
A customer can make a payment either by Card or by Wallet or by Cash or by Net banking.

Q1. Draw a Use Case Diagram - 4 Marks

A Use Case Diagram is a visual representation in UML that shows how different users
(actors) interact with a system and what functionalities (use cases) the system provides.

Key Components of a Use Case Diagram:

❖ System: Represented by a rectangle, it defines the boundaries of the system being
modeled.

❖ Actors: External entities (users, other systems, hardware) that interact with the system.
They are depicted as stick figures.

❖ Use Cases: Actions or tasks that actors can perform within the system. They are
represented by ovals.

❖ Relationships: Show how actors and use cases interact, including

1. associations (simple interaction)
2. includes (one use case uses another),
3. extends (one use case extends another)
4. generalizations (inheritance)

It is mainly used during requirement gathering to understand what the system should do
from the user’s perspective.

Q2. Derive Boundary Classes, Controller classes, Entity Classes

Boundary Classes
Definition:
 Boundary Classes are UML classes that represent the interaction between the system and
external actors (users, other systems).
 They are responsible for taking input from the actor and showing output back to the actor.
 In other words, they work like the UI screens or APIs that act as the “boundary” between
the system and the outside world.
Example:

• Payment Screen (Payment UI)
• Login Form (Login UI)

Controller Classes
Definition:
 Controller Classes are UML classes that control the flow of logic between the boundary
classes (UI) and the entity classes (data).
 They coordinate actions, apply business rules, validate data, and manage workflows.
Example:

• Payment Controller (decides which payment mode to execute)
• Order Controller (manages order creation and validation)

Entity Classes
Definition:
 Entity Classes are UML classes that represent real-world data and business objects
that the system must store, retrieve, or manipulate.
 They usually map to database tables or persistent objects and hold attributes and
relationships.
Example:

• Customer (customer ID, name, email)
• Payment (payment ID, amount, status)

Q3. Place these classes on a three tier Architecture

3-Tier Architecture is a client-server architecture divided into Presentation, Business Logic,
and Data Access layers. It enhances scalability, maintainability, and separation of
concerns.

 1. Presentation Layer – User Interface (e.g., website or mobile app)

 2. Business Logic Layer – Application logic (e.g., Java code validating transactions)

3. Data Layer – Database (e.g., MySQL storing product details) This structure allows each
layer to be developed, updated, and scaled independently.

Layer Class Type Example Justification (Why it belongs here)

Presentation Boundary
Classes

Payment UI,
CardUI

These classes handle user
interaction, take input, and display
output but do not contain business
logic.

Business
Logic Layer

Controller
Classes

Payment

Controller

This class controls the payment
process, validates data, and
coordinates between UI and data.

Data Layer Entity Classes Customer,
Payment, Card
Details,

These classes represent business
data and are stored in the database
for processing and retrieval.

Q4. Explain Domain Model for Customer making payment through Net Banking

A Domain Model is a conceptual representation of the key entities, their attributes,

ehaviors, and relationships within a specific problem domain or business area. It is

typically used in software development and business analysis to capture and communicate

the structure and rules of the domain that the system will address.

Q5. Draw a sequence diagram for payment done by Customer Net Banking

A Sequence Diagram is a UML behavioral diagram that shows how objects interact in a

particular scenario, in the order they occur.
 It focuses on:

• Objects/Actors involved

• Messages passed

• Order of events (top-to-bottom flow)

Q6. Explain Conceptual Model for this Case

A Conceptual Model is a high-level representation of the system that describes what the

system should do rather than how it is implemented.
 It identifies:

• Key concepts (entities/objects) in the problem domain

• Relationships between those concepts

• Overall business rules or behavior

It is usually shown as a class diagram (without technical details) and helps business

stakeholders and developers have a shared understanding of the system.

Q7. What is MVC architecture? Explain MVC rules to derive classes from use case

diagram and guidelines to place classes in 3-tier architecture

MVC (Model–View–Controller) is a software architectural pattern that divides an

application into three interconnected components:

1. Model – Represents data and business logic

2. View – Represents UI (presentation layer)

3. Controller – Represents application logic and flow control

Its main goal is to separate concerns, making the system easier to maintain, test, and scale.

