Assignment 1 — Inventory + Fast Delivery System (BRD + Development & Resource Plan + Process Flow)
1. Business Requirements Document (BRD)
Project title
Inventory & Rapid Delivery Management System (IDMS) — for dairy & ice-cream manufacturing & distribution
Executive summary
The client manufactures and distributes perishable dairy and ice-cream products from multiple plants and warehouses across the country. They need a software system to:
· centrally manage inventory (raw materials, in-process, finished goods, expiry tracking),
· optimize order fulfilment and route assignment for fastest delivery,
· reduce wastage from expiry and stockouts,
· provide end-to-end visibility for operations, and
· integrate with existing ERP/accounting, sensors (optional), and mobile driver apps.
Business goals & measurable objectives
· Reduce product expiry waste by 30% within 12 months.
· Increase on-time deliveries to > 95% within 6 months.
· Reduce average order-to-delivery time by 25%.
· Decrease stockouts for high-demand SKUs to < 2%.
· Improve warehouse picking accuracy to > 99%.
Key stakeholders
· Executive sponsor (COO)
· Head of Manufacturing
· Head of Distribution / Logistics
· Warehouse Managers
· Plant Managers
· Sales & Customer Service
· IT / Infrastructure
· 3rd-party last-mile delivery partners (if used)
Scope
In scope
· Centralized inventory tracking (by batch, expiry, temperature-sensitive flags)
· Multi-warehouse catalogue, transfers, and reorder triggers
· Order management (B2B & B2C), prioritization rules
· Route optimization engine (static + dynamic routing)
· Driver mobile app for assignments, proof-of-delivery (POD), temperature/condition notes
· Warehouse picking/packing module (barcode/QR), FIFO/LIFO rules configurable
· Dashboarding & alerts (stock levels, expiry, delays)
· Basic integrations: ERP (orders/invoices), SMS/email gateway, mapping API (for routes)
· Reporting & analytics
Out of scope (initial)
· Full ERP replacement
· Cold chain IoT provisioning (can be phased later)
· Marketplace integrations (unless requested)
High-level functional requirements
1. Inventory master with SKU, batch, quantity, location, expiry, temperature requirements.
2. Warehouse operations: receiving, put-away, picking, packing, transfer, cycle count.
3. Order management: create/import orders, validate stock, reserve inventory.
4. Reorder & replenishment: min/max, safety stock, automated PO suggestions.
5. Routing & dispatch: route optimizer, driver assignment, ETA calculation.
6. Driver mobile app: accept job, update status, capture POD (photo/signature), offline mode.
7. Real-time tracking & notifications (customer + ops).
8. Dashboards & KPI reports.
9. Role-based access control and audit trails.
Non-functional requirements
· Availability: 99.5% SLA.
· Scalability: support thousands of SKUs and tens of thousands of daily orders.
· Performance: order lookup < 200ms; route optimization within configurable SLA (e.g., 60s for up to 100 stops).
· Security: role-based access, encrypted at rest & transit, audit log.
· Compliance: data retention per company policy; support for GDPR/other local regulations if required.
· Mobile support: Android (driver app); optional iOS later.
Assumptions
· Client has basic ERP that can expose order and vendor APIs or CSV export.
· Warehouses have barcode capability; smartphones are available for drivers.
· Mapping and routing API usage (3rd-party) will be procured by client.
Constraints & risks
· Data quality in existing systems may delay go-live.
· Last-mile connectivity in remote regions may affect driver app reliability.
· Regulatory or cold-chain sensor rollout is dependent on hardware procurement.
Success criteria
· System deployed to pilot warehouses with measurable KPI improvement (see goals).
· 0 critical defects post go-live; critical business flows fully automated.

2. Development & Resource Plan (high-level)
Delivery phases & timeline (suggested for a medium-sized rollout)
· Phase 0 — Discovery & Requirements (3–4 weeks)
Stakeholder workshops, current-state mapping, data model, KPIs, integration mapping.
· Phase 1 — Design & Prototyping (4–6 weeks)
UI/UX, solution architecture, data migration plan, API contracts, driver app wireframes.
· Phase 2 — Core Development (8–12 weeks)
Inventory core, order management, warehouse workflows, basic routing integration.
· Phase 3 — Driver App & Dispatch Engine (6–8 weeks)
Mobile app, route optimizer, POD capture, offline mode.
· Phase 4 — Integrations & Reporting (4–6 weeks)
ERP, mapping provider, SMS/email gateways, dashboards.
· Phase 5 — Testing & Pilot (4 weeks)
Unit, integration, performance testing; pilot at 1 plant + 1 warehouse.
· Phase 6 — Rollout & Hypercare (6–8 weeks)
Gradual roll-out, training, 24/7 support for initial period.
· Total elapsed time (typical): ~6–8 months to full rollout (depending on scope & resourcing).
Note: timeline assumes a single cross-functional team and moderate integration complexity.
Resource estimate (sample team for 6–8 months)
	Role
	Headcount (FTE)
	Duration
	Key responsibilities

	Project Manager / Scrum Master
	1
	End-to-end
	Planning, stakeholder mgmt.

