Case Study 1 :
A customer can make a payment either by Card or by Wallet or by Cash or by Net banking.
Q1. Draw a Use Case Diagram - 4 Marks
[image:]

System Boundary:
View payment
Use cases:
"View payment"
"Pay by Card"
"Pay by Wallet"
"Pay by Cash"
"Pay by Net Banking"
Include Relationships
Include (Shows mandatory with «Include» Label):
Connect "View payment" → "Pay by Card".
Connect "View payment" → "Pay by Wallet".
Connect "View payment" → "Pay by Cash".
Connect "View payment" → "Pay by Net Banking".
This shows that different payment methods include the base use case.
Define 1-to-Many
1-to-Many:
One Customer → Many Payment Methods.
Q2. Derive Boundary Classes, Controller classes, Entity Classes. - 4 Marks
Boundary Classes
Boundary Class used to handle interactions between the system and external actors. All use cases will be boundary class.
Ex: PaymentScreen
Controller Class
Controller Class - act as intermediaries between boundary and entity classes. The actor or the use relation where there is no third party involved are controller class.
Ex: PayementintiatedController, TransactionController, CardPaymentController
Entity Class
Entity Class - represents the core data and business logic of the application. All actor will be the entity class.
. Ex: Customer, Payment, Transaction
Q3. Place these classes on a three tier Architecture. - 4 Marks
1. User Layer (UI Layer - Boundary Classes)
PaymentScreen → Displays payment options and collects user input.
PaymentGatewayAPI → Connects to external payment services.
2. Business Logic Layer (Application Layer - Controller Classes)
PaymentController → Handles payment validation, processing, and selection of payment methods.
TransactionController → Manages transaction processing, verification, and updates status.
3. Data Layer (Persistence Layer - Entity Classes)
Payment → Stores payment details (amount, method, status).
Transaction → Logs transaction history (timestamp, transaction ID).
Customer → Stores user details (name, payment history, contact).
Q4. Explain Domain Model for Customer making payment through Net Banking - 4 Marks
A domain model is a conceptual representation that define the structure relationship, and behavior of entity within a specific problem domain. It focuses on entities, their attributes, and relationships without considering implementation details.
[bookmark: _GoBack][image:]
Q5. Draw a sequence diagram for payment done by Customer Net Banking - 4 Marks
Sequence Diagram
It is a type of interaction between objects in a system over time, It used in System design to illustrate how a process operate with another and in what order. Sequence Diagram show how data is flowing in more sequential manner.

[image:]
Q6. Explain Conceptual Model for this Case - 4 Marks
Conceptual Model
Conceptual model is high level representation of a system that helps in understanding visualizing and communicating the essentials aspects of a domain focusing on the key entities and their relationships without technical details. It helps understand the system from a business perspective.
Important Entities in the Conceptual Model
Customer → Initiates the payment.
Order → Represents the purchase transaction.
Payment → Records the payment details.
Bank → Processes the net banking payment.
Net Banking Transaction → Logs details of the net banking process.
Relationships Between Entities
A Customer can place multiple Orders (1:M).
Each Order has one associated Payment (1:1).
A Payment is processed using a Payment Method (Card/Wallet/Cash/Net Banking).
If the payment is via Net Banking, a Net Banking Transaction is recorded (1:1).
A Bank facilitates multiple Net Banking Transactions (1:M).
Q7. What is MVC architecture? Explain MVC rules to derive classes from use case diagram and
guidelines to place classes in 3-tier architecture - 8 Marks
MVC Architecture
MVC (Model-View-Controller) is a software architectural pattern that separates an application into three main components:
Model → Represent the data and the business logic of the application.
View → Represents the UI (User Interface) presentation layer of application.
Controller → Handles user inputs and updates Model & View accordingly. Acts as an intermediary between model and view.
Model, View, and Controller—to promote modularity, maintainability, and scalability. This separation allows for independent development, testing, and modification of each component.
From a Use Case Diagram, we can derive three types of classes:
Boundary Classes (View) → Represent interaction points with users (e.g., UI screens, forms).
Control Classes (Controller) → Manage the flow of data between the View and Model.
Entity Classes (Model) → Represent business objects (e.g., Customer, Order, Payment).
Guidelines to Place Classes in a 3-Tier Architecture
	Tier
	Purpose
	Derived Classes

