
www.it-ebooks.info

http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.it-ebooks.info

http://www.it-ebooks.info/

v

Contents at a Glance

About the Author �� xvii

About the Technical Reviewer ��� xix

Acknowledgments ��� xxi

Introduction ��� xxiii

Chapter 1: Overview of Object-Oriented Programming ■ ���1

Chapter 2: Designing OOP Solutions: Identifying the Class Structure ■ �������������������������������7

Chapter 3: Designing OOP Solutions: Modeling the Object Interaction ■ ����������������������������� 25

Chapter 4: Designing OOP Solutions: A Case Study ■ ���43

Chapter 5: Introducing the �NET Framework and Visual Studio ■ ��������������������������������������59

Chapter 6: Creating Classes ■ ��83

Chapter 7: Creating Class Hierarchies ■ ���97

Chapter 8: Implementing Object Collaboration ■ ��119

Chapter 9: Working with Collections ■ ���143

Chapter 10: Implementing the Data Access Layer ■ ���161

Chapter 11: Developing WPF Applications ■ ��193

Chapter 12: Developing Web Applications ■ ���221

Chapter 13: Developing Windows Store Applications ■ ���251

Chapter 14: Developing and Consuming Web Services ■ ���273

Chapter 15: Developing the Office Supply Ordering Application ■ �����������������������������������295

Chapter 16: Wrapping Up ■ ���321

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents at a GlanCe

vi

Appendix A: Fundamental Programming Concepts ■ ���325

Appendix B: Exception Handling in C# ■ ���341

Appendix C: Installing the Required Software ■ ���347

Index ���353

www.it-ebooks.info

http://www.it-ebooks.info/

xxiii

It has been my experience as a .NET trainer and lead programmer that most people do not have trouble picking up the
syntax of the C# language. What perplexes and frustrates many people are the higher-level concepts of object-oriented
programming methodology and design. To compound the problem, most introductory programming books and
training classes skim over these concepts or, worse, don’t cover them at all. It is my hope that this book fills this void.
My goals in writing this book are twofold. My first goal is to provide you with the information you need to understand
the fundamentals of programming in C#. More importantly, my second goal is to present you with the information
required to master the higher-level concepts of object-oriented programming methodology and design.

This book provides the knowledge you need to architect an object-oriented programming solution aimed at
solving a business problem. As you work your way through the book, you will learn first how to analyze the business
requirements of an application. Next, you will model the objects and relationships involved in the solution design.
Finally, you will implement the solution using C#. Along the way, you will learn about the fundamentals of software
design, the Unified Modeling Language (UML), object-oriented programming, C#, and the .NET Framework.

Because this is an introductory book, it’s meant to be a starting point for your study of the topics it presents.
As such, this book is not designed to make you an expert in object-oriented programming and UML; nor is it an
exhaustive discussion of C# and the .NET Framework; nor is it an in-depth study of Visual Studio. It takes considerable
time and effort to become proficient in any one of these areas. It is my hope that by reading this book, your first
experiences in object-oriented programming will be enjoyable and comprehensible—and that these experiences will
instill a desire for further study.

Target Audience
The target audience for this book is the beginning C# programmer who wants to gain a foundation in object-oriented
programming along with C# language basics. Programmers transitioning from a procedure-oriented programming
model to an object-oriented model will also benefit from this book. In addition, there are many Visual Basic (VB)
programmers who want to transition to C#. Before transitioning to C#, it is imperative that you understand the
fundamentals of object-oriented programming.

Because the experience level of a “beginner” can vary immensely, I have included a primer in Appendix A that
discusses some basic programming concepts and how they are implemented in C#. I would suggest you review these
concepts if you are new to programming.

Activities and Software Requirements
One of the most important aspects of learning is doing. You can’t learn to ride a bike without jumping on a bike, and
you can’t learn to program without cranking out code. Any successful training program needs to include both a theory
component and a hands-on component.

I have included both components throughout this book. It is my hope that you will take seriously the activities
I have added to each chapter and work through them thoroughly—even repeatedly. Contrary to some students’
perception that these activities are “exercises in typing,” the activities are where you get a chance to make the theory

Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

■ IntroduCtIon

xxiv

concrete and where true simulation of the concepts occurs. I also encourage you to play as you work through an
activity. Don’t be afraid to alter some of the code just to see what happens. Some of the best learning experiences
occur when students “color outside the lines.”

The UML modeling activities in early chapters are designed for someone using UMLet. I chose this program
because it’s a good diagramming tool to learn with. It lets you create UML diagrams without adding a lot of advanced
features associated with the high-end CASE tools. UMLet is a free open-source tool and can be downloaded from
www.umlet.com. You can also use another tool such as Visio to complete the activities. However, you don’t need a tool
to complete these activities; paper and pencil will work just fine.

Once you begin coding, you will need Visual Studio 2012 with C# installed. I encourage you to install the help
files and make ample use of them while completing the activities. Chapter 13 deals with creating Windows Store Apps
and requires Visual Studio installed on the Windows 8 operating system. Later chapters require Microsoft SQL Server
2008 or higher with the Pubs and Northwind databases installed. Appendix C includes instructions on downloading
and installing the sample databases. You can find free Express and trial editions of both Visual Studio and SQL Server
along with trial editions of Windows 8 at www.msdn.microsoft.com.

www.it-ebooks.info

http://www.msdn.microsoft.com
http://www.msdn.microsoft.com
http://www.it-ebooks.info/

1

Chapter 1

Overview of Object-Oriented
Programming

To set the stage for your study of object-oriented programming (OOP) and C#, this chapter will look briefly at the
history of object-oriented programming and the characteristics of an object-oriented programming language.
You will look at why object-oriented programming has become so important in the development of industrial-
strength distributed-software systems. You will also examine how C# has evolved into one of the leading application
programming languages.

After reading this chapter, you will be familiar with the following:

what object-oriented programming is•	

why object-oriented programming has become so important in the development of industrial-	•
strength applications

the characteristics that make a programming language object-oriented	•

the history and evolution of C#	•

What is OOP?
Object-oriented programming is an approach to software development in which the structure of the software is based
on objects interacting with each other to accomplish a task. This interaction takes the form of messages passing back
and forth between the objects. In response to a message, an object can perform an action.

If you look at how you accomplish tasks in the world around you, you can see that you interact in an object-
oriented world. If you want to go to the store, for example, you interact with a car object. A car object consists of other
objects that interact with each other to accomplish the task of getting you to the store. You put the key object in the
ignition object and turn it. This in turn sends a message (through an electrical signal) to the starter object, which
interacts with the engine object to start the car. As a driver, you are isolated from the logic of how the objects of the
system work together to start the car. You just initiate the sequence of events by executing the start method of the
ignition object with the key. You then wait for a response (message) of success or failure.

Similarly, users of software programs are isolated from the logic needed to accomplish a task. For example, when
you print a page in your word processor, you initiate the action by clicking a print button. You are isolated from the
internal processing that needs to occur; you just wait for a response telling you if it printed. In the software program,
the button object interacts with a printer object, which interacts with the actual printer to accomplish the task of
printing the page.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Overview Of ObjeCt-Oriented prOgramming

2

The History of OOP
OOP concepts started surfacing in the mid-1960s with a programming language called Simula and further evolved
in the 1970s with advent of Smalltalk. Although software developers did not overwhelmingly embrace these early
advances in OOP languages, object-oriented methodologies continued to evolve. In the mid-1980s there was a
resurgence of interest in object-oriented methodologies. Specifically, OOP languages such as C++ and Eiffel became
popular with mainstream computer programmers. OOP continued to grow in popularity in the 1990s, most notably
with the advent of Java and the huge following it attracted. And in 2002, in conjunction with the release of the .NET
Framework, Microsoft introduced a new OOP language, C# (pronounced C-sharp) and revamped their widely popular
existing language, Visual Basic, so that it is now truly object-oriented. Today OOP languages continue to flourish and
are a mainstay of modern programming.

Why Use OOP?
Why has OOP developed into such a widely used paradigm for solving business problems today? During the 1970s
and 1980s, procedure-oriented programming languages such as C, Pascal, and Fortran were widely used to develop
business-oriented software systems. Procedural languages organize the program in a linear fashion—they run from
top to bottom. In other words, the program is a series of steps that run one after another. This type of programming
worked fine for small programs that consisted of a few hundred code lines, but as programs became larger they
became hard to manage and debug.

In an attempt to manage the ever-increasing size of the programs, structured programming was introduced
to break down the code into manageable segments called functions or procedures. This was an improvement, but
as programs performed more complex business functionality and interacted with other systems, the following
shortcomings of structural programming began to surface:

Programs became harder to maintain.•	

Existing functionality was hard to alter without adversely affecting all of the system’s 	•
functionality.

New programs were essentially built from scratch. Consequently, there was little return on the 	•
investment of previous efforts.

Programming was not conducive to team development. Programmers had to know every 	•
aspect of how a program worked and could not isolate their efforts on one aspect of a system.

It was hard to translate business models into programming models.	•

Structural programming worked well in isolation but did not integrate well with other systems.•	

In addition to these shortcomings, some evolutions of computing systems caused further strain on the structural
program approach, such as:

Nonprogrammers demanded and got direct access to programs through the incorporation of •	
graphical user interfaces and their desktop computers.

Users demanded a more intuitive, less structured approach to interacting with programs.	•

Computer systems evolved into a distributed model where the business logic, user interface, •	
and backend database were loosely coupled and accessed over the Internet and intranets.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Overview Of ObjeCt-Oriented prOgramming

3

As a result, many business software developers turned to object-oriented methods and programming languages.
The benefits included the following:

a more intuitive transition from business-analysis models to software-implementation models•	

the ability to maintain and implement changes in the programs more efficiently and rapidly	•

the ability to create software systems more effectively using a team process, allowing 	•
specialists to work on parts of the system

the ability to reuse code components in other programs and purchase components written by 	•
third-party developers to increase the functionality of existing programs with little effort

better integration with loosely coupled distributed-computing systems	•

improved integration with modern operating systems	•

the ability to create a more intuitive graphical-user interface for the users	•

The Characteristics of OOP
In this section you are going to examine some fundamental concepts and terms common to all OOP languages. Don’t
worry about how these concepts get implemented in any particular programming language; that will come later. My
goal is to familiarize you with the concepts and relate them to your everyday experiences so that they make more
sense later when you look at OOP design and implementation.

Objects
As I noted earlier, we live in an object-oriented world. You are an object. You interact with other objects. In fact,
you are an object with data such as your height and hair color. You also have methods that you perform or that are
performed on you, such as eating and walking.

So what are objects? In OOP terms, an object is a structure for incorporating data and the procedures for working
with that data. For example, if you were interested in tracking data associated with product inventory, you would
create a product object that is responsible for maintaining and using the data pertaining to the products. If you
wanted to have printing capabilities in your application, you would work with a printer object that is responsible for
the data and methods used to interact with your printers.

Abstraction
When you interact with objects in the world, you are often only concerned with a subset of their properties. Without
this ability to abstract or filter out the extraneous properties of objects, you would find it hard to process the plethora
of information bombarding you and concentrate on the task at hand.

