives.
3. Scope Creep and Scope Management
Uncontrolled changes or continuous addition of features without proper impact analysis can lead to scope creep. BAs need to ensure there is a change control process and that all additions are evaluated for feasibility and impact.
4. Time and Resource Constraints
Projects are often bound by tight deadlines and limited resources. A BA must gather requirements, validate them, and ensure completeness within these constraints, which can lead to compromises or pressure on quality.
5. Quality Assurance and Testing
Ensuring the requirements are testable and supporting the QA team during test case creation and defect triaging can be challenging. If requirements are unclear, it affects the effectiveness of testing.
6. Documentation and Knowledge Management
Maintaining clear, up-to-date, and accessible documentation is crucial, yet often overlooked. Poor documentation leads to gaps in understanding and knowledge transfer issues, especially during team transitions.
7. Technology Constraints and Complexity
A BA need to work with legacy systems, incompatible technologies, or technically complex solutions. Understanding the limitations and ensuring the requirements are feasible in the given tech environment is a significant challenge.
Q12. Write about Document Naming Standards – 4 Marks
A document numbering standard is a systematic approach to assigning unique identities to
various documents created and used throughout the development process.

Ex. Suppose we have a project with the ID "PROJ123," and we're working with a Requirements Specification Document.

Project ID: PROJ123
Document Type: REQ
Version: 1.0
Date: 2024-05-26
The document identifier could be: PROJ123-REQ-1.0-2024-05-26
· Use consistent formats: DocumentType_ProjectName_Version_Date
· Avoid spaces, use underscores
· Include versioning and author initials if needed

Q13. What are the Do’s and Don’ts of a Business analyst – 6 Marks
Do’s and Don’ts of a Business Analyst
	Do’s
	Don’ts

	Ask relevant and insightful questions to clarify requirements
	Don’t make assumptions without validation

	Engage and communicate regularly with all stakeholders
	Don’t ignore or exclude any stakeholder’s input

	Document requirements clearly, completely, and accurately
	Don’t leave requirements vague or incomplete

	Maintain a traceability matrix to track requirements to deliverables
	Don’t lose track of requirement changes or version history

	Stay neutral and mediate between business and technical teams
	Don’t take sides or introduce personal bias

	Validate requirements through reviews, walkthroughs, and approvals
	Don’t skip validation or feedback processes

	Manage scope effectively and handle changes through a formal process
	Don’t allow uncontrolled scope creep

	Continuously enhance domain and technical knowledge
	Don’t rely only on outdated knowledge or past experience

	Be adaptable and open to feedback
	Don’t resist change or reject constructive criticism

		Use modeling tools (UML, BPMN, wireframes) to visualize complex ideas
	

	Don’t rely only on verbal or textual descriptions for complex workflows

Q14. Write the difference between packages and sub-systems – 4 Marks
Difference Between Packages and Sub-systems
	Aspect
	Packages
	Sub-systems

	Definition
	A package is a logical grouping of related classes or elements.
	A sub-system is a self-contained module representing a major part of the system.

	Purpose
	Helps organize model elements for readability and maintenance.
	Represents an independent functional unit within the overall system.

	Granularity
	Fine-grained – usually smaller groupings like utility classes.
	Coarse-grained – larger components like Billing System, Payment Module.

	UML Representation
	Represented by a folder-like icon in UML diagrams.
	Represented similarly to a system but often highlighted as modular blocks.

	Usage
	Used mainly for structural organization in UML class diagrams.
	Used in system architecture to denote major functional divisions.

	Dependencies
	Classes in different packages can have dependencies.
	Sub-systems interact via well-defined interfaces or APIs.

Q15. What is camel-casing and explain where it will be used- 6 Marks
Camel-Casing is a common naming convention used in programming and documentation where multiple words are written together without spaces, and each word after the first starts with a capital letter. The name comes from the “hump” effect of capital letters in the middle of the phrase, resembling a camel’s back.
Types of Camel Casing:
	Type
	Format Example
	Use Case

	Lower Camel Case
	customerName, orderAmount
	Used for variables, function names in most programming languages

	Upper Camel Case
	CustomerName, OrderAmount
	Used for class names, object types, and file names