	Presentation Layer (UI Layer)
	Handles user interactions and displays data
	PaymentForm (Boundary Class)

	Business Logic Layer
	Contains business rules & processing logic
	PaymentProcessor (Control Class)

	Data Access Layer
	Manages database operations and data storage
	Payment, Customer, Bank (Entity Classes)

Q8. Explain BA contributions in project (Waterfall Model – all Stages) – 8 Marks
The Waterfall Model is a linear and sequential software development methodology where each phase depends on the completion of the previous one. A Business Analyst (BA) plays a crucial role in each stage by ensuring clear requirements, stakeholder alignment, and business value delivery. BA contributes to a project's success by minimizing risks and improving efficiency.
1. Requirement Gathering & Analysis
BA Conducts stakeholder interviews, focus groups, and workshops to gather requirements. Documents Business Requirements Document (BRD) and Functional Specification Document (FSD) are being prepared. Defines Use Cases, Process Flow Diagrams, and Wireframes for better understanding. Ensures all business rules are captured correctly before proceeding to design.
2. System Design
BA Assists in converting business requirements into technical specifications. Works with UI/UX designers to refine user interface mockups. They ensures the design meets business goals and user needs. Also participates in Data Modeling & Database Schema Design discussions.
3. Implementation
BA works closely with developers to clarify business logic and resolve ambiguities. They ensures the scope is controlled to minimize requirement changes. Supports the project team in adapting to unforeseen challenges.
4. Testing
BA Defines User Acceptance Testing (UAT) scenarios and test cases. BA reviews test results to ensure they align with the original requirements. BA works with QA teams to ensure business processes are tested. BA helps in identifying gaps, defects, and missing functionalities.
5. Deployment
BA Assists in preparing training materials and conducting end-user training. Supports the Go-Live process by validating if all business needs are met. Monitors early feedback from users and provides post-implementation support.
6. Maintenance
BA collects feedback for future improvements. Assists in analyzing change requests and their business impact. Works with teams to enhance system features and optimize performance.
Q9. What is conflict management? Explain using Thomas – Kilmann technique – 6 Marks
Conflict management is the process of resolving conflicts or disagreements between individuals or groups in a constructive manner. Thomas Kilmann technique is a widely used tool for assessing conflict resolution styles & guiding individuals in selecting appropriate strategies to manage conflicts.
5 steps of conflict management -
- Identify the conflict.
- Discuss the details.
- Agree with the root problem.
- Check for every possible solution for the conflict.
- Negotiate the solution to avoid future conflicts.
Thomas-Kilmann Conflict Management Model is often represented as a matrix that visually maps the five conflict-handling styles based on two dimensions:

Assertiveness (Y-Axis) – The extent to which an individual tries to satisfy their own concerns.
Cooperativeness (X-Axis) – The extent to which an individual tries to satisfy the concerns of others.
Q10. List down the reasons for project failure – 6 Marks