As a result of abstraction, when two different people interact with the same object, they often deal with a different
subset of attributes. When I drive my car, for example, I need to know the speed of the car and the direction it is going.
Because the car is using an automatic transmission, I do not need to know the revolutions per minute (RPMs) of the
engine, so I filter this information out. On the other hand, this information would be critical to a racecar driver, who
would not filter it out.

When constructing objects in OOP applications, it is important to incorporate this concept of abstraction. The
objects include only the information that is relevant in the context of the application. If you were building a shipping
application, you would construct a product object with attributes such as size and weight. The color of the item would
be extraneous information and would be ignored. On the other hand, when constructing an order-entry application,
the color could be important and would be included as an attribute of the product object.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Overview Of ObjeCt-Oriented prOgramming

4

Encapsulation
Another important feature of OOP is encapsulation. Encapsulation is the process in which no direct access is granted
to the data; instead, it is hidden. If you want to gain access to the data, you have to interact with the object responsible
for the data. In the previous inventory example, if you wanted to view or update information on the products, you
would have to work through the product object. To read the data, you would send the product object a message. The
product object would then read the value and send back a message telling you what the value is. The product object
defines which operations can be performed on the product data. If you send a message to modify the data and the
product object determines it is a valid request, it will perform the operation for you and send a message back with
the result.

You experience encapsulation in your daily life all the time. Think about a human resources department. They
encapsulate (hide) the information about employees. They determine how this data can be used and manipulated.
Any request for the employee data or request to update the data has to be routed through them. Another example
is network security. Any request for security information or a change to a security policy must be made through a
network security administrator. The security data is encapsulated from the users of the network.

By encapsulating data, you make the data of your system more secure and reliable. You know how the data is
being accessed and what operations are being performed on the data. This makes program maintenance much easier
and also greatly simplifies the debugging process. You can also modify the methods used to work on the data, and, if
you do not alter how the method is requested and the type of response sent back, you do not have to alter the other
objects using the method. Think about when you send a letter in the mail. You make a request to the post office to
deliver the letter. How the post office accomplishes this is not exposed to you. If it changes the route it uses to mail
the letter, it does not affect how you initiate the sending of the letter. You do not have to know the post office’s internal
procedures used to deliver the letter.

Polymorphism
Polymorphism is the ability of two different objects to respond to the same request message in their own unique way.
For example, I could train my dog to respond to the command bark and my bird to respond to the command chirp.
On the other hand, I could train them to both respond to the command speak. Through polymorphism I know that the
dog will respond with a bark and the bird will respond with a chirp.

How does this relate to OOP? You can create objects that respond to the same message in their own unique
implementations. For example, you could send a print message to a printer object that would print the text on a
printer, and you could send the same message to a screen object that would print the text to a window on your
computer screen.

Another good example of polymorphism is the use of words in the English language. Words have many different
meanings, but through the context of the sentence you can deduce which meaning is intended. You know that
someone who says “Give me a break!” is not asking you to break his leg!

In OOP you implement this type of polymorphism through a process called overloading. You can implement
different methods of an object that have the same name. The object can then tell which method to implement depending
on the context (in other words, the number and type of arguments passed) of the message. For example, you could create
two methods of an inventory object to look up the price of a product. Both these methods would be named getPrice.
Another object could call this method and pass either the name of the product or the product ID. The inventory object
could tell which getPrice method to run by whether a string value or an integer value was passed with the request.

Inheritance
Most real-life objects can be classified into hierarchies. For example, you can classify all dogs together as having certain
common characteristics such as having four legs and fur. Their breeds further classify them into subgroups with
common attributes such as size and demeanor. You also classify objects according to their function. For example,
there are commercial vehicles and recreational vehicles. There are trucks and passenger cars. You classify cars
according to their make and model. To make sense of the world, you need to use object hierarchies and classifications.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Overview Of ObjeCt-Oriented prOgramming

5

You use inheritance in OOP to classify the objects in your programs according to common characteristics and
function. This makes working with the objects easier and more intuitive. It also makes programming easier because
it enables you to combine general characteristics into a parent object and inherit these characteristics in the child
objects. For example, you can define an employee object that defines all the general characteristics of employees
in your company. You can then define a manager object that inherits the characteristics of the employee object
but also adds characteristics unique to managers in your company. Because of inheritance the manager object will
automatically reflect any changes to the characteristics of the employee object.

Aggregation
Aggregation is when an object consists of a composite of other objects that work together. For example, your lawn
mower object is a composite of the wheel objects, the engine object, the blade object, and so on. In fact, the engine
object is a composite of many other objects. There are many examples of aggregation in the world around us. The
ability to use aggregation in OOP is a powerful feature that enables you to accurately model and implement business
processes in your programs.

The History of C#
In the 1980s, most applications written to run on the Windows operating system were written in C++. Even though
C++ is an OOP language, it’s arguably a difficult language to master and the programmer is responsible for dealing
with housekeeping tasks such as memory management and security. These housekeeping tasks are difficult to
implement and often neglected, which results in bug-filled applications that are difficult to test and maintain.

In the 1990s, the Java programming language became popular. Because it’s a managed-programming language,
it runs on top of a unified set of class libraries that take care of the low-level programming tasks such as type safety
checking, memory management, and destruction of unneeded objects. This allows the programmer to concentrate on
the business logic and frees her from having to worry about the error-prone housekeeping code. As a result, programs
are more compact, reliable, and easier to debug.

Seeing the success of Java and the increased popularity of the Internet, Microsoft developed its own set of
managed-programming languages. Microsoft wanted to make it easier to develop both Windows- and Web-based
applications. These managed languages rely on the .NET Framework to provide much of the functionality to
perform the housekeeping code required in all applications. During the development of the .NET Framework, the
class libraries were written in a new language called C#. The principal designer and lead architect of C# was Anders
Hejlsberg. Hejlsberg was previously involved with the design of Turbo Pascal and Delphi. He leveraged this previous
experience to design an OOP language that built on the successes of these languages and improved upon their
shortcomings. Hejlsberg also incorporated syntax similar to C into the language in order to appeal to the C++ and
Java developers. One of the goals of creating the .NET Framework and the C# language was to introduce modern
concepts such as object orientation, type safety, garbage collection, and structured-exception handling directly into
the platform.

Since releasing C#, Microsoft has continually sought to add additional features and enhancements to the
language. For example, version 2.0 added support for generics (generics are covered in Chapter 9) and version 3.0
LINQ (more about this in Chapter 10) was added to reduce the impedance mismatch between the programming
language and the database language used to retrieve and work with data. Today C# 5.0 includes support to make
parallel and asynchronous programming easier for developers to implement (see Chapter 8). With Microsoft’s
commitment to the continual improvement and evolution of the C#, it will continue to rank as one of the most widely
used programming languages in the world.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Overview Of ObjeCt-Oriented prOgramming

6

Microsoft is also committed to providing .NET developers with the tools necessary to have a highly productive
and intuitive programming experience. Although you can create C# programs using a text editor, most professional
programmers find an integrated development environment (IDE) invaluable in terms of ease of use and increased
productivity. Microsoft has developed an exceptional IDE in Visual Studio (VS). Integrated into VS are many features
that make programming for the .NET Framework more intuitive (These features are covered in Chapter 5). With
the most recent release of Visual Studio 2012, Microsoft has continued to enhance the design-time developing
experience. VS 2012 includes new features such as better debugging support for parallel programming and an
improved code testing experience. As you work your way through this book, I think you will come to appreciate the
power and productivity that Visual Studio and the C# language provide.

Summary
In this chapter, you were introduced to OOP and got a brief history of C#. Now that you have an understanding of what
constitutes an OOP language and why OOP languages are so important to enterprise-level application development,
your next step is to become familiar with how OOP applications are designed.

In order to meet the needs of the users, successful applications must be carefully planned and developed. The
next chapter is the first in a series of three aimed at introducing you to some of the techniques used when designing
object-oriented applications. You will look at the process of deciding which objects need to be included in an
application and which attributes of these objects are important to the functionality of that application.

www.it-ebooks.info

http://www.it-ebooks.info/

7

Chapter 2

Designing OOP Solutions:
Identifying the Class Structure

Most software projects you will become involved with as a business software developer will be a team effort. As a
programmer on the team, you will be asked to transform the design documents into the actual application code.
Additionally, because the design of object-oriented programs is an iterative process, designers depend on the
feedback of the software developers to refine and modify the program design. As you gain experience in developing
object-oriented software systems, you may even be asked to sit in on the design sessions and contribute to the design
process. Therefore, as a software developer, you should be familiar with the purpose and the structure of the various
design documents, as well as have some knowledge of how these documents are developed.

This chapter introduces you to some of the common documents used to design the static aspects of the system.
(You’ll learn how the dynamic aspects of the system are modeled in the next chapter.) To help you understand these
documents, this chapter includes some hands-on activities based on a limited case study. You’ll find similar activities
corresponding to the topics of discussion in most of the chapters in this book.

After reading this chapter, you will be familiar with the following:

The goals of software design•	

The fundamentals of the Unified Modeling Language•	

The purpose of a software requirement specification•	

How use case diagrams model the services the system will provide•	

How class diagrams model the classes of objects that need to be developed•	

Goals of Software Design
A well-organized approach to system design is essential when developing modern enterprise-level object-oriented
programs. The design phase is one of the most important in the software development cycle. You can trace many of
the problems associated with failed software projects to poor upfront design and inadequate communication
between the system’s developers and the system’s consumers. Unfortunately, many programmers and program
managers do not like getting involved in the design aspects of the system. They view any time not spent cranking out
code as unproductive.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Designing OOp sOlutiOns: iDentifying the Class struCture

8

To make matters worse, with the advent of “Internet time,” consumers expect increasingly shorter development
cycles. So, to meet unrealistic timelines and project scope, developers tend to forgo or cut short the system design
phase of development. This is counterproductive to the system’s success. Investing time in the design process will
achieve the following:

Provide an opportunity to review the current business process and fix any inefficiencies or •	
flaws uncovered

Educate the customers as to how the software development process occurs and incorporate •	
them as partners in this process

Create realistic project scopes and timelines for completion•	

Provide a basis for determining the software testing requirements•	

Reduce the cost and time required to implement the software solution•	

A good analogy to software design is the process of building a home. You would not expect a builder to start
working on the house without detailed plans (blueprints) supplied by an architect. You would expect the architect to
discuss the home’s design with you before creating any blueprints. It is the architect’s job to listen to your requests and
convert them into plans that a builder can use to build the home. A good architect will also educate you as to which
features are reasonable for your budget and projected timeline.

Understanding the Unified Modeling Language
To successfully design object-oriented software, you need to follow a proven design methodology. One proven design
methodology used in OOP today is the Unified Modeling Language (UML).UML was developed in the early 1980s
as a response to the need for a standard, systematic way of modeling the design of object-oriented software. This
industry standard was created and is managed by the Object Management Group (OMG). UML has evolved and
matured along with the software industry and the current version 2.4.1 was formally released in 2011.

There are many advantages to using UML during the design process. When properly implemented, UML
allows you to visualize the software system at various levels of detail. You can verify requirements and scope of the
project with the users. It also can be used as the basis for testing the system. UML lends itself well to an incremental
development process. UML modeling is also very beneficial for parallel development of large systems. Using the
model, each team is aware of how their pieces fit into the system and can convey changes that may affect other teams.