	Business Analyst
	1–2
	Discovery + dev
	Requirements, UAT, acceptance

	Solution Architect
	1 (part-time)
	Design & oversight
	Architecture, integrations

	Backend Engineers
	2–3
	Phase 2–4
	APIs, inventory logic, routing

	Frontend Engineers
	1–2
	Phase 2–4
	Web UI, dashboards

	Mobile Developer (Android)
	1–2
	Phase 3
	Driver app

	QA Engineers
	1–2
	Phase 2–5
	Test automation & manual testing

	DevOps / Cloud Engineer
	1 (part-time)
	Setup & deployment
	CI/CD, infra

	UX/UI Designer
	1 (part-time)
	Phase1
	Wireframes, usability

	Data Engineer / BI
	1 (part-time)
	Phase 4
	Reporting, analytics

	Support / Trainer
	1–2
	Rollout
	Documentation & training

	Total typical FTEs (peak)
	~10–14
	—
	—

Example cost drivers
· External mapping/routing API licenses
· Mobile device provisioning for drivers
· Integration complexity with legacy ERP
· Cold chain sensors (if added)
Development methodology
Agile (2-week sprints), prioritized MVP for pilot. Continuous integration; automated tests; incremental rollout.
Environments & tech stack (recommended)
· Cloud: AWS / Azure / GCP
· Backend: Node.js / Python (Fast API) / Java Spring Boot
· Database: PostgreSQL for transactional, Redis for caching
· Mobile: Kotlin/Java for Android (or React Native if cross-platform desired)
· Queue & async: RabbitMQ / Kafka
· Mapping & routing: Map box / Google Maps + commercial route optimizer (or open-source OR-Tools for on-prem)
· CI/CD: GitHub Actions / GitLab CI
· Monitoring: Prometheus/Grafana, ELK stack
Migration & data conversion
· Inventory master import scripts
· Batch reconciliation (dual-run) during pilot
· Data validation checkpoints
Training & change management
· Train-the-trainer approach for warehouse staff
· Driver onboarding sessions + quick reference cards
· Video micro-modules for repetitive tasks

3. Process Flow Diagram (textual + ASCII flow)
Below is a simple end-to-end flow from order to delivery. You can convert this to a visual flowchart (Visio/PowerPoint) easily.
[Customer Order Received]
 |
 [Order Validation] <--- ERP / Sales Import
 |
 [Check Inventory Availability] --(insufficient)-> [Trigger Replenishment Suggestion / Backorder]
 |
 [Allocate/Reserve Inventory] ---|
 | |
 [Create Pick & Pack Task] |
 | |
 [Warehouse: Pick -> Pack -> Quality Check -> Mark Packed]
 |
 [Create Delivery Manifest & Optimize Routes]
 |
 [Assign Route to Driver(s)]
 |
 [Driver App: Navigate -> Deliver -> Capture POD (photo/signature) -> Temperature log]
 |
 [Update Order Status & Invoice Trigger -> Notify Customer]
 |
 [Close Order; Post-Delivery Analytics & Feedback]
Key sub-flows:
· Warehouse cycle count / stock reconciliation: periodic or triggered by discrepancies.
· Returns / Freshness complaints: capture reason -> create reverse logistics ticket -> route pickup.
· Cold chain exception handling: if temperature out-of-range, flag batch and create hold/quarantine workflow.

Assignment 2
1. Introduction letter (as Business Analyst)
Subject: Introduction — Business Analyst for IDMS Project
Dear [Client Name / Team],
I’m Sourav Banerjee (example name — please replace), the Business Analyst assigned to work with you on the Inventory & Rapid Delivery Management System. I will be your primary point of contact to capture business requirements, align stakeholders, and translate needs into a pragmatic technical solution.
Over the next 2–4 weeks I’ll:
· Run discovery workshops with operations, warehouse, logistics, sales, and IT.
· Document current processes (as-is) and map future processes (to-be).
· Produce a prioritized requirements backlog and acceptance criteria.
· Support vendor/integration assessment and pilot planning.
Please let me know your preferred times for a 60-minute kick off workshop in the coming week and the names of 2–3 SME participants from operations and IT. I look forward to working closely with your team and delivering a solution that reduces waste and accelerates deliveries.
Best regards,
Sourav Banerjee
Business Analyst — IDMS Project
srv@gmail.com
8250443132

2. Brief BRD and SRS — choose Online Store (concise)
Brief BRD — Online Store
Objective: Build an online storefront selling dairy and ice-cream products, integrated with the central inventory system to show real-time availability and enable fast, routed delivery.
Key capabilities
· Product catalogue with images, attributes, availability (real-time).
· Customer accounts, addresses, payments (card, UPI, COD).
· Shopping cart, checkout, order confirmation.
· Integration with IDMS to reserve inventory and trigger dispatch.
· Delivery time slots and real-time tracking.
· Promotional coupons and order history.
· Admin panel for product management, pricing, offers and order fulfilment.
Stakeholders
· Marketing, Sales, Warehouse Ops, Payment Gateway team, Customer Service.
Constraints
· PCI compliance for payments (use certified gateway).
· Perishable product delivery windows and cold chain needs.

