A customer can make a payment either by Card or by Wallet or by Cash or by Net banking.
Q1. Draw a Use Case Diagram -4 Marks

A Use Case Diagram is a visual representation in UML that shows how different users
(actors) interact with a system and what functionalities (use cases) the system provides.

Key Components of a Use Case Diagram:

< System: Represented by a rectangle, it defines the boundaries of the system being
modeled.

+» Actors: External entities (users, other systems, hardware) that interact with the system.
They are depicted as stick figures.

«» Use Cases: Actions or tasks that actors can perform within the system. They are
represented by ovals.

< Relationships: Show how actors and use cases interact, including

1. associations (simple interaction)

2. includes (one use case uses another),
3. extends (one use case extends another)
4. generalizations (inheritance)

Itis mainly used during requirement gathering to understand what the system should do
from the user’s perspective.

System

Q2. Derive Boundary Classes, Controller classes, Entity Classes

Boundary Classes
Definition:
Boundary Classes are UML classes that represent the interaction between the system and
external actors (users, other systems).
They are responsible for taking input from the actor and showing output back to the actor.
In other words, they work like the Ul screens or APIs that act as the “boundary” between
the system and the outside world.
Example:

e Payment Screen (Payment Ul)

e Login Form (Login Ul)

Controller Classes
Definition:
Controller Classes are UML classes that control the flow of logic between the boundary
classes (Ul) and the entity classes (data).
They coordinate actions, apply business rules, validate data, and manage workflows.
Example:

e Payment Controller (decides which payment mode to execute)

e Order Controller (manages order creation and validation)

Entity Classes
Definition:
Entity Classes are UML classes that represent real-world data and business objects
that the system must store, retrieve, or manipulate.
They usually map to database tables or persistent objects and hold attributes and
relationships.
Example:
e Customer (customer ID, name, email)
e Payment (payment ID, amount, status)

Q3. Place these classes on a three tier Architecture

3-Tier Architecture is a client-server architecture divided into Presentation, Business Logic,
and Data Access layers. It enhances scalability, maintainability, and separation of
concerns.

1. Presentation Layer — User Interface (e.g., website or mobile app)

2. Business Logic Layer — Application logic (e.g., Java code validating transactions)

3. Data Layer — Database (e.g., MySQL storing product details) This structure allows each
layer to be developed, updated, and scaled independently.

Payment, Card
Details,

Layer Class Type Example Justification (Why it belongs here)
Presentation | Boundary Payment UI, These classes handle user
Classes Cardul interaction, take input, and display
output but do not contain business
logic.
Business Controller Payment This class controls the payment
Logic Layer Classes Controller process, validates data, and
coordinates between Ul and data.
Data Layer Entity Classes Customer, These classes represent business

data and are stored in the database
for processing and retrieval.

Q4. Explain Domain Model for Customer making payment through Net Banking

A Domain Model is a conceptual representation of the key entities, their attributes,
ehaviors, and relationships within a specific problem domain or business area. It is
typically used in software development and business analysis to capture and communicate
the structure and rules of the domain that the system will address.

Customer Bank

PK | Customer ID

Customer Name : Bank name
Contct details Location
Address Branch code

Account detils

Baine) Account
Account Number
Paymetnt id Account type
. Account holder name
Payment Date Balance
Status
Net banking Service
Authentication
Authantication
Fund transder Username
Transection History Password
Account Management OTP

Transaction

Transection ID
Reciptent Details
Amount
Timestamp

Q5. Draw a sequence diagram for payment done by Customer Net Banking

A Sequence Diagram is a UML behavioral diagram that shows how objects interact in a
particular scenario, in the order they occur.
It focuses on:

e Objects/Actors involved
e Messages passed
e Order of events (top-to-bottom flow)

Customer Net Banking Bank

Request payment Authantication

validating payment

Deduction amount

amount to recipient's bank

»
>

Payment confirmation

v

Payment success

e A i

Q6. Explain Conceptual Model for this Case

A Conceptual Model is a high-level representation of the system that describes what the
system should do rather than how it is implemented.
[t identifies:

e Key concepts (entities/objects) in the problem domain
e Relationships between those concepts
e Overall business rules or behavior

[t is usually shown as a class diagram (without technical details) and helps business
stakeholders and developers have a shared understanding of the system.