UML consists of a series of textual and graphical models of the proposed solution. These models define the
system scope, components of the system, user interaction with the system, and how the system components interact
with each other to implement the system functionality.

Some common models used in UML are the following:

•	 Software Requirement Specification (SRS): a textual description of the overall responsibilities
and scope of the system.

•	 Use Case: a textual/graphical description of how the system will behave from the user’s
perspective. Users can be human or other systems.

•	 Class Diagram: a visual blueprint of the objects that will be used to construct the system.

•	 Sequence Diagram: a model of the sequence of object interaction as the program executes.
Emphasis is placed on the order of the interactions and how they proceed over time.

•	 Collaboration Diagram: a view of how objects are organized to work together as the program
executes. Emphasis is placed on the communications that occur between the objects.

•	 Activity Diagram: a visual representation of the flow of execution of a process or operation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Designing OOp sOlutiOns: iDentifying the Class struCture

9

In this chapter, you’ll look at the development of the SRS, use cases, and class diagrams. Chapter 3 covers the
sequence, collaboration, and activity diagrams.

Developing a SRS
The purpose of the SRS is to do the following:

Define the functional requirements of the system.•	

Identify the boundaries of the system.•	

Identify the users of the system.•	

Describe the interactions between the system and the external users.•	

Establish a common language between the client and the program team for describing the system.•	

Provide the basis for modeling use cases.•	

To produce the SRS, you interview the business owners and the end users of the system. The goals of these
interviews are to document clearly the business processes involved and establish the system’s scope. The outcome of
this process is a formal document (the SRS) detailing the functional requirements of the system. A formal document
helps to ensure agreement between the customers and the software developers. The SRS also provides a basis for
resolving any disagreements over perceived system scope as development proceeds.

As an example, suppose that the owners of a small commuter airline want customers to be able to view flight
information and reserve tickets for flights using a Web registration system. After interviewing the business managers
and the ticketing agents, the software designers draft an SRS document that lists the system’s functional requirements.
The following are some of these requirements:

Nonregistered web users can browse to the web site to view flight information, but they can’t •	
book flights.

New customers who want to book flights must complete a registration form providing their •	
name, address, company name, phone number, fax number, and e-mail address.

A customer is classified as either a corporate customer or a retail customer.•	

Customers can search for flights based on destination and departure times.•	

Customers can book flights indicating the flight number and the number of seats requested.•	

The system sends customers a confirmation via e-mail when the flight is booked.•	

Corporate customers receive frequent flier miles when their employees book flights.•	

Frequent-flier miles are used to discount future purchases.•	

Ticket reservations may be canceled up to one week in advance for an 80 percent refund.•	

Ticketing agents can view and update flight information.•	

In this partial SRS document, you can see that several succinct statements define the system scope. They
describe the functionality of the system as viewed by the system’s users and identify the external entities that will
use it. It is important to note that the SRS does not contain references to the technical requirements of the system.

Once the SRS is developed, the functional requirements it contains are transformed into a series of use
case diagrams.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Designing OOp sOlutiOns: iDentifying the Class struCture

10

Introducing Use Cases
Use cases describe how external entities will use a system. These external entities can be human or other systems
(called actors in UML terminology). The description emphasizes the users’ view of the system and the interaction
between the users and the system. Use cases help to further define system scope and boundaries. They are usually
in the form of a diagram, along with a textual description of the interaction taking place. Figure 2-1 shows a generic
diagram that consists of two actors represented by stick figures, the system represented by a rectangle, and use cases
depicted by ovals inside the system boundaries.

Actor 1

System

Use case 1

Use case 2

Use case 3

Actor 2

Figure 2-1. Generic use case diagram with two actors and three use cases

Use cases are developed from the SRS document. The actor is any outside entity that interacts with the system.
An actor could be a human user (for instance, a rental agent), another software system (for instance, a software billing
system), or an interface device (for instance, a temperature probe). Each interaction that occurs between an actor and
the system is modeled as a use case.

The sample use case shown in Figure 2-2 was developed for the flight-booking application introduced in the
previous section. It shows the use case diagram for the requirement “Customers can search for flights based on
destination and departure times.”

Customer

View Flight Info

Figure 2-2. View Flight Info use case

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Designing OOp sOlutiOns: iDentifying the Class struCture

11

Along with the graphical depiction of the use case, many designers and software developers find it helpful to
provide a textual description of the use case. The textual description should be succinct and focused on what is
happening, not on how it is occurring. Sometimes any preconditions or postconditions associated with the use case
are also identified. The following text further describes the use case diagram shown in Figure 2-2.

•	 Description: A customer views the flight information page. The customer enters flight search
information. After submitting the search request, the customer views a list of flights matching
the search criteria.

•	 Preconditions: None.

•	 Postconditions: The customer has the opportunity to log in and proceed to the flight-booking page.

As another example, take a look at the Reserve Seat use case shown in Figure 2-3.

Customer

Reserve Seat

View Flight Info

«include»

Figure 2-3. Reserve Seat use case diagram

The following text further describes the use case diagram shown in Figure 2-3.

•	 Description: The customer enters the flight number and indicates the seats being requested.
After the customer submits the request, some confirmation information is displayed.

•	 Preconditions: The customer has looked up the flight information. The customer has logged in
and is viewing the flight-booking screen.

•	 Postconditions: The customer is sent a confirmation e-mail outlining the flight details and the
cancellation policy.

As you can see from Figure 2-3, certain relationships can exist between use cases. The Reserve Seat use case
includes the View Flight Info use case. This relationship is useful because you can use the View Flight Info use
case independently of the Reserve Flight use case. This is called inclusion. You cannot use the Reserve Seat use case
independently of the View Flight Info use case, however. This is important information that will affect how you
model the solution.

Another way that use cases relate to each other is through extension. You might have a general use case that
is the base for other use cases. The base use case is extended by other use cases. For example, you might have a
Register Customer use case that describes the core process of registering customers. You could then develop Register
Corporate Customer and Register Retail Customer use cases that extend the base use case. The difference between
extension and inclusion is that, in extension, the base use case being extended is not used on its own. Figure 2-4
demonstrates how you model this in a use case diagram.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Designing OOp sOlutiOns: iDentifying the Class struCture

12

A common mistake when developing use cases is to include actions initiated by the system itself. The emphasis
of the use case is on the interaction between external entities and the system. Another common mistake is to include a
description of the technical requirements of the system. Remember that use cases do not focus on how the system will
perform the functions, but rather on what functions need to be incorporated in the system from the user’s standpoint.

After you have developed the use cases of the system, you can begin to identify the internal system objects that
will carry out the system’s functional requirements. You do this using a class diagram.

Customer

Register
Customer

Register Corporate
Customer

Register Retail
Customer

«extends»

«extends»

Figure 2-4. Extending use cases

aCtIVItY 2-1. CreatING a USe CaSe DIaGraM

after completing this activity, you should be familiar with the following:

how to produce a use case diagram to define a system’s scope•	

how to use a uMl modeling tool to create and document a use case diagram•	

examining the SrS

the software user group you belong to has decided to pool its resources and create a lending library. lending
items include books, movies, and video games. your task is to develop the application that will keep track of the
loan item inventory and the lending of items to the group members. after interviewing the group’s members and
officers, you have developed a srs document that includes the following functional requirements:

Only members of the user group can borrow items.•	

Books can be borrowed for four weeks.•	

Movies and games can be borrowed for one week.•	

items can be renewed if no one is waiting to borrow them.•	

Members can only borrow up to four items at the same time.•	

a reminder is e-mailed to members when an item becomes overdue.•	

a fine is charged for overdue items.•	

Members with outstanding overdue items or fines can’t borrow new items.•	

a secretary is in charge of maintaining item inventory and purchasing items to add to the inventory.•	

a librarian has been appointed to track lending and send overdue notices.•	

the librarian is also responsible for collecting fines and updating fine information.•	

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Designing OOp sOlutiOns: iDentifying the Class struCture

13

the next steps are to analyze the srs to identify the actors and use cases.

1. By examining the srs document, identify which of the following will be among the
principal actors interacting with the system:

a. Member

B. librarian

C. Book

D. treasurer

e. inventory

f. e-mail

g. secretary

2. Once you have identified the principal actors, you need to identify the use cases for the
actors. identify the actor associated with the following use cases:

a. request item

B. Catalog item

C. lend item

D. process fine

see the end of the chapter for activity 2-1 answers.

Creating a Use Case Diagram

although it is possible to create uMl diagrams by hand or on a whiteboard, most programmers will eventually
turn to a diagramming tool or a Computer-aided software engineering (Case) tool. Case tools help you construct
professional-quality diagrams and enable team members to easily share and augment the diagrams. there are
many Case tools on the market, including Microsoft Visio. Before choosing a Case tool, you should thoroughly
evaluate if it meets your needs and is sufficiently flexible. a lot of the advanced features associated with high-end
Case tools are difficult to work with, so you spend more time figuring out how the Case tool works than
documenting your design.

a good diagraming tool to learn on is uMlet. uMlet enables you to create uMl diagrams without adding a lot of
advanced features associated with the high-end Case tools. Best of all, uMlet is a free open-source tool and can
be downloaded from www.umlet.com.

■ Note these activities use the uMlet 11.5.1 stand-alone edition. this also requires Java 1.6 available at www.java.com.

www.it-ebooks.info

http://www.umlet.com/
http://www.java.com/
http://www.it-ebooks.info/

Chapter 2 ■ Designing OOp sOlutiOns: iDentifying the Class struCture

14

after downloading and installing uMlet, you can complete the following steps (if you do not want to use a tool,
you can create the use Case diagram by hand):

1. start uMlet by double clicking the uMlet.jar file. you are presented with three windows.
the main window is the design surface, the upper right window contains the uMl object
templates, and the lower right window is where you change or add properties to the objects.

2. locate the actor template in the upper right window (see figure 2-5). Double click the
actor template. an actor will appear in the upper left corner of the design surface.

Actor

Use case 1

Use case 3

Use case 2

Collaboration

«extends»

«include»

Figure 2-5. Locating the actor template

3. if not already selected, select the actor shape on the design surface. in the lower right
window, change the name of the actor shape to Member.

4. repeat the procedures to add a secretary and a librarian actor.

5. from the template window, double click the use case 1 shape to add it to the design
surface. Change the name of the use case to request item.

6. repeat step 5 for two more use cases. include a Catalog item use case that will occur
when the secretary adds new items to the library inventory database. add a lend item
use case that will occur when the librarian processes a request for an item.

7. from the template window, double click the empty package shape and change the
name to library loan system. right click on the shape in the design surface and change
the background color to white. Move the use case shapes inside the library loan
system shape (see figure 2-6).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Designing OOp sOlutiOns: iDentifying the Class struCture

15

8. from the template window, double click on the Communications link shape. it is the
line with no arrow heads (see figure 2-7). On the design surface, attach one end to the
Member shape and the other end to the request item shape.

Member

Librarian

Secretary

Catalog Item

Library Loan System

Lend Item

Request Item

Figure 2-6. Placing the use cases inside the system boundary

Actor

Use case 1

Use case 3

Use case 2

Collaboration

«extends»

«include»

Figure 2-7. Locating the Communications Link shape

9. repeat step 8 two times to create a Communication link shape between the librarian
and the lend item shapes as well as a Communication link shape between the
secretary and the Catalog item shapes.