Short SRS — Online Store (abridged)
1. Functional requirements
· FR1: Product browse and search with filters.
· FR2: Add to cart, update quantities; cart persisted for logged-out users (cookie).
· FR3: Checkout: capture shipping address, select delivery slot, payment.
· FR4: Order lifecycle: Pending → Confirmed → Packed → Out for Delivery → Delivered → Returned.
· FR5: Real-time stock check: cannot check out if stock unavailable.
· FR6: Order cancellation and returns within policy window.
· FR7: Promotions engine: percentage/flat discounts, conditional coupons.

2. Non-functional requirements
· Response time: page loads < 2s for catalogue pages.
· Availability: 99.9% during peak sale windows.
· Security: TLS, OWASP best practices, PCI via gateway.
· Scalability to 10k daily users initially.
3. Data & Integration
· Integrate with IDMS for inventory reservation and dispatch.
· Payment gateway integration (tokenized payments).
· Email/SMS gateway for notifications.
4. API
· Public internal API endpoints for: product listing, cart, checkout, order status, address book, promotions.
5. Acceptance criteria (example)
· User can complete an order end-to-end with payment and receive confirmation.
· Inventory decremented and order visible in IDMS dispatch queue.

3. ERD: Support Ticket / Ticketing Life Cycle (textual + ASCII ERD)
Entities & attributes (core)
· Ticket
· Ticket Id (PK)
· title
· description
· status (Open, Assigned, In Progress, On Hold, Resolved, Closed)
· priority (Low/Medium/High/Critical)
· created at
· updated at
· source (Email/Phone/Web/App)
· customer Id (FK)
· Assigned user Id (FK)
· Product Id (FK, optional)
· SLA Deadline
· Customer
· customer Id (PK)
· name
· email
· phone
· address
· User (support agent)
· User Id (PK)
· name
· role (agent/manager)
· email
· Ticket Event (history / audit)
· Event_Id (PK)
· Ticket Id (FK)
· event type (status change/comment, assignment)
· event by (user Id or system)
· event time
· details
· Ticket Attachment
· Attachment Id (PK)
· Ticket Id (FK)
· filename
· file path
· uploaded by
· uploaded at
· Comment
· Cementin (PK)
· Ticket Id (FK)
· User Id (FK)
· comment text
· created at
· SLA
· Sla Id (PK)
· priority
· Resolution time hours
· Resolution
· Resolution Id (PK)
· Ticket Id (FK)
· Resolution text
· resolved by
· resolved at
Relationships (brief)
· Ticket —1. —Ticket Event (one ticket has many events)
· Ticket —1. —Comment
· Ticket 1—* Ticket Attachment
· Ticket *—1 Customer
· Ticket *—0.1 User (assigned agent)
· Ticket priority -> SLA (lookup)

Simple ASCII ERD
[Customer]1---* [Ticket] *---1 [User]
 |
 *
 [Comment]
 |
 *
 [Ticket Event]
 |
 *
 [Ticket Attachment]
This model supports lifecycle transitions by appending Ticket Event entries (status changes, escalations), storing assignment history, SLA checks (compare created at + SLA resolution time to current & trigger alerts).

4. User story: Shopping from e-commerce (detailed with acceptance criteria)
Epic
As a customer, I want to order refrigerated dairy and ice-cream products online so that I receive them fresh at my doorstep within a chosen delivery slot.
User story (primary)
Title: Place order for same-day delivery
As a registered customer
I want to browse products, add items to cart, select a delivery slot, and pay,
So that I get my order delivered to my address within the chosen slot.
Acceptance Criteria
1. The customer can search and filter products by category, temperature requirement, and availability.
2. When adding items to cart, system checks stock and reserves stock for 15 minutes (or until checkout).
3. At checkout, the customer must select a delivery slot from available slots (slots reflect capacity).
4. Payment can be completed using card/UPI/COD; on successful payment, order status becomes Confirmed and inventory is committed.
5. Customer receives order confirmation email + SMS with order id, estimated delivery time, and link to track.
6. The order appears in warehouse pick queue and dispatch system with assigned slot.
7. If payment fails, the order is not reserved and customer shown clear error with retry options.
8. If a SKU becomes unavailable before checkout, user receives an immediate notification and cannot checkout with that SKU.
Test Scenarios
· Place order successfully with in-stock items → verify inventory decrement and confirmation.
· Place order with a near-expiry batch → system warns but allows purchase based on business rule.
· Try to reserve more quantity than available → system prevents adding to cart.