Q7. What is MVC architecture? Explain MVC rules to derive classes from use case
diagram and guidelines to place classes in 3-tier architecture

MVC (Model-View-Controller) is a software architectural pattern that divides an
application into three interconnected components:

1. Model - Represents data and business logic
2. View - Represents Ul (presentation layer)
3. Controller - Represents application logic and flow control

Its main goal is to separate concerns, making the system easier to maintain, test, and scale.

MVC Rules to Derive Classes from Use Case Diagram
When deriving classes from a Use Case Diagram, we follow these rules:
1. Identify Actors & Use Cases — These help derive Boundary Classes (View).
a. Each actor-system interaction leads to a Boundary Class (e.g., PaymentUI for
Make Payment use case).
2. ldentify System Operations — These become Controller Classes.
a. Each use case generally maps to one Controller Class that coordinates the
process.
3. Identify Entities (Business Concepts) — These form Model (Entity Classes).
a. Extract nouns from use case description to identify real-world data objects
like Customer, Payment, BankAccount.

Guidelines to Place Classes in 3-Tier Architecture

Tier What it Contains Class Type (MVC

Component)

Presentation Layer (Ul Layer) | Screens, forms, input/output handling View (Boundary Classes)

Business Logic Layer Workflow control, validation, decision- Controller Classes

making

Data Layer (Persistence Database entities, data access objects Model (Entity Classes)
Layer)
Q8. Explain BA contributions in project (Waterfall Model - all Stages
L. Artifacts Resources
Stage Activities .
(Deliverables) (People/Tools)

- Identify business need .)
Business Case Business Analyst,
Document, Business Sponsor,

Feasibility Report SME

. - Conduct feasibility
Pre-Project
study

- Prepare business case

- Define scope

) Project Charter,
- Prepare project plan,

Project Manager,

- Assign roles and
responsibilities

Communication
Plan

Planning Project Plan, Risk

schedule, budget . BA, Stakeholders
e Register
- Identify risks
- Stakeholder Stakeholder
) identification Register, RACI .
Project . . . Project Manager,
L - Kick-off meeting Matrix,
Initiation BA, Team Leads

Requirements
Gathering

- Conduct interviews,
workshops, surveys

- Elicit functional & non-
functional requirements

BRD (Business
Requirement
Document), User
Stories, Use Case
Diagrams

Business Analyst,
SMEs, Stakeholders

Requirements

- Analyze & prioritize
requirements
- Resolve conflicts

SRS (System
Requirement
Specification),

BA, Product Owner,

- Get sign-off

Analysis]) . Solution Architect
- Validate with RTM (Requirement
stakeholders Traceability Matrix)
- Create solution design, Solution Design
Design data models, mockups Document, Solution Architect,
i
g - Review with Wireframes, Data BA, Ul/UX Designer
stakeholders Model
. . . Source Code,
- Coding and unit testing . Developers, Tech
Development o . Technical
- Build integrations & APIs . Lead, DevOps
Documentation
- Prepare test cases QA/Testers, BA (for
Test Plan, Test .
. - Execute SIT (System validation), Test
Testing)] Cases, Defect
Integration Testing) L Tools (JIRA,
ogs
- Log defects 8 Selenium)
- Coordinate with end
UAT (User UAT Plan, UAT Test
users . End Users, BA, QA,
Acceptance . Cases, UAT Sign- .
. - Execute UAT scripts Business Sponsor
Testing) off Document

Q9. What is conflict management? Explain using Thomas - Kilmann technique

Conflict management is the process of resolving conflicts or disagreements between

individuals or groups in a constructive manner.

Thomas Kilmann technique is a widely used tool for assessing conflict resolution styles &
guiding individuals in selecting appropriate strategies to manage conflicts.

It identifies five conflict-handling styles based on two dimensions:

e Assertiveness: The extent to which a person tries to satisfy their own concerns.

e Cooperativeness: The extent to which a person tries to satisfy the concerns of

others.