10. from the templates widow, double click the extends relationship arrow. attach the tail
end of the extends arrow to the lend item use case and attach the head of the arrow to
the request item use case.

11. your completed diagram should be similar to the one shown in figure 2-8. save the file
as uMlact2_1 and exit uMlet.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Designing OOp sOlutiOns: iDentifying the Class struCture

16

Understanding Class Diagrams
The concepts of classes and objects are fundamental to OOP. An object is a structure for incorporating data and the
procedures for working with the data. These objects implement the functionality of an object-oriented program.
Think of a class as a blueprint for an object and an object as an instance of a class. A class defines the structure and
the methods that objects based on the class type will contain.

Designers identify a potential list of classes that they will need to develop from the SRS and the use case
diagrams. One way you identify the classes is by looking at the noun phrases in the SRS document and the use case
descriptions. If you look at the documentation developed thus far for the airline booking application, you can begin
to identify the classes that will make up the system. For example, you can develop a Customer class to work with the
customer data and a Flight class to work with the flight data.

A class is responsible for managing data. When defining the class structure, you must determine what data the
class is responsible for maintaining. The class attributes define this information. For example, the Flight class will
have attributes for identifying the flight number, departure time and date, flight duration, destination, capacity, and
seats available. The class structure must also define any operations that will be performed on the data. An example of
an operation the Flight class is responsible for is updating the seats available when a seat is reserved.

A class diagram can help you visualize the attributes and operations of a class. Figure 2-9 is an example of the
class diagram for the Flight class used in the flight booking system example. A rectangle divided into three sections
represents the class. The top section of the rectangle shows the name of the class, the middle section lists the
attributes of the class, and the bottom section lists the operations performed by the class.

Member

Librarian

Secretary

Catalog Item

Library Loan System

Lend Item

Request Item

«extends»

Figure 2-8. Completed use case diagram

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Designing OOp sOlutiOns: iDentifying the Class struCture

17

Modeling Object Relationships
In OOP, when the program executes, the various objects work together to accomplish the programming tasks. For
example, in the flight booking application, in order to reserve a seat on the flight, a Reservation object must interact
with the Flight object. A relationship exists between the two objects, and this relationship must be modeled in the
class structure of the program. The relationships among the classes that make up the program are modeled in the
class diagram. Analyzing the verb phrases in the SRS often reveals these relationships (this is discussed in more detail
in Chapter 3). The following sections examine some of the common relationships that can occur between classes and
how the class diagram represents them.

Association
When one class refers to or uses another class, the classes form an association. You draw a line between the two
classes to represent the association and add a label to indicate the name of the association. For example, a seat is
associated with a flight in the flight-booking-application, as shown in Figure 2-10.

Flight

flightld

date

origin

destination

departureTime

arrivalTime

seatingCapacity

reserveSeat()

unreserveSeat()

Figure 2-9. Flight class diagram

Flight SeatContains

Figure 2-10. Class associations

Sometimes a single instance of one class associates with multiple instances of another class. This is indicated
on the line connecting the two classes. For example, when a customer makes a reservation, there is an association
between the Customer class and the Reservation class. A single instance of the Customer class may be associated with
multiple instances of the Reservation class. The n placed near the Reservation class indicates this multiplicity, as
shown in Figure 2-11.

Customer Reservation
Makes a

1 1..n

Figure 2-11. Indicating multiplicity in a class diagram

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Designing OOp sOlutiOns: iDentifying the Class struCture

18

A situation may also exist where an instance of a class may be associated with multiple instances of the same
class. For example, an instance of the Pilot class represents the captain while another instance of the Pilot class
represents the co-pilot. The pilot manages the co-pilot. This scenario is referred to as a self-association and is
modeled by drawing the association line from the class back to itself, as shown in Figure 2-12.

Pilot

1

1 Co-pilot

Manages

Figure 2-12. A self-associating class

Inheritance
When multiple classes share some of the same operations and attributes, a base class can encapsulate the
commonality. The child class then inherits from the base class. This is represented in the class diagram by a solid line
with an open arrowhead pointing to the base class. For example, a CorporateCustomer class and a RetailCustomer
class could inherit common attributes and operations from a base Customer class, as shown in Figure 2-13.

«inherits»

Customer

Retail Customer Corporate Customer

«inherits»

Figure 2-13. Documenting inheritance

Aggregation
When a class is formed by a composition of other classes, they are classified as an aggregation. This is represented
with a solid line connecting the classes in a hierarchical structure. Placing a diamond on the line next to a class in the
diagram indicates the top level of the hierarchy. For example, an inventory application designed to track plane parts
for the plane maintenance department could contain a Plane class that is a composite of various part classes,
as shown in Figure 2-14.

Plane

Engine

Fuel System

Fuel Filter

Fuel Pump

Figure 2-14. Depicting aggregations

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Designing OOp sOlutiOns: iDentifying the Class struCture

19

Association Classes
As the classes and the associations for a program are developed, there may be a situation where an attribute can’t
be assigned to any one class, but is a result of an association between classes. For example, the parts inventory
application mentioned previously may have a Part class and a Supplier class. Because a part can have more than
one supplier and the supplier supplies more than one part, where should the price attribute be located? It does not
fit nicely as an attribute for either class, and it should not be duplicated in both classes. The solution is to develop
an association class that manages the data that is a product of the association. In this case, you would develop a
PartPrice class. The relationship is modeled with a dashed line drawn between the association and the association
class, as shown in Figure 2-15.

Supplier
Supplies a

Part

PartPrice

1..n 1..n

Figure 2-15. An association class

Figure 2-16 shows the evolving class diagram for the flight booking application. It includes the classes, attributes,
and relationships that have been identified for the system. The operations associated with the classes will be
developed in Chapter 3.

Customer Reservation

reservationNo
date

reserves

Seat

rowNo
seatNo
price
status

makes a
1 0..n 1 1..n

1..n
contains

1
Flight

flightld
date
origin
destination
departureTime
arrivalTime
seatingCapacity

<<Inherits>><<Inherits>>

customerId
lastName
firstName
street
city
state
zipCode
phone
eMail
password

RetailCustomer
CorporateCustomer

companyName
frequentFlyerPts
billingAccountNo

creditCardType
creditCardNo

Figure 2-16. Flight booking class diagram

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Designing OOp sOlutiOns: iDentifying the Class struCture

20

aCtIVItY 2-2. CreatING a CLaSS DIaGraM

after completing this activity, you should be familiar with the following:

how to determine the classes that need to be constructed by examining the use case and •	
the system scope documentation

how to use a uMl modeling tool to create a class diagram•	

Identifying Classes and attributes

examine the following scenario developed for a use case from the user group library application:

after viewing the list of available loan items, members request an item to check out on loan. the librarian enters
the member number and retrieves information about outstanding loans and any unpaid fines. if the member has
fewer than four outstanding loans and does not have any outstanding fines, the loan is processed. the librarian
retrieves information about the loan item to determine if it is currently on loan. if the item is available, it is
checked out to the member.

1. By identifying the nouns and noun phrases in the use case scenario, you can get an
idea of what classes you must include in the system to perform the tasks. Which of the
following items would make good candidate classes for the system?

a. Member

B. Item

C. Librarian

D. Number

e. Fine

f. Checkout

g. Loan

2. at this point, you can start identifying attributes associated with the classes being
developed. a Loan class will be developed to encapsulate data associated with an item
out on loan. Which of the following would be possible attributes for the Loan class?

a. MemberNumber

B. MemberPhone

C. ItemNumber

D. ReturnDate

e. ItemCost

f. ItemType

see the end of the chapter for activity 2-2 answers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Designing OOp sOlutiOns: iDentifying the Class struCture

21

Creating a Class Diagram

to create a class diagram using uMl Modeler, follow these steps (you can also create it by hand):

1. start uMlet. you are presented with three windows. the main window is the design
surface, the upper right window contains the uMl object templates, and the lower right
window is where you change or add properties to the objects.

2. locate the simpleClass template in the upper right window (see figure 2-17). Double
click the simpleClass template. a simpleClass will appear in the upper left corner of the
design surface.

Figure 2-17. Adding a class shape

3. in the lower right properties window, change the class name to Member.

4. repeat the procedure for a Loan, Item, Book, and Movie class.

5. locate the association template in the upper right window (see figure 2-18). Double
click the association template. an association will appear in the upper left corner of the
design surface.

Figure 2-18. Adding an association shape

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Designing OOp sOlutiOns: iDentifying the Class struCture

22

6. attach the left end of the association shape to the Member class and the right end to
the Loan class shape. select the association shape and update the properties in the
properties window so that they match figure 2-19.

Figure 2-19. Updating association properties

7. repeat steps 5 and 6 to create a “Contains a” association shape between the Loan class
and the Item class. this should be a one-to-one association.

8. locate the generalization arrow template in the upper right window (see figure 2-20).
Double click the generalization shape. a generalization shape will appear in the upper
left corner of the design surface.

Figure 2-20. Adding a generalization arrow

9. attach the tail end of the generalization arrow to the Book class and the head end to
the Item class shape. select the generalization arrow and update the properties in the
properties widow so that they match figure 2-21.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Designing OOp sOlutiOns: iDentifying the Class struCture

23

10. repeat steps 8 and 9 to show that the Movie class inherits from the Item class.

11. Click on the Member class in the design window. in the properties window, add the
memberNumber, firstName, lastName, and eMail attributes as shown in figure 2-22.

Figure 2-21. Updating generalization properties

Figure 2-22. Adding class attributes

12. your completed diagram should be similar to figure 2-23. save the file as uMlact2_2.

makes a
Member

memberNumber:integer
firstName:string
lastName:string
eMail:string

Loan

Item

MovieBook

1

1

0..40..1

contains a

<<inherits>> <<inherits>>

Figure 2-23. Completed class diagram

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Designing OOp sOlutiOns: iDentifying the Class struCture

24

aCtIVItY aNSWerS

Summary
In this chapter, you were introduced to the goals of the object-oriented design process and UML. You learned about
some of the design documents and diagrams produced using UML. These include the SRS, which defines the scope of
the system; use case diagrams, which define the system boundaries and identify the external entities that will use the
system; and class diagrams, which model the structure of the classes that will be developed to implement the system.

You saw how modeling the class structure of your applications includes identifying the necessary classes,
identifying the attributes of these classes, and establishing the structural relationships required among the classes.
In Chapter 3, you will continue your study of object-oriented design. In particular, you will look at modeling how the
objects in your applications will collaborate to carry out the functionality of the application.

activity 2–1 answers

1. a, B, g. the actors are Member, librarian, and secretary.

2. a. Member, B. secretary, C. librarian, D. librarian. the request item use case goes with
Member, the Catalog item use case goes with secretary, the lend item use case goes
with librarian, and the process fine use case goes with librarian.

activity 2–2 answers

1. a, B, C, e, g. the candidate classes are Member, Item, Librarian, Fine, and Loan.