MVC Rules to Derive Classes from Use Case Diagram

When deriving classes from a Use Case Diagram, we follow these rules:

1. Identify Actors & Use Cases → These help derive Boundary Classes (View).

a. Each actor–system interaction leads to a Boundary Class (e.g., PaymentUI for

Make Payment use case).

2. Identify System Operations → These become Controller Classes.

a. Each use case generally maps to one Controller Class that coordinates the

process.

3. Identify Entities (Business Concepts) → These form Model (Entity Classes).

a. Extract nouns from use case description to identify real-world data objects

like Customer, Payment, BankAccount.

Guidelines to Place Classes in 3-Tier Architecture

Tier What it Contains Class Type (MVC

Component)
Presentation Layer (UI Layer) Screens, forms, input/output handling View (Boundary Classes)
Business Logic Layer Workflow control, validation, decision-

making
Controller Classes

Data Layer (Persistence
Layer)

Database entities, data access objects Model (Entity Classes)

Q8. Explain BA contributions in project (Waterfall Model – all Stages

Stage Activities
Artifacts

(Deliverables)
Resources

(People/Tools)

Pre-Project

- Identify business need
- Conduct feasibility
study
- Prepare business case

Business Case
Document,
Feasibility Report

Business Analyst,
Business Sponsor,
SME

Planning

- Define scope
- Prepare project plan,
schedule, budget
- Identify risks

Project Charter,
Project Plan, Risk
Register

Project Manager,
BA, Stakeholders

Project
Initiation

- Stakeholder
identification
- Kick-off meeting
- Assign roles and
responsibilities

Stakeholder
Register, RACI
Matrix,
Communication
Plan

Project Manager,
BA, Team Leads

Requirements
Gathering

- Conduct interviews,
workshops, surveys
- Elicit functional & non-
functional requirements

BRD (Business
Requirement
Document), User
Stories, Use Case
Diagrams

Business Analyst,
SMEs, Stakeholders

Requirements
Analysis

- Analyze & prioritize
requirements
- Resolve conflicts
- Validate with
stakeholders

SRS (System
Requirement
Specification),
RTM (Requirement
Traceability Matrix)

BA, Product Owner,
Solution Architect

Design

- Create solution design,
data models, mockups
- Review with
stakeholders

Solution Design
Document,
Wireframes, Data
Model

Solution Architect,
BA, UI/UX Designer

Development
- Coding and unit testing
- Build integrations & APIs

Source Code,
Technical
Documentation

Developers, Tech
Lead, DevOps

Testing

- Prepare test cases
- Execute SIT (System
Integration Testing)
- Log defects

Test Plan, Test
Cases, Defect
Logs

QA/Testers, BA (for
validation), Test
Tools (JIRA,
Selenium)

UAT (User
Acceptance
Testing)

- Coordinate with end
users
- Execute UAT scripts
- Get sign-off

UAT Plan, UAT Test
Cases, UAT Sign-
off Document

End Users, BA, QA,
Business Sponsor

Q9. What is conflict management? Explain using Thomas – Kilmann technique

Conflict management is the process of resolving conflicts or disagreements between

individuals or groups in a constructive manner.

Thomas Kilmann technique is a widely used tool for assessing conflict resolution styles &

guiding individuals in selecting appropriate strategies to manage conflicts.

It identifies five conflict-handling styles based on two dimensions:

• Assertiveness: The extent to which a person tries to satisfy their own concerns.

• Cooperativeness: The extent to which a person tries to satisfy the concerns of

others.

These two dimensions create five approaches to handling conflict:

1. Competing (I Win, You Lose)
 You focus on your own needs and push your solution.
 Use when you must make a quick decision or enforce rules.

2. Collaborating (Win–Win)
 You and the other person work together to find the best solution for both.
 Use when both sides’ ideas are important and you have time to talk.