These two dimensions create five approaches to handling conflict:

1. Competing (I Win, You Lose)
You focus on your own needs and push your solution.
¢ Use when you must make a quick decision or enforce rules.
2. Collaborating (Win-Win)
You and the other person work together to find the best solution for both.
¢ Use when both sides’ ideas are important and you have time to talk.
3. Compromising (Give & Take)
Both sides give up a little to find a middle solution.
¢ Use when you need a quick, fair agreement.
4. Avoiding (No Fight)
You stay away from the conflict or delay talking about it.
¢ Use when the issue is small or emotions are too high.
5. Accommodating (You Win, I Lose)
You let the other person have their way to keep peace.
¢ Use when the relationship is more important than the issue.

COMPETING | COLLABORATING
WIN,YOU LOSE WIN-WIN

AVOIDING ACCOMMODATING
NO FIGHT YOU WIN,I LOSE

ASSERTIVENESS

COOPERATIVENESS

Q10. List down the reasons for project failure

Project failure happens when a project does not meet its goals within the agreed scope,
time, cost, or quality constraints, or when it does not deliver the expected value to
stakeholders.

Common Reasons for Project Failure

1. Unclear Objectives and Scope
a. Lack of well-defined goals or deliverables.
b. Frequent scope changes (scope creep) without proper control.
2. Poor Planning
a. Inadequate project schedule, unrealistic deadlines.
b. No proper risk assessment or resource planning.
3. Lack of Stakeholder Engagement
a. Stakeholders not involved during key stages.
b. Misunderstanding of stakeholder expectations.
4. Ineffective Communication
a. Lack of clear updates between team members and stakeholders.
b. Miscommunication leading to delays and errors.
5. Insufficient Resources
a. Lack of skilled people, technology, or budget.
b. Overloaded team members causing burnout.
6. Weak Project Management
a. No proper monitoring and control.
b. Poor decision-making or lack of leadership.
7. Inadequate Risk Management
a. Notidentifying potential risks early.
b. No mitigation plan to handle issues when they arise.
8. Technical Challenges
a. Wrong choice of technology or tools.
b. Integration failures or quality issues in deliverables.
9. Poor Change Management
a. Inability to handle changes in requirements or priorities.
b. Resistance from end-users.
10.Lack of User Involvement / Poor Testing
a) End-users not testing early.
b) Deliverables do not meet actual business needs.
11.Budget Overruns and Delays
a) Costs exceed approved budget.
b) Timeline slips without corrective action.

Q11. List the Challenges faced in projects for BA

1. Unclear Requirements
Stakeholders are unsure of what they want, leading to confusion and rework.

2. Changing Requirements (Scope Creep)
New requirements keep getting added during the project without proper
impact analysis.
3. Multiple Stakeholders with Conflicting Needs
Different stakeholders want different solutions, making it hard to prioritize.
4. Communication Gaps
Misunderstandings between business teams, developers, and testers.
5. Limited Domain Knowledge
BA needs time to understand the business process and industry terminology.
6. Time Constraints
Less time given for requirement gathering, documentation, or analysis.
7. Technical Limitations
Requirements may not be feasible due to system or technology constraints.
8. Data Quality Issues
Incomplete, inconsistent, or missing data can affect analysis.
9. Stakeholder Availability
Stakeholders may be busy and not available for discussions or approvals.
10.Resistance to Change
e End-users may not accept new systems or processes easily.
11.Integration with Other Teams
e Coordinating with development, testing, and operations teams can be challenging.

Q12. Write about Document Naming Standards

A document numbering standard is a systematic approach to assigning unique identifiers
to various documents created and used throughout the development process.

Ex. Suppose we have a project with the ID "PR0OJ123," and we're working with a
Requirements

Specification Document.