2. a, C, D. the attributes associated with the Loan class are MemberNumber, ItemNumber,
and ReturnDate.

www.it-ebooks.info

http://www.it-ebooks.info/

25

Chapter 3

Designing OOP Solutions: Modeling
the Object Interaction

The previous chapter focused on modeling the static (organizational) aspects of an OOP solution. It introduced and
discussed the methodologies of the UML. It also looked at the purpose and structure of use case diagrams and class
diagrams. This chapter continues the discussion of UML modeling techniques and focuses on modeling the dynamic
(behavioral) aspects of an OOP solution. The focus in this chapter is on how the objects in the system must interact
with each other and what activities must occur to implement the solution. This is an important aspect of the modeling
processes. These models will serve as the basis for coding the various methods of the classes (identified in Chapter 2)
that will make up the software application.

After reading this chapter, you should be familiar with the following:

the purpose of scenarios and how they extend the use case models•	

how sequence diagrams model the time-dependent interaction of the objects in the system•	

how activity diagrams map the flow of activities during application processing•	

the importance of graphical user interface design and how it fits into the object-oriented •	
design process

Understanding Scenarios
Scenarios help determine the dynamic interactions that will take place between the objects (class instances) of
the system. A scenario is a textual description of the internal processing needed to implement the functionality
documented by a use case. Remember that a use case describes the functionality of the system from the viewpoint of
the system’s external users. A scenario details the execution of the use case. In other words, its purpose is to describe
the steps that must be carried out internally by the objects making up the system.

Figure 3-1 shows a Process Movie Rental use case for a video rental application. The following text describes the
use case:

Preconditions: The customer makes a request to rent a movie from the rental clerk. The •	
customer has a membership in the video club and supplies the rental clerk with her
membership card and personal identification number (PIN). The customer’s membership is
verified. The customer information is displayed, and the customer’s account is verified to be
in good standing.

Description: The movie is confirmed to be in stock. Rental information is recorded, and the •	
customer is informed of the due date.

Post conditions: None.•	

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Designing OOp sOlutiOns: MODeling the ObjeCt interaCtiOn

26

The following scenario describes the internal processing of the Process Movie Rental use case:

The movie is verified to be in stock.•	

The number of available copies in stock is decremented.•	

The due date is determined.•	

The rental information is recorded. This information includes the movie title, copy number, •	
current date, and due date.

The customer is informed of the rental information.•	

This scenario describes the best possible execution of the use case. Because exceptions can occur, a single use
case can spawn multiple scenarios. For example, another scenario created for the Process Movie Rental use case
could describe what happens when a movie is not in stock.

After you map out the various scenarios for a use case, you can create interaction diagrams to determine
which classes of objects will be involved in carrying out the functionality of the scenarios. The interaction diagram
also reveals what operations will be required of these classes of objects. Interaction diagrams come in two flavors:
sequence diagrams and collaboration diagrams.

Introducing Sequence Diagrams
A sequence diagram models how the classes of objects interact with each other over time as the system runs. The
sequence diagram is a visual, two-dimensional model of the interaction taking place and is based on a scenario.
Figure 3-2 shows a generic sequence diagram.

Message1

Message4

Message5

Message2

Object2Object1 Object3

Message3

Message6

Figure 3-2. Generic sequence diagram

Rental Clerk

Video Rental

Process Movie
Rental

Figure 3-1. Process Movie Rental use case

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Designing OOp sOlutiOns: MODeling the ObjeCt interaCtiOn

27

As Figure 3-2 demonstrates, the flow of messages from object to object is represented horizontally. The time flow
of the interactions taking place is depicted vertically, starting from the top and progressing downward. Objects are
placed next to each other from left to right according to the calling order. A dashed line extends from each of them
downward. This dashed line represents the lifeline of the object. Rectangles on the lifeline represent activations of the
object. The height of the rectangle represents the duration of the object’s activation.

In OOP, objects interact by passing messages to each other. An arrow starting at the initiating object and ending
at the receiving object depicts the interaction. A dashed arrow drawn back to the initiating object represents a return
message. The messages depicted in the sequence diagram will form the basis of the methods of the classes of the
system. Figure 3-3 shows a sample sequence diagram for the Process Movie Rental scenario presented in the previous
section. At this point, the diagram only models the case where the movie is in stock.

Customer RentalClerk RentalItem Rental

Request Movie

Rental Confirmation

In Stock?

True

Decrement Stock

Calculate Due Date

Due Date

Create Rental

Figure 3-3. Process Movie Rental sequence diagram

As you analyze the sequence diagram, you gain an understanding of the classes of objects that will be involved
in carrying out the program processing; you will also understand what methods you will need to create and attach to
those classes. You should also model the classes and methods depicted in the sequence diagram in the class diagram.
These design documents must be continually cross-referenced and revised as necessary.

The sequence diagram in Figure 3-3 reveals that there will be four objects involved in carrying out the Process
Movie Rental scenario.

The •	 Customer object is an instance of the Customer class and is responsible for encapsulating
and maintaining the information pertaining to a customer.

The •	 RentalClerk object is an instance of the RentalClerk class and is responsible for
managing the processing involved in renting a movie.

The •	 RentalItem object is an instance of the RentalItem class and is responsible for
encapsulating and maintaining the information pertaining to a video available for rent.

The •	 Rental object is an instance of the Rental class and is responsible for encapsulating and
maintaining the information pertaining to a video currently being rented.

Message Types
By analyzing the sequence diagram, you can determine what messages must be passed between the objects involved
in the processing. In OOP, messages are passed synchronously or asynchronously.

When messages are passed synchronously, the sending object suspends processing and waits for a response
before continuing. A line drawn with a closed arrowhead in the sequence diagram represents synchronous messaging.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Designing OOp sOlutiOns: MODeling the ObjeCt interaCtiOn

28

When an object sends an asynchronous message, the object continues processing and is not expecting an
immediate response from the receiving object. A line drawn with an open arrowhead in the sequence diagram represents
asynchronous messaging. A dashed arrow usually depicts a response message. These lines are shown in Figure 3-4.

Object1 Object2

Synchronous

Return

Asynchronous

Figure 3-4. Different types of messages

By studying the sequence diagram for the Process Movie Rental scenario shown in Figure 3-3, you can see the
types of messages that must be passed. For example, the RentalClerk object initiates a synchronous message with the
RentalItem object, requesting information as to whether a copy of the movie is in stock. The RentalItem object then
sends a response back to the RentalClerk object, indicating a copy is in stock. This needs to be synchronous because
the RentalClerk is waiting for the response to process the request. An example of an asynchronous message would be
if someone signs up for an e-mail alert when a movie is returned. In this case, a message would be sent to fire off the
e-mail but there is no need for a response.

Recursive Messages
In OOP, it is not uncommon for an object to have an operation that invokes another object instance of itself. This is
referred to as recursion. A message arrow that loops back toward the calling object represents recursion in the sequence
diagram. The end of the arrow points to a smaller activation rectangle, representing a second object activation drawn on
top of the original activation rectangle (see Figure 3-5). For example, an Account object calculates compound interest for
overdue payments. To calculate the interest over several compound periods, it needs to invoke itself several times.

Account

Calculate Payment

Amount Due

Calculate
Interest

Figure 3-5. Diagramming a recursive message

Message Iteration
Sometimes, a message call is repeated until a condition is met. For example, when totaling rental charges, an Add
method is called repeatedly until all rentals charged to the customer have been added to the total. In programming
terminology, this is iteration. A rectangle drawn around the iterating messages represents an iteration in a sequence
diagram. The binding condition of the iteration is depicted in the upper-left corner of the rectangle. Figure 3-6 shows
an example of an iteration depicted in a sequence diagram.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Designing OOp sOlutiOns: MODeling the ObjeCt interaCtiOn

29

Message Constraints
Message calls between objects may have a conditional constraint attached to them. For example, customers must be
in good standing in order to be allowed to rent a movie. You place the condition of the constraint within brackets ([])
in the sequence. The message will be sent only if the condition evaluates to true (see Figure 3-7).

Customer RentalClerk

Charge

Total Charge

Charge Amount

Get Rental Charge

For Each Rental

Calculate Rental

Rental

Figure 3-6. Depicting an iterative message

Customer RentalClerk

[In Good Standing]
Request Rental

Figure 3-7. Identifying conditional constraints

Message Branching
When conditional constraints are tied to message calling, you often run into a branching situation where, depending on
the condition, different messages may be invoked. Figure 3-8 represents a conditional constraint when requesting a movie
rental. If the status of the rental item is “in stock,” a message is sent to the Rental object to create a rental. If the status of
the rental item is “out of stock,” a message is sent to the Reservation object to create a reservation. A rectangle (labeled as
alt in Figure 3-8) drawn around the messages shows the alternate paths that can occur depending on the condition.

Alt

[In Stock]
Create Rental

Create Reservation[Out of Stock]

Rental Item ReservationRental Item

Figure 3-8. Branching messages in a sequence diagram

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Designing OOp sOlutiOns: MODeling the ObjeCt interaCtiOn

30

after completing this activity, you should be familiar with the following:

producing a sequence diagram to model object interaction•	

using a uMl modeling tool to create a sequence diagram•	

adding methods to the class diagram•	

examining the Scenario

the following scenario was created for a use case in the user group library application introduced in activity 2-1.
it describes the processing involved when a member borrows an item from the library.

When a member makes a request to borrow an item, the librarian checks the member’s records to make sure no
outstanding fines exist. Once the member passes these checks, the item is checked to see if it is available. Once
the item availability has been confirmed, a loan is created recording the item number, member number, checkout
date, and return date.

1. by examining the noun phrases in the scenario, you can identify which objects will
be involved in carrying out the processing. the objects identified should also have a
corresponding class depicted in the class diagram that has been previously created. From
the scenario depicted, identify five objects that will carry out the processing.

2. after the objects have been identified and cross-referenced with the class diagram, the
next step is to identify the messaging that must occur between these objects to carry
out the task. You can look at the verb phrases in the scenario to help identify these
messages. For example, the “request to borrow item” phrase indicates a message
interaction between the Member object and the librarian object. What are the other
interactions depicted in the scenario?

see the end of the chapter for activity 3-1 answers.

Creating a Sequence Diagram

Follow these steps to create a sequence diagram using uMlet:

1. start uMlet. locate the drop-down list at the top of the template window. Change the
template type to sequence (see Figure 3-9).

aCtIVItY 3-1. CreatING a SeQUeNCe DIaGraM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Designing OOp sOlutiOns: MODeling the ObjeCt interaCtiOn

31

2. Double-click the instance shape in the template window. an instance shape will appear in
the upper left corner of the design surface. in the properties window, change the name of
the shape to Member.

3. From the shapes window, locate the lifeline and activation shapes (see Figure 3-10) and
add them to the Member instance, as shown in Figure 3-11.

Figure 3-9. Changing template shape types

Figure 3-10. Locating the lifeline and activation shapes

Member

Figure 3-11. Adding shapes to the sequence diagram

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Designing OOp sOlutiOns: MODeling the ObjeCt interaCtiOn

32

4. repeat steps 2 and 3 to add a Librarian, LoanHistory, Item, and Loan object to the
diagram. lay them out from left to right as shown in Figure 3-12.

Member Librarian LoanHistory Item Loan

Figure 3-12. Object layout in the sequence diagram

5. From the shapes template window, double-click the sequence Message arrow shape.
attach the tail end of the arrow to the Member object’s lifeline and the head of the arrow
to the Librarian object’s lifeline. in the properties window, change the name of the
message to “request item.”