Where is Camel-Casing Used?
1. Programming Languages
Camel-casing is widely used in languages like Java, C#, JavaScript, and Python for naming:
· Variables: totalPrice, userAge
· Functions/Methods: calculateTax(), getUserData()
· Classes/Objects: CustomerProfile, PaymentGateway
2. Database and API Design
In REST APIs and JSON data, camel-casing is often used for field names.
3. Business Documentation
Business Analysts may use camel-case conventions in technical specs or system design documents to ensure consistency with development standards.
4. Naming Conventions and Standards
Camel-casing helps avoid:
· Use of spaces (which are not allowed in code)
· Inconsistent or unclear variable/function naming
· Ambiguity in large projects
Benefits of Camel-Casing:
· Enhances readability of multi-word identifiers
· Promotes consistency in code and documentation
· Helps differentiate between types of components (e.g., classes vs. variables)
 Q16. Illustrate Development server and what are the accesses does business analyst has? -6 Marks
· A development server refers to a dedicated environment or server that is used during the software development process.
· It provides a platform for developers and testers to build, test and debug applications before they are deployed to a production environment.

BA Access:
· Reviewing UI components
· Access to logs or test versions
· Verifying alignment with requirements (non-editing)

Q17. What is Data Mapping 6 Marks
· Data mapping is the process of connecting data from one source to another.
· It's like creating a guide or map that shows how data in one place corresponds to data in another place.
· This is especially important when you're moving data between different
systems or databases to ensure that the data stays consistent and accurate.
· Process of matching fields from one data source to another.
· Ensures data flows correctly between systems.
· Important during integrations, migrations, or ETL processes.
Q18. What is API. Explain how you would use API integration in the case of your application Date format is dd-mm-yyyy and it is accepting some data from Other Application from US whose Date Format is mm-dd-yyyy 10 Marks
API & Handling Date Format Differences
	Aspect
	Explanation

	What is an API
	API (Application Programming Interface) is a set of rules and protocols that allows different software systems to communicate and exchange data.

	Purpose of API Integration
	- To enable communication between two applications- To send/receive data (like user info, payment details, etc.)

	Common API Types
	- REST- SOAP- GraphQL

	Example Use Case
	Integrating an Indian application (dd-mm-yyyy format) with a US-based system (mm-dd-yyyy format) that shares customer order dates via API.

Handling Date Format Differences Between Applications
	Challenge
	Explanation

	Different Date Formats
	One system uses dd-mm-yyyy (e.g., India), while the other uses mm-dd-yyyy (e.g., US).

	Risk
	Incorrect data processing or logic failures if formats are not properly converted.

	Solution
	Implement date parsing and formatting logic before sending/after receiving the data.

	Approach
	1. Identify the format of incoming data
2. Convert it to the required format using a date parsing function

	Tools/Methods
	Use programming functions like:In Python:datetime.strptime() and strftime()In JavaScript:new Date() or libraries like moment.js

	BA Responsibility
	- Understand the formats used in each system- Specify conversion logic in interface/API documentation- Collaborate with developers to ensure proper implementation

[bookmark: _GoBack]
image5.png
Sha

Search for Shapes:
Type your search here v

[UML Activity (US units)

[E UML Collaboration (US units)

[l UML Component (US units)

[E UML Deployment (US units)

[E UML Sequence (US units)

| | o

- - - Message
€ (return)

—_ ™ Message D Constraint

(async)
] 2-cement
Dy i
1 OR
| £ Constraint
[UML Statechart (US units)

I UML Static Structure (US units)

[

[F

[

o

{(:ustomer making payment through Net Banklng\i

Customer Payment
KPayment 1D
-ﬁ:msf-;msr D -Payment status
roghame 56 Type of Payment -
B Date
1| xEmail ID cAmount
i ’ Transaction
L g1 -1 -Transaction 1D
, Product ID
| i Status
Time stamp
El
Net Banking
A *ognid
Transaction Password
. Status

Bank Account

tAJs Number

IFSC Code

Bank Name

Balance
xBlance 4
[V

o Activate Windo

image6.png
(Paymenl done by Customer Net Banking]

][]] [am] [

| [t o || o [| o torsasn

[

image7.png
000 (7140 129 (100 F80, 1y 801 900 20 Do B0 000 o000 L 30 PO 0 P2 L L3800 (180000 30010 2200000 R0 1 P80 1111280100 39010 (320

Search for Shapes:

Type your search here

UML Activity (Metric)

UML Collaboration (Metric)
UML Component (Metric)

UML Deployment (Metric)

UML Sequence (Metric)

image1.png
Search for Shapes:
Type your search here

‘E UML Activity (US units)

| UML Collaboration (US units)

| UML Component (US units)

| UML Deployment (US units)

| UML Sequence (US units)

 UML Statechart (US units)

| UML Static Structure (US units)

7 UML Use Case (US units)

image2.png
O

Boundary ,

image3.png
O

Control

image4.png
Entity