Project ID: PROJ123

Document Type: REQ

Version: 1.0

Date: 2025-09-24

The document identifier could be: PROJ123-REQ-1.0- 2025-09-24

Q13. What are the Do’s and Don’ts of a Business analyst

Understand business processes and goals Don’t assume requirements without
clearly verification

) Don’tignore important stakeholders or
Engage all key stakeholders and gather input

end-users
Ask the right questions to uncover hidden Don’t use too much technical jargon
needs with business users
Document requirements clearly and Don’t skip documentation or keep things
completely (BRD, SRS, User Stories) only verbal
Prioritize requirements based on business Don’t overpromise on timelines or
value feasibility
Facilitate collaboration between business, Don’t delay communication or hide
developers, and testers risks/issues

. . . Don’t neglect the impact of changes
Validate and get sign-off on requirements
(scope creep)

Manage changes with proper change control | Don’t be biased towards any

process stakeholder’s opinion
Maintain professionalism and stay solution- Don’t resist feedback or avoid
focused constructive criticism

Keep learning domain knowledge, tools, and Don’t forget to ensure requirements are
techniques testable and support UAT

Q14. Write the difference between packages and sub-systems
e Packages Collection of components which are not reusable in nature.
Ex: Application development companies work on Packages.
e Sub systems: Collection of components which are reusable in nature.
Ex: Product development companies work on Sub systems.

Package Sub-System
Just afolder to group related elements A mini-system that performs a function
Used for organization Used for functionality
Cannot run by itself Can run and interact with other sub-systems
Example: Folder containing all payment Example: Payment module handling all
classes transactions

Q15. What is camel-casing and explain where it will be used

Camel-casing is a way of writing names where the first word starts with a small letter, and
every next word starts with a capital letter — with no spaces between words. It is called
camel-case because the capital letters look like the humps of a camel.

Camel-casing is mostly used in programming and IT documentation, such as:

e Variable Names — totalAmount, customerName

e Function Names — calculateSalary(), getUserData()
¢ File Naming (sometimes) — projectPlanDocument

e Database fields/columns — orderDate, productPrice

Q1l6.I1llustrate Development server and what are the accesses does
business analyst has?

e A development server refers to a dedicated environment or server
that is used during the software development process.

e It provides a platform for developers and testers to build, test and
debug applications before they are deployed to a production
environment.

e As a BA, we have only limited access only.

o Read-Only Access > To see data, check new screens, and validate
requirements.

o Testing/UAT Access > To perform sanity checks and confirm requirements are
met.

o LogAccess (sometimes)~> To check error logs or trace issues (not modify
code).
No Code Change Access > BAs usually cannot edit or deploy code.
No Production Access - Direct production server access is usually restricted

Production Server

Nevelnnment Server

NA / Tect Sernver

I IAT Qenver

Q17. What is Data Mapping

e Data mappingisthe process of connecting data from one source to another.
e |[t's like creating a guide or map that shows how data in one place corresponds to
data in another place.
e Thisis especiallyimportant when you're moving data between different systems or
databases.
o Ensures data accuracy and consistency
o Reduces data loss or mismatch
o Helps developers and testers know exactly where data goes

Q18. What is API. Explain how you would use APl integration in the case of your
application Date format is dd-mm-yyyy and it is accepting some data from Other
Application from US whose Date Format is mm-dd-yyyy

e APl Integration means connecting two or more applications so they can send and
receive data automatically.
e It helps avoid manual data entry and ensures real-time data sharing.

Scenario:

e our application uses dd-mm-yyyy (Indian format).
e Another US-based application sends dates in mm-dd-yyyy format through an API.

Solution Using API Integration:

1. Receive Data via API
a. APl receives data from the US application.
b. Example: "date": "©5-24-2025" (US format > 24th May 2025).
2. Convertthe Date Format
a. Use a date conversion logic in your application:
i. Input: mm-dd-yyyy (05-24-2025)
ii. Output: dd-mm-yyyy (24-05-2025)
3. Save/Display Data
a. Store the converted date in your database or display it correctly to users.

Benefits of Using API Integration

e No manual data entry > fewer errors
e Automatic format conversion 2 consistent data

e Real-time updates > better user experience

	Boundary Classes
	Definition: Boundary Classes are UML classes that represent the interaction between the system and external actors (users, other systems). They are responsible for taking input from the actor and showing output back to the actor. In other words, th...
	Controller Classes
	Entity Classes
	MVC Rules to Derive Classes from Use Case Diagram
	Guidelines to Place Classes in 3-Tier Architecture
	Common Reasons for Project Failure
	Benefits of Using API Integration