6. to create a return arrow, double-click on the solid arrow with the open arrow head in the
shapes template window. in the properties window, change the first line to lt=.< this
should change the arrow from solid to dash. attach the tail end to the Librarian object
and the head end to the Member object. Change the name to “return loan info.” Your
diagram should look similar to Figure 3-13.

Member Librarian

Request Item

Return Loan Info

Figure 3-13. Message layout in the sequence diagram

7. repeat steps 5 and 6 to create a message from the Librarian object to the
LoanHistory object. name the calling message (the solid line) “Check history.” name
the return message (the dashed line) “return history.”

8. Create a message from the Librarian object to the Item object. name the calling
message “Check availability.” name the return message “return availability info.”

9. Create a message from the Librarian object to the Item object. name the calling
message “update status.” name the return message “return update Confirmation.”

10. Create a message from the Librarian object to the Loan object. name the calling
message “Create loan.” name the return message “return loan confirmation.”

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Designing OOp sOlutiOns: MODeling the ObjeCt interaCtiOn

33

11. rearrange the shapes so that your diagram looks similar to Figure 3-14. save the
diagram as uMl_act3_1.

Member Librarian Item LoanLoanHistory

Request Item Check History

Return History
Info

Check Availability

Return Availability Info

Update Status

Return Status Info

Create Loan

Return Loan Confirmation
Return Loan Info

Figure 3-14. Completed sequence diagram

adding Methods to the Class Diagram

after you have developed the sequence diagram, you begin to gain an understanding of the methods that
must be included in the various classes of the application. You achieve the message interaction depicted in the
sequence diagram by a method call from the initiating object (client) to the receiving object (server). the method
being called is defined in the class that the server object is instantiated as. For example, the “check availability”
message in the sequence diagram indicates that the item class needs a method that processes this message call.

Follow these steps to add the methods:

1. in uMlet, choose File ➤ new to create a new diagram. locate the drop-down list at the
top of the template window. Change the template type to Class.

2. Double-click on the simple Class shape template. select the shape in the design window.

3. in the properties window, change the name of the class to Item. underneath the name
in the properties window, enter two dashes. this will create a new section in the class
shape. this section is where you enter the attributes of the class.

4. in the properties window, add the ItemNumber attribute to the class followed by two
more dashes. this creates a third section in the class shape that is used to add the
methods of the class.

5. add a CheckAvailability and an UpdateStatus method to the class as shown in
Figure 3-15.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Designing OOp sOlutiOns: MODeling the ObjeCt interaCtiOn

34

6. save the diagram as uMl_act3_1b.

Figure 3-15. Adding methods to a class

A B

Figure 3-16. Generic activity diagram

Verify
Membership

Process
Rental

[Not Verified]

[Verified]

Figure 3-17. Indicating decision points and guard conditions

Understanding Activity Diagrams
An activity diagram illustrates the flow of activities that need to occur during an operation or process. You can
construct the activity diagram to view the workflow at various levels of focus.

A high, system-level focus represents each use case as an activity and diagrams the workflow •	
among the different use cases.

A mid-level focus diagrams the workflow occurring within a particular use case.•	

A low-level focus diagrams the workflow that occurs within a particular operation of one of the •	
classes of the system.

The activity diagram consists of the starting point of the process represented by a solid circle and transition
arrows representing the flow or transition from one activity to the next. Rounded rectangles represent the activities,
and a bull’s eye circle represents the ending point of the process. For example, Figure 3-16 shows a generic activity
diagram that represents a process that starts with activity A, proceeds to activity B, and concludes.

Decision Points and Guard Conditions
Often, one activity will conditionally follow another. For example, in order to rent a video, a PIN verifies membership.
An activity diagram represents conditionality by a decision point (represented by a diamond) with the guard
condition (the condition that must be met to proceed) in brackets next to the flow line (see Figure 3-17).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Designing OOp sOlutiOns: MODeling the ObjeCt interaCtiOn

35

Parallel Processing
In some cases, two or more activities can run in parallel instead of sequentially. A solid, bold line drawn
perpendicularly to the transition arrow represents the splitting of the paths. After the split, a second solid, bold line
represents the merge. Figure 3-18 shows an activity diagram for the processing of a movie return. The order in which
the Increment Inventory and the Remove Rental activities occur does not matter. The parallel paths in the diagram
represent this parallel processing.

Increment
Inventory

Remove
Rental

Figure 3-18. Parallel processing depicted in an activity diagram

Customer RentalClerk RentalItem Rental

Verify
Stock

Process
Rental

Request
Movie

Confirm
Rental

Update
Inventory

Calculate
Due Date

Record Rental
Info

Figure 3-19. Swim lanes in an activity diagram

Activity Ownership
The activity diagram’s purpose is to model the control flow from activity to activity as the program processes. The
diagrams shown thus far do not indicate which objects have responsibility for these activities. To signify object
ownership of the activities, you segment the activity diagram into a series of vertical partitions (also called swim
lanes). The object role at the top of the partition is responsible for the activities in that partition. Figure 3-19 shows an
activity diagram for processing a movie rental, with swim lanes included.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Designing OOp sOlutiOns: MODeling the ObjeCt interaCtiOn

36

after completing this activity, you should be familiar with the following:

using an activity diagram to model control flow as the program completes an activity•	

using a uMl modeling tool to create an activity class diagram•	

Identifying Objects and activities

examine the following scenario developed for a use case from the user group library application:

after viewing the list of available loan items, a member requests an item to check out on loan. the librarian enters
the member number and retrieves information about outstanding loans and any unpaid fines. if the member has
fewer than four outstanding loans and does not have any outstanding fines, the loan is processed. the librarian
retrieves information on the loan item to determine if it is currently on loan. if the item is available, it is checked
out to the member.

by identifying the nouns and noun phrases in the use case scenario, you can get an idea of what objects will
perform the tasks in carrying out the activities. remember that these objects are instances of the classes
identified in the class diagram. the following objects will be involved in carrying out the activities: Member,
Librarian, LoanHistory, Item, and Loan.

the verb phrases help identify the activities carried out by the objects. these activities should correspond to the
methods of the classes in the system. Match the following activities to the appropriate objects:

A. request Movie

B. process rental

C. Check availability

D. Check Member’s loan status

E. update item status

F. Calculate Due Date

G. record rental info

H. Confirm rental

see the end of the chapter for activity 3-2 answers.

Creating an activity Diagram

Follow these steps to create an activity diagram using uMlet:

1. start uMlet. locate the drop-down list at the top of the template window. Change the
template type to activity.

2. Double-click the system box shape in the template window. a system box shape will
appear in the upper left corner of the design surface. in the properties window, change
the name of the shape to Member to represent the Member partition.

aCtIVItY 3-2. CreatING aN aCtIVItY DIaGraM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Designing OOp sOlutiOns: MODeling the ObjeCt interaCtiOn

37

3. repeat step 2 to add a partition for the Librarian, LoanHistory, Item, and Loan
objects. align the partitions from left to right as in Figure 3-20.

4. From the shapes window, double-click the initial state shape and add it to the Member
partition. below the initial state in the Member partition, add a state shape. rename
the state to “request item.” add a transition shape (arrow) from the initial state to the
request item action state.

5. under the librarian partition, add a process loan state and a transition shape from the
request item state to the process loan state.

6. under the loanhistory partition, add a Check Member status action state and a transition
shape from the process loan action to the Check Member status action state.

7. From the shapes window, double-click the Conditional branch shape (diamond) and
add it to the loanhistory partition below the Check Member status action state. add a
transition shape from the Check Member status state to the Conditional branch. From
the Conditional branch, add a transition shape to a Deny loan state under the librarian
partition. add a label to the transition shape with a condition of “fail.” also add a
transition shape to a Check item status action state under the item partition with a label
condition of “pass.” Your diagram should be similar to Figure 3-21.

Member Librarian LoanHistory Item Loan

Figure 3-20. Creating the activity diagram partitions

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Designing OOp sOlutiOns: MODeling the ObjeCt interaCtiOn

38

8. repeat step 7 to create a Conditional branch from the Check item status state. if the
item is in stock, add a transition shape to an update item status state under the item
partition. if the item is out of stock, add a transition shape to the Deny loan state under
the librarian partition.

9. From the update item status state, add a transition shape to a record loan info state
under the loan partition.

10. From the record loan info state, add a transition shape to a Confirm loan state under
the librarian partition.

11. From the shapes window, click the Final state shape and add it to the bottom of the
Member partition. add a transition shape from the Deny loan state to the Final action
state. add another transition shape from the Confirm loan state to the Final action state.

Your completed diagram should resemble the one shown in Figure 3-22. save the diagram as uMlact3_2 and
exit uMlet.

Member

Request Item Process Loan Check Member
Status

Check Item
Status

Deny Loan
[fail] [pass]

Librarian LoanHistory Item

Figure 3-21. Adding a branching condition

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Designing OOp sOlutiOns: MODeling the ObjeCt interaCtiOn

39

Exploring GUI Design
Thus far, the discussions of object-oriented analysis and design have focused on modeling the functional design and
the internal processing of the application. Successful modern software applications rely on a rich set of graphical user
interfaces (GUIs) to expose this functionality to the users of the application.

In modern software systems, one of the most important aspects of an application is how well it interacts with
the users. Gone are the days when users would interact with the application by typing cryptic commands at the DOS
prompt. Modern operating systems employ GUIs that are, for the most part, intuitive to use. Users have also grown
accustomed to the polished interfaces of the commercial office-productivity applications. Users have come to expect
the same ease of use and intuitiveness built into custom applications developed in-house by their IT department.

The design of the user interface should not be done haphazardly; rather, it should be planned in conjunction
with the business logic design. The success of most applications is judged by the response of the users toward the
application. If users are not comfortable when interacting with the application and the application does not improve
the productivity of the user, it is doomed to failure. To the user, the interface is the application. It does not matter how
pristine and clever the business logic code may be; if the user interface is poorly designed and implemented, the
application will not be acceptable to the users. Developers would do well to remember that it is the user who drives
software development.

Although UML was not specifically designed for GUI design, many software architects and programmers employ
UML diagrams to help model the user interface of an application.

GUI Activity Diagrams
The first step in developing a user interface design is to perform a task analysis to discover how users will interact
with the system. The task analysis is based on the use cases and scenarios that have been modeled previously. You can
then develop activity diagrams to model how the interaction between the user and the system will take place. Using
the previous movie rental application example, Figure 3-23 shows an activity diagram modeling the activities the
rental clerk goes through to record rental information.

Process Loan

Deny Loan

Confirm Loan

[out of stock]

[in stock]

Check Member
Status

Check Item
Status

Update Item
Status

Record
Loan Info

[fail] [pass]

Member Librarian LoanHistory Item Loan

Request Item

Figure 3-22. Completed activity diagram

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Designing OOp sOlutiOns: MODeling the ObjeCt interaCtiOn

40

Interface Prototyping
After you have identified and prioritized the necessary tasks, you can develop a prototype sketch of the various
screens that will make up the user interface. Figure 3-24 shows a prototype sketch of the Customer Info screen.
Although you can use paper and pencil to develop your diagrams, there are some nice GUI prototyping tools available
that offer common GUI design templates and the ability to link screens, plus other useful features. Some popular
commercial prototyping tools include Microsoft’s SketchFlow, Balsamiq Mockups, and AppMockupTools. Some
popular free tools to check out are Pencil Project, Mockingbird, and Prototype Composer. The prototype shown in
Figure 3-24 was created using the Pencil Project tool.