3. Compromising (Give & Take)
 Both sides give up a little to find a middle solution.
 Use when you need a quick, fair agreement.

4. Avoiding (No Fight)
 You stay away from the conflict or delay talking about it.
 Use when the issue is small or emotions are too high.

5. Accommodating (You Win, I Lose)
 You let the other person have their way to keep peace.
 Use when the relationship is more important than the issue.

Q10. List down the reasons for project failure

Project failure happens when a project does not meet its goals within the agreed scope,

time, cost, or quality constraints, or when it does not deliver the expected value to

stakeholders.

COOPERATIVENESS

AS
SE

R
TI

VE
N

ES
S

COMPETING I
WIN,YOU LOSE

COLLABORATING
WIN-WIN

 AVOIDING
NO FIGHT

 ACCOMMODATING
YOU WIN,I LOSE

COMPROMISING
GIVE&TAKE

Common Reasons for Project Failure

1. Unclear Objectives and Scope

a. Lack of well-defined goals or deliverables.

b. Frequent scope changes (scope creep) without proper control.

2. Poor Planning

a. Inadequate project schedule, unrealistic deadlines.

b. No proper risk assessment or resource planning.

3. Lack of Stakeholder Engagement

a. Stakeholders not involved during key stages.

b. Misunderstanding of stakeholder expectations.

4. Ineffective Communication

a. Lack of clear updates between team members and stakeholders.

b. Miscommunication leading to delays and errors.

5. Insufficient Resources

a. Lack of skilled people, technology, or budget.

b. Overloaded team members causing burnout.

6. Weak Project Management

a. No proper monitoring and control.

b. Poor decision-making or lack of leadership.

7. Inadequate Risk Management

a. Not identifying potential risks early.

b. No mitigation plan to handle issues when they arise.

8. Technical Challenges

a. Wrong choice of technology or tools.

b. Integration failures or quality issues in deliverables.

9. Poor Change Management

a. Inability to handle changes in requirements or priorities.

b. Resistance from end-users.

10. Lack of User Involvement / Poor Testing

a) End-users not testing early.

b) Deliverables do not meet actual business needs.

11. Budget Overruns and Delays

a) Costs exceed approved budget.

b) Timeline slips without corrective action.

Q11. List the Challenges faced in projects for BA

1. Unclear Requirements

Stakeholders are unsure of what they want, leading to confusion and rework.

2. Changing Requirements (Scope Creep)

New requirements keep getting added during the project without proper

impact analysis.

3. Multiple Stakeholders with Conflicting Needs

Different stakeholders want different solutions, making it hard to prioritize.

4. Communication Gaps

Misunderstandings between business teams, developers, and testers.

5. Limited Domain Knowledge

BA needs time to understand the business process and industry terminology.

6. Time Constraints

Less time given for requirement gathering, documentation, or analysis.

7. Technical Limitations

Requirements may not be feasible due to system or technology constraints.

8. Data Quality Issues

Incomplete, inconsistent, or missing data can affect analysis.

9. Stakeholder Availability

Stakeholders may be busy and not available for discussions or approvals.

10. Resistance to Change

• End-users may not accept new systems or processes easily.

11. Integration with Other Teams

• Coordinating with development, testing, and operations teams can be challenging.

Q12. Write about Document Naming Standards

A document numbering standard is a systematic approach to assigning unique identifiers

to various documents created and used throughout the development process.

Ex. Suppose we have a project with the ID "PROJ123," and we're working with a

Requirements

Specification Document.

Project ID: PROJ123

Document Type: REQ

Version: 1.0

Date: 2025-09-24

The document identifier could be: PROJ123-REQ-1.0- 2025-09-24

Q13. What are the Do’s and Don’ts of a Business analyst

Do’s (Best Practices) Don’ts (Common Mistakes)

 Understand business processes and goals
clearly

 Don’t assume requirements without
verification

Engage all key stakeholders and gather input
Don’t ignore important stakeholders or
end-users

Ask the right questions to uncover hidden
needs

Don’t use too much technical jargon
with business users

Document requirements clearly and
completely (BRD, SRS, User Stories)