• Poor Planning
	Without a well-defined project plan, teams may face missed deadlines, cost overruns, and misalignment with business goals.
• Unclear Objectives and Requirements Inadequate Risk Management
	If project goals and requirements are not well-defined, the team may deliver the wrong product or face continuous changes.
• Poor Communication
Miscommunication between stakeholders, teams, or departments can lead to misunderstandings, errors, and inefficiencies.
• Scope Creep
Uncontrolled changes or additions to project scope lead to increased costs, delays, and resource exhaustion.
• Lack of Stakeholder Engagement
	If stakeholders are not actively involved, the project may fail to meet their needs, causing dissatisfaction.
• Resource Constraints
	Insufficient resources (budget, manpower, tools) can lead to delays, burnout, and compromised quality.
• Technical Challenges
Unforeseen technical issues or reliance on outdated technology can cause system failures, security risks, or poor performance.
Q11. List the Challenges faced in projects for BA – 6 Marks
- Unclear or Changing Requirements
Unclear requirements can lead to misaligned deliverables, rework, and dissatisfaction. Frequent changes cause delays and budget overruns.
- Managing Stakeholder Expectations.
Misalignment between stakeholders and the project team can result in conflicts, unrealistic demands, and low acceptance of deliverables.
- Scope Creep and Scope Management
Uncontrolled expansion of project scope results in cost overruns, extended timelines, and exhausted resources.
- Time and Resource Constraints
	Limited time or resources can lead to missed deadlines, team burnout, and compromised quality.
- Quality Assurance and Testing
Poor testing can result in bugs, system failures, and customer dissatisfaction.
- Documentation and Knowledge Management
Poor documentation leads to miscommunication, knowledge loss, and inefficiency in onboarding new team members.
- Technology Constraints and Complexity
Choosing the wrong technology or working with outdated systems can lead to integration issues, security risks, and project failure.
Q12. Write about Document Naming Standards
Document naming standards describe the structured way in which files and documents are named within an organization. These standards provide clarity, consistency, and ease of retrieval of documents, avoiding confusion and duplication.
Clarity – The name should be clear and meaningful to all users.
Consistency – Follow a uniform format across all documents.
Version Control – Indicate different versions to track changes.
Date Format – Use a standardized date format (e.g., YYYY-MM-DD).
No Special Characters – Avoid using # % & * ? / \ to prevent compatibility issues.
Avoid Long Names – Use concise yet descriptive names.
	Category
	Good Example

	Requirement Document
	FOODEX_ReqDoc_PaymentModule_2025-02-10_v1.0.docx

	Meeting Minutes
	FOODEX_MoM_StakeholderMeeting_2025-02-10_v1.1.docx

	Test Case
	FOODEX_TestCase_LoginModule_2025-02-10_v2.0.xlsx

	Wireframe
	FOODEX_Wireframe_HomePage_2025-02-10.png

Q13. What are the Do’s and Don’ts of a Business analyst – 6 Marks
	Sr. No
	Do's
	Don’t

	1
	Consult an SME for clarifications in requirements.
	Never say NO to the client.

	2
	Go to the client with a plain mind with no assumptions. Listen carefully and completely until the client is done, and then you can ask queries.
	There is no word as “By default”.

	3
	Try to extract maximum leads to the solution from the client himself.
	Never imagine anything in terms of GUI.

	4
	Concentrate on the important requirements.
	Don’t interrupt the client when he is giving you the problem.

	5
	Question the existence of existence./ Question everything.
	Never try to give solutions to the client straight away with your previous experience and assumptions.

Q14. Write the difference between packages and sub-systems – 4 Marks
- Packages:
Collection of components which are not reusable in nature. A package is primarily for organizing code. Packages help in categorizing and managing functionalities at a detailed level.
Ex: Application development companies work on Packages.
- Sub systems:
Collection of components which are reusable in nature. A sub-system represents a functional unit within a larger system and may interact with other sub-systems. Sub-Systems represent large-scale components that require coordination between multiple stakeholders.
Ex: Product development companies work on Sub systems.
	Package
	Sub-System

	A logical grouping of related business processes or requirements.
	A self-contained functional unit within a larger system that performs a specific business function.

	Helps organize and categorize requirements, use cases, or features for better traceability.
	Represents a major functional area of the system, handling specific business processes.

	Used for structuring requirements within a project.
	Covers a broader business function and may involve multiple interacting components.

	Groups related business rules, processes, or requirements but does not enforce strict modularity.
	Encapsulates business logic, data flow, and interactions with other sub-systems.

	Packages may have dependencies on other requirements or features.
	Sub-systems interact through APIs, integrations, or interfaces to function within the system.

	Used in BRDs (Business Requirement Documents), FSDs (Functional Specification Documents), and UML diagrams.
	Represented in high-level architecture, process flows, system interaction diagrams.

Q15. What is camel-casing and explain where it will be used- 6 Marks
When working with requirement documents, APIs, databases, and system specifications. Naming conventions like camelCase ensure consistency in software development and help in better collaboration with developers and stakeholders.
Uses:
	Area
	BA's Role

	Requirement Documentation (BRD, FSD, SRS)
	Ensures consistent naming conventions in system specifications and documentation.