Access
Main Screen

Click Record
Rental Info Link

[Existing Customer]

[New Customer] Click New
Customer

Fill Out Customer
Info Screen

Enter
Customer Id

Click Retrieve
Customer Info Link

Record Rental Info
in Rental Screen

Click Save
Info

Return to
Main Screen

Figure 3-23. GUI modeling with an activity diagram

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Designing OOp sOlutiOns: MODeling the ObjeCt interaCtiOn

41

Interface Flow Diagrams
Once you have prototyped the various screens, you can use interface flow diagrams to model the relationships and
flow patterns among the screens that make up the user interface. Figure 3-25 shows a partial interface flow diagram
for the video rental application.

Figure 3-24. GUI prototype sketch

Main Menu

[Select Customer Icon]

Customer Query Screen

Customer Info Screen

Customer Edit Screen
[Click Save]

[Click Get Info]

[Click Edit]

Figure 3-25. Interface flow diagramming

Application Prototyping
Once you have roughed out the screen layout and the design of the user interface, you can develop a simple prototype.
The prototype should contain skeleton code that simulates the functionality of the system. At this point, you should
not put a great effort into integrating the user interface front end with the business functionality of the application.
The idea is to let the users interact with a working prototype to generate feedback on the user interface. It is important

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Designing OOp sOlutiOns: MODeling the ObjeCt interaCtiOn

42

that the users are comfortable with the interface design and that it is intuitive to use. If the interface is cumbersome
for the users and does not increase their productivity, the application is doomed to failure.

The processes of refining and testing the user interface will be iterative and most likely will continue through
several cycles. Once the user interface design and the internal functional design of the application have been
completed and prototyped, the next step in the application development cycle is to start coding the application.

Summary
This chapter introduced scenarios, sequence diagrams, collaboration diagrams, and activity diagrams. You saw how
to use these diagrams for modeling object interaction. Additionally, you learned how some of the UML diagrams
might be used to help model the user interface of the application.

The goal of this and the previous chapters has been to introduce you to some of the common modeling diagrams
and concepts involved in software design and UML. In Chapter 4, you will take the concepts developed thus far and
use them to implement a solution design for a sample case study.

aCtIVItY aNSWerS

activity 3-1 answers

Member, Librarian, Item, Loan, LoanHistory. these five objects are involved in the processing depicted in
the scenario.

the other messaging interactions depicted in the scenario are as follows:

1. the Librarian object checks the lending history of the Member object with the
LoanHistory object.

2. the Librarian object checks the availability of the item through the Item object.

3. the Librarian object updates the availability of the item through the Item object.

4. the Librarian creates a Loan object containing loan information.

5. the Librarian returns loan information to the Member object.

activity 3-2 answers

a. Member, b. Librarian, C. Item, D. LoanHistory, e. Item, F. Loan, g. Loan, h. Librarian.

the Member object is responsible for the request Movie activity. the Librarian object is responsible for the
process rental and Confirm rental activities. the LoanHistory object is responsible for the Check Member’s
loan status activity. the Item object is responsible for the Check availability and update item status activities.
the Loan object is responsible for the Calculate Due Date and record rental info activities.

www.it-ebooks.info

http://www.it-ebooks.info/

43

Chapter 4

Designing OOP Solutions:
A Case Study

Designing solutions for an application is not an easy endeavor. Becoming an accomplished designer takes time and
conscious effort, which explains why many developers avoid it like the plague. You can study the theories and know
the buzzwords, but the only way to truly develop your modeling skills is to roll up your sleeves, get your hands dirty,
and start modeling. In this chapter, you follow the process of modeling an office-supply ordering system. Although
this is not a complex application, it includes several good use cases and will consist of multiple classes with ample
class interactions. By analyzing the case study, you will gain a better understanding of how a model is developed and
how the pieces fit together.

After reading this chapter, you should be familiar with the following:

how to model an OOP solution using UML•	

some common OOP design pitfalls to avoid•	

Developing an OOP Solution
In the case-study scenario, your company currently has no standard way for departments to order office supplies.
Each department separately implements its own ordering process. As a result, it is next to impossible to track
company-wide spending on supplies, which impacts the ability to forecast budgeting and identify abuses. Another
problem with the current system is that it does not allow for a single contact person who could negotiate better deals
with the various vendors.

As a result, you have been asked to help develop a company-wide office-supply ordering (OSO) application.
To model this system you will complete the following steps:

create a Software Requirements Specification (SRS)•	

develop the use cases•	

diagram the use cases•	

model the classes•	

model the user interface design•	

Creating the System Requirement Specification
After interviewing the various clients of the proposed system, you develop the SRS. Remember from Chapter 2 that the
SRS scopes the system requirements, defines the system boundaries, and identifies the users of the system.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Designing OOp sOlutiOns: a Case stuDy

44

You have identified the following system users:

•	 Purchaser: initiates a request for supplies

•	 Department manager: tracks and approves supply requests from department purchasers

•	 Supply vendor processing application: receives order files generated by the system

•	 Purchase manager: updates the supply catalog, tracks supply requests, and checks in delivered items

You have identified the following system requirements:

Users must log in to the system by supplying a username and password.•	

Purchasers will view a list of supplies that are available to be ordered.•	

Purchasers will be able to filter the list of supplies by category.•	

Purchasers can request multiple supplies in a single purchase request.•	

A department manager can request general supplies for the department.•	

Department managers must approve or deny supply requests for their department at the end •	
of each week.

If department managers deny a request, they must supply a short explanation outlining the •	
reason for the denial.

Department managers must track spending within their departments and ensure there are •	
sufficient funds for approved supply requests.

A purchase manager maintains the supply catalog and ensures it is accurate and current.•	

A purchase manager checks in the supplies when they are received and organizes the supplies •	
for distribution.

Supply requests that have been requested but not approved are marked with a status of •	 pending.

Supply requests that have been approved are marked with a status of •	 approved and an order
is generated.

Once an order is generated, a file containing the order details is placed in an order queue. •	
Once the order has been placed in the queue, it is marked with a status of placed.

A separate supply-vendor-processing application will retrieve the order files from the queue, •	
parse the documents, and distribute the line items to the appropriate vendor queues.
Periodically, the supply-vendor-processing application will retrieve the orders from a vendor
queue and send them to the vendor. (This is being developed by a separate team.)

When all the items of an order are checked in, the order is marked with a status of •	 fulfilled and
the purchaser is informed that the order is ready for pick up.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Designing OOp sOlutiOns: a Case stuDy

45

Developing the Use Cases
After generating the SRS and getting the appropriate system users to sign off on it, the next task is to develop the use cases,
which will define how the system will function from the users’ perspective. The first step in developing the use cases is to
define the actors. Remember from Chapter 2 that the actors represent the external entities (human or other systems) that
will interact with the system. From the SRS, you can identify the following actors that will interact with the system:

purchaser•	

department manager•	

purchase manager•	

supply vendor processing application•	

Now that you have identified the actors, the next step is to identify the various use cases with which the actors will
be involved. By examining the requirement statements made in the SRS, you can identify the various use cases. For
example, the statement “Users must log in to the system by supplying a username and password” indicates the need
for a Login use case. Table 4-1 identifies the use cases for the OSO application.

Table 4-1. Use Cases for the OSO Application

Name Actor(s) Description

Login Purchaser, Department manager,
Purchase manager

Users see a login screen. They then enter their
username and password. They either click Login
or Cancel. After login, they see a screen containing
product information.

View Supply Catalog Purchaser, Department manager,
Purchase manager

Users see a catalog table that contains a list of
supplies. The table contains information such as
the supply name, category, description, and cost.
Users can filter supplies by category.

Purchase Request Purchaser, Department manager Purchasers select items in the table and click a
button to add them to their cart. A separate table
shows the items in their cart, the number of each
item requested and the cost, as well as the total
cost of the request.

Department Purchase
Request

Department manager Department managers select items in the table and
click a button to add them to their cart. A separate
table shows the items in their cart, the number of
each item requested and the cost, as well as the
total cost of the request.

Request Review Department manager Department managers see a screen that lists all
pending supply requests for members of their
department. They review the requests and mark
them as approved or denied. If they deny the
request, they enter a brief explanation.

Track Spending Department manager Department managers see a screen that lists the
monthly spending of department members as well
as the running total of the department.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Designing OOp sOlutiOns: a Case stuDy

46

Diagramming the Use Cases
Now that you have identified the various use cases and actors, you are ready to construct a diagram of the use cases.
Figure 4-1 shows a preliminary use case model developed with UMLet, which was introduced in Chapter 2.

Purchaser

OSO

Login

View Catalog

Purchase
Request

Review
Request

Track
Spending

Item Check In

Order
Placement

Maintain
Catalog

Department
Manager

Purchase
Manager

Supply vendor
Application

Figure 4-1. Preliminary OSO use case diagram

Name Actor(s) Description

Maintain Catalog Purchase manager The purchase manager has the ability to update
product information, add products, or mark
products as discontinued. The administrator can
also update category information, add categories,
and mark categories as discontinued.

Item Check In Purchase manager The purchase manager sees a screen for entering
the order number. The purchase manager then
sees the line items listed for the order. The items
that have been received are marked. When all the
items for an order are received, it is marked as
fulfilled.

Order Placement Supply-vendor-processing
application

The supply-vendor-processing application
checks the queue for outgoing order files. Files
are retrieved, parsed, and sent to the appropriate
vendor queue.

Table 4-1. (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Designing OOp sOlutiOns: a Case stuDy

47

After you have diagrammed the use cases, you now look for any relationships that may exist between the use
cases. Two relationships that may exist are the includes relationship and the extends relationship. Remember from
the discussions in Chapter 2 that when a use case includes another use case, the use case being included needs
to run as a precondition. For example, the Login use case of the OSO application needs to be included in the View
Supply Catalog use case. The reason you make Login a separate use case is that the Login use case can be reused
by one or more other use cases. In the OSO application, the Login use case will also be included with the Track
Spending use case. Figure 4-2 depicts this includes relationship.

Login

View CatalogTrack
Spending

«includes» «includes»

Figure 4-2. Including the Login use case

Purchase
Request

Department Purchase
Request

«extends»

Figure 4-3. Extending the Purchase Request use case

After analyzing the system requirements and use cases, you can make the system development more manageable
by breaking up the application and developing it in phases. For example, you can develop the Purchase Request
portion of the application first. Next, you can develop the Request Review portion, and then the Item Check In
portion. The rest of this chapter focuses on the Purchase Request portion of the application. Employees and
department managers will use this part of the application to make purchase requests. Figure 4-4 shows the use case
diagram for this phase.

Note ■ in some modeling tools, the includes relationship may be indicated in the use case diagram by the uses keyword.

The extends relationship exists between two use cases when, depending on a condition, a use case will extend
the behavior of the initial use case. In the OSO application, when a manager is making a purchase request, she can
indicate that she will be requesting a purchase for the department. In this case, the Department Purchase Request use
case becomes an extension of the Purchase Request use case. Figure 4-3 diagrams this extension.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Designing OOp sOlutiOns: a Case stuDy

48

Developing the Class Model
Developing the class model involves several tasks. You begin by identifying the classes, and then you add attributes,
associations, and behaviors.