Don’t skip documentation or keep things
only verbal

Prioritize requirements based on business
value

Don’t overpromise on timelines or
feasibility

Facilitate collaboration between business,
developers, and testers

Don’t delay communication or hide
risks/issues

Validate and get sign-off on requirements
Don’t neglect the impact of changes
(scope creep)

Manage changes with proper change control
process

Don’t be biased towards any
stakeholder’s opinion

Maintain professionalism and stay solution-
focused

Don’t resist feedback or avoid
constructive criticism

Keep learning domain knowledge, tools, and
techniques

Don’t forget to ensure requirements are
testable and support UAT

Q14. Write the difference between packages and sub-systems

• Packages Collection of components which are not reusable in nature.

Ex: Application development companies work on Packages.

• Sub systems: Collection of components which are reusable in nature.

Ex: Product development companies work on Sub systems.

Package Sub-System

Just a folder to group related elements A mini-system that performs a function

Used for organization Used for functionality

Cannot run by itself Can run and interact with other sub-systems

Example: Folder containing all payment
classes

Example: Payment module handling all
transactions

Q15. What is camel-casing and explain where it will be used

Camel-casing is a way of writing names where the first word starts with a small letter, and

every next word starts with a capital letter – with no spaces between words. It is called

camel-case because the capital letters look like the humps of a camel.

Camel-casing is mostly used in programming and IT documentation, such as:

• Variable Names → totalAmount, customerName

• Function Names → calculateSalary(), getUserData()

• File Naming (sometimes) → projectPlanDocument

• Database fields/columns → orderDate, productPrice

Q16.Illustrate Development server and what are the accesses does

business analyst has?

• A development server refers to a dedicated environment or server

that is used during the software development process.

• It provides a platform for developers and testers to build, test and

debug applications before they are deployed to a production

environment.

• As a BA, we have only limited access only.

o Read-Only Access → To see data, check new screens, and validate
requirements.

o Testing/UAT Access → To perform sanity checks and confirm requirements are
met.

o Log Access (sometimes) → To check error logs or trace issues (not modify
code).

o No Code Change Access → BAs usually cannot edit or deploy code.
o No Production Access → Direct production server access is usually restricted

Q17. What is Data Mapping

 Production Server

 UAT Server

QA / Test Server

 Development Server

• Data mapping is the process of connecting data from one source to another.
• It's like creating a guide or map that shows how data in one place corresponds to

data in another place.
• This is especially important when you're moving data between different systems or

databases.
o Ensures data accuracy and consistency
o Reduces data loss or mismatch
o Helps developers and testers know exactly where data goes

Q18. What is API. Explain how you would use API integration in the case of your
application Date format is dd-mm-yyyy and it is accepting some data from Other
Application from US whose Date Format is mm-dd-yyyy

• API Integration means connecting two or more applications so they can send and
receive data automatically.

• It helps avoid manual data entry and ensures real-time data sharing.

 Scenario:

• our application uses dd-mm-yyyy (Indian format).
• Another US-based application sends dates in mm-dd-yyyy format through an API.

Solution Using API Integration:

1. Receive Data via API
a. API receives data from the US application.
b. Example: "date": "05-24-2025" (US format → 24th May 2025).

2. Convert the Date Format
a. Use a date conversion logic in your application:

i. Input: mm-dd-yyyy (05-24-2025)
ii. Output: dd-mm-yyyy (24-05-2025)

3. Save/Display Data
a. Store the converted date in your database or display it correctly to users.

Benefits of Using API Integration

• No manual data entry → fewer errors
• Automatic format conversion → consistent data
• Real-time updates → better user experience

	Boundary Classes
	Definition: Boundary Classes are UML classes that represent the interaction between the system and external actors (users, other systems). They are responsible for taking input from the actor and showing output back to the actor. In other words, th...
	Controller Classes
	Entity Classes
	MVC Rules to Derive Classes from Use Case Diagram
	Guidelines to Place Classes in 3-Tier Architecture
	Common Reasons for Project Failure
	Benefits of Using API Integration