	Use Case & Data Flow Diagrams
	Helps in clearly defining business processes and system actions.

	Database & Data Mapping
	Works with DBAs to align field names in data dictionaries.

	API Specifications (REST, SOAP)
	Ensures API endpoint names are clear and follow standards.

	UI/UX Field Naming
	Collaborates with UX designers and developers to maintain consistent field naming in forms.

	Test Case Documentation
	Helps QA teams define test scenarios and automation scripts using structured names.

Q16. Illustrate Development server and what are the accesses does business analyst has?
A Development Server is an environment where software developers write, test, and debug code before it moves to testing or production. It allows teams to integrate and validate new features without affecting the live system. A Business Analyst (BA) has limited but important access in the development server to support requirement validation, issue tracking, and collaboration with developers.

software development lifecycle (SDLC) includes multiple environments:

Development Server (DEV) – Where developers write and test code.
Testing Server (QA/UAT) – Where testers validate functionality.
Staging Server (Pre-Production) – A replica of production for final validation.
Production Server (LIVE) – The final environment accessible to end-users.
BA Need Development Server Access to:
Requirement Validation – Ensuring business logic is implemented correctly.
Early Issue Detection – Identifying gaps before UAT (User Acceptance Testing).
Better Collaboration – Working closely with developers and testers for issue resolution.
Stakeholder Communication – Providing early feedback to business teams.
Q17. What is Data Mapping 6 Marks
As a Business Analyst (BA), data mapping is essential when defining data flows, integrations, and migrations between different systems. A BA ensures that business rules and data formats are correctly aligned across various platforms.
Data mapping is the process of connecting data from one source to another.
It's like creating a guide or map that shows how data in one place corresponds to data in another place.
This is especially important when you're moving data between different systems or databases to ensure that the data stays consistent and accurate.
BA's Responsibilities in Data Mapping
Identify Source & Target Data
Define Field Mapping
Understand Data Formats
Apply Business Rules
Document Data Mapping
Validate & Test Mappings
Data Mapping is used in Data Migration, System Integration, Data Warehousing, ETL Processes
Q18. What is API. Explain how you would use API integration in the case of your application Date format is dd-mm-yyyy and it is accepting some data from Other Application from US whose Date Format is mm-dd-yyyy
An API (Application Programming Interface) is a set of rules that allows different software applications to communicate with each other. APIs enable data exchange between systems by defining request and response formats.
In context to Online Agriculture Products Store project, suppose an farmers purchase agricultural products through an online platform. considering application (Indian System) needs to accept order data from a US-based supplier’s system via an API. However, there is a date format mismatch:

Scenario:
Our System's Date Format: dd-mm-yyyy (e.g., 25-12-2025)
US System's Date Format: mm-dd-yyyy (e.g., 12-25-2025)

Steps:
1. US Supplier's API will sends Data as:
API Request: { "order_id": 12345, "order_date": "12-25-2025" }
2. Our System Receives Data & Processes Date Format:
Extract the order_date field (12-25-2025).
3. Convert mm-dd-yyyy to dd-mm-yyyy before storing.
Use Backend Logic for Date Transformation:
4. Convert "12-25-2025" → "25-12-2025".
Store in the database in the correct format.
image1.png
Customer

Payment Application

Payment installaion

Pay by Card sl Pay by Net

image2.png
11
2
3
i
15
16
7
18
19

NERRERYS

[AccountManager

Sheetl

5 c 3 &
Customer Bank
PK [Customerld | e———— BankName
Name Location
Email Branchcode
Phone
Payment ‘Account
P [PaymentiD [AccountNumber
[Amount [AccountType
Paymentbate. [AccountHoldertiame |
[Status Balance
[et Banking service ‘Authentication
[Authentication User Name
Fundtranster Password
[Transactiontistor Jore.

Transaction

[rransactioni

Registration Details.

[Amount

[time Stamp.

®

image3.png
Bank

Request Authentication

Authentication Sucoessful