Identifying the Classes
After you have identified the various use cases, you can start identifying the classes the system needs to include
to carry out the functionality described in the use cases. To identify the classes, you drill down into each use case
and define a series of steps needed to carry it out. It is also helpful to identify the noun phrases in the use case
descriptions. The noun phrases are often good indicators of the classes that will be needed.

For example, the following steps describe the View Supply Catalog use case:

User has logged in and been assigned a user status level. (This is the precondition.)•	

Users are presented with a catalog table that contains a list of supplies. The table contains •	
information such as the supply name, category, description, and cost.

Users can filter supplies by category.•	

Users are given the choice of logging out or making a purchase request. (This is the post •	
condition.)

From this description, you can identify a class that will be responsible for retrieving product information from the
database and filtering the products being displayed. The name of this class will be the ProductCatalog class.

Examining the noun phrases in the use case descriptions dealing with making purchase requests reveals the
candidate classes for the OSO application, as listed in Table 4-2.

Purchaser

Login

OSO

View Catalog

Purchase
Request

Department Purchase
Request

Department
Manager

«includes»

«extends»

«includes»

Figure 4-4. Purchase Request use case diagram

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Designing OOp sOlutiOns: a Case stuDy

49

Now that you have identified the candidate classes, you need to eliminate the classes that indicate redundancy.
For example, a reference to items and line items would represent the same abstraction. You can also eliminate classes
that represent attributes rather than objects. Username, password, and cost are examples of noun phrases that
represent attributes. Some classes are vague or generalizations of other classes. User is actually a generalization of
purchaser and manager. Classes may also actually refer to the same object abstraction but indicate a different state of
the object. For example, a supply request and an order represent the same abstraction before and after approval. You
should also filter out classes that represent implementation constructs such as list and table. For example, a cart is
really a collection of order items that makes up an order.

Using these elimination criteria, you can whittle down the class list to the following candidate classes:

•	 Employee

•	 DepartmentManager

•	 Order

•	 OrderItem

•	 ProductCatalog

•	 Product

You can now start formulating the class diagram for the Purchase Request portion of the OSO application.
Figure 4-5 shows the preliminary class diagram for the OSO application.

Table 4-2. Candidate Classes Used to Make Purchase Requests

Use Case Candidate Classes

Login User, username, password, success, failure

View Supply Catalog User, catalog table, list of supplies, information, supply name, category,
description, cost

Purchase Request Purchaser, items, cart, number, item requested, cost, total cost

Department Purchase Request Department manager, items, cart, number, item requested, cost, total cost,
department purchase request

Employee

DepartmentManager

ProductCatalog

Product

Order

OrderItem

Figure 4-5. Preliminary OSO class diagram

Adding Attributes to the Classes
The next stage in the development of the class model is to identify the level of abstraction the classes must implement.
You determine what state information is relevant to the OSO application. This required state information will be
implemented through the attributes of the class. Analyzing the system requirements for the Employee class reveals the
need for a login name, password, and department. You also need an identifier such as an employee ID to uniquely
identify various employees. An interview with managers revealed the need to include the first and last names of the
employees so that they can track spending by name. Table 4-3 summarizes the attributes that will be included in the
OSO classes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Designing OOp sOlutiOns: a Case stuDy

50

Figure 4-6 shows the OSO class diagram with the class attributes identified so far.

Employee

DepartmentManager

ProductCatalogEmployeeid:Integer
LoginName:String
Password:String
Department:String
FirstName:String
LastName:String

Product

ProductNo:String
ProductName:String
Category:String
Description:String
UnitPrice:Real
VendorCode:String

Order

OrderNo:Long
OrderDate:Date
Status:String

OrderItem

ProductNo:String
Quantity:Integer
UnitPrice:Real

Figure 4-6. The Purchase Request component class diagram with attributes added

Table 4-3. OSO Class Attributes

Class Attribute Type

Employee EmployeeID
LoginName
Password
Department
FirstName
LastName

Integer
String
String
String
String
String

DepartmentManager EmployeeID
LoginName
Password
Department
FirstName
LastName

Integer
String
String
String
String
String

Order OrderNumber
OrderDate
Status

Long
Date
String

OrderItem ProductNumber
Quantity
UnitPrice

String
Integer
Decimal

Product ProductNumber
ProductName
Description
UnitPrice
Category
VendorCode

String
String
String
Decimal
String
String

ProductCatalog None

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Designing OOp sOlutiOns: a Case stuDy

51

Identifying Class Associations
The next stage in the development process is to model the class associations that will exist in the OSO application. If
you study the use cases and SRS, you can gain an understanding of what types of associations you need to incorporate
into the class structural design.

Note ■ you may find that you need to further refine the srs to expose the class associations.

For example, an employee will be associated with an order. By examining the multiplicity of the association,
you discover that an employee can have multiple orders, but an order can be associated with only one employee.
Figure 4-7 models this association.

Employee Order
Makes an

1 0..n

Figure 4-7. Depicting the association between the Employee class and the Order class

As you start to identify the class attributes, you will notice that the Employee class and the DepartmentManager
class have many of the same attributes. This makes sense, because a manager is also an employee. For the purpose of
this application, a manager represents an employee with specialized behavior. This specialization is represented by an
inheritance relationship, as shown in Figure 4-8.

Employee

DepartmentManager

«inherits»

Figure 4-8. The DepartmentManager class inheriting from the Employee class

The following statements sum up the associations in the OSO class structure:

An •	 Order is a collection of OrderItem objects.

An •	 Employee can have multiple Order objects.

An •	 Order is associated with one Employee.

The •	 ProductCatalog is associated with multiple Product objects.

A •	 Product is associated with the ProductCatalog.

An •	 OrderItem is associated with one Product.

A •	 Product may be associated with multiple OrderItem objects.

A •	 DepartmentManager is an Employee with specialized behavior.

Figure 4-9 shows these various associations (excluding the class attributes for clarity).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Designing OOp sOlutiOns: a Case stuDy

52

Modeling the Class Behaviors
Now that you have sketched out the preliminary structure of the classes, you are ready to model how these classes will
interact and collaborate. The first step in this process is to drill down into the use case descriptions and create a more
detailed scenario of how the use case will be carried out. The following scenario describes one possible sequence for
carrying out the Login use case.

1. The user is presented with a login dialog box.

2. The user enters a login name and a password.

3. The user submits the information.

4. The name and password are checked and verified.

5. The user is presented with a supply request screen.

Although this scenario depicts the most common processing involved with the Login use case, you may need
other scenarios to describe anticipated alternate outcomes. The following scenario describes an alternate processing
of the Login use case:

1. The user is presented with a login dialog box.

2. The user enters a login name and a password.

3. The user submits the information.

4. The name and password are checked but cannot be verified.

5. The user is informed of the incorrect login information.

6. The user is presented with a login dialog box again.

7. The user either tries again or cancels the login request.

At this point, it may help to create a visual representation of the scenarios outlined for the use case. Remember
from Chapter 3 that activity diagrams are often used to visualize use case processing. Figure 4-10 shows an activity
diagram constructed for the Login use case scenarios.

Employee Order OrderItem

ProductCatalog Product
DepartmentManager

«inherits»

Makes an
1 0..n

Contains
1

1

1..n

1..n
Contains

1 1..n

Contains

Figure 4-9. The Purchase Request component class diagram with associations added

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Designing OOp sOlutiOns: a Case stuDy

53

After analyzing the process involved in the use case scenarios, you can now turn your attention to assigning the
necessary behaviors to the classes of the system. To help identify the class behaviors and interactions that need to
occur, you construct a sequence diagram, as discussed in Chapter 3.

Figure 4-11 shows a sequence diagram for the Login use case scenarios. The Purchaser (UI) class calls the Login
method that has been assigned to the Employee class. The message returns information that will indicate whether the
login has been verified.

Login

User
Verification

Display Error
Message[User Not Verified]

[User Verified]

[Try Again]

[Cancel Login]

Figure 4-10. An activity diagram depicting the Login use case scenarios

Login

Purchaser(UI) Employee

Login Response

Figure 4-11. A sequence diagram depicting the Login use case scenarios

Next, let’s analyze the View Supply Catalog use case. The following scenario describes the use case:

1. User has logged in and has been verified.

2. User views a catalog table that contains product information, including the supply name,
category, description, and price.

3. User chooses to filter the table by category, selects a category, and refreshes the table.

From this scenario, you can see that you need a method of the ProductCatalog class that will return a listing of
product categories. The Purchaser class will invoke this method. Another method the ProductCatalog class needs is
one that will return a product list filtered by category. The sequence diagram in Figure 4-12 shows the interaction that
occurs between the Purchaser (UI) class and the ProductCatalog class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Designing OOp sOlutiOns: a Case stuDy

54

ListCategories

CategoryList

ListProducts

ProductList

Purchaser(UI) ProductCatalog

Figure 4-12. A sequence diagram depicting the View Supply Catalog scenario

The following scenario was developed for the Purchase Request use case:

1. A purchaser has logged in and has been verified as an employee.

2. The purchaser selects items from the product catalog and adds them to the order request
(shopping cart), indicating the number of each item requested.

3. After completing the item selections for the order, the purchaser submits the order.

4. Order request information is updated, and an order ID is generated and returned to the
purchaser.

From the scenario, you can identify an AddItem method of the Order class that needs to be created. This method
will accept a product ID and a quantity, and then return the subtotal of the product ordered. The Order class will need
to call a method of the OrderItem class, which will create an instance of an order item. You also need a SubmitOrder
method of the Order class that will submit the request and the return order ID of the generated order. Figure 4-13
shows the associated sequence diagram for this scenario.

Purchaser(UI) Order OrderItem

CreateOrder

AddItem

SubTotal

AddItem

SubmitOrder

OrderId

Figure 4-13. A sequence diagram depicting the Purchase Request scenario

Some other scenarios that need to be included are deleting an item from the shopping cart, changing the
quantity of an item in the cart, and canceling the order process. You will also need to include similar scenarios and
create similar methods for the Department Purchase Request use case. After analyzing the scenarios and interactions
that need to take place, you can develop a class diagram for the Purchase Request portion of the application, as
shown in Figure 4-14.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Designing OOp sOlutiOns: a Case stuDy

55

Employee Order
OrderItem

DepartmentManager

ProductCatalog

Product

ListCategories()
ListProducts()

ProductNo:String
ProductName:String
Category:String
Description:String
UnitPrice:Real
VedorCode:String

ApprovePurchase()

Login()

Employeeid:Integer
LoginName:String
Password:String
Department:String
FirstName:String
LastName:String

OrderNo:Long
OrderDate:Date
Status:String

AddItem()
RemoveItem()
SubmitOrder()

ProductNo:String
Quantity:Integer
UnitPrice:Real

«inherits»

Makes an
1 0..n Contains

1 1..n

Contains
1 1..n

1

1..n

Contains

Figure 4-14. Purchase Request class diagram

Developing the User Interface Model Design
At this point in the application design process, you don’t want to commit to a particular GUI implementation (in other
words, a technology-specific one). It is helpful, however, to model some of the common elements and functionality
required of a GUI for the application. This will help you create a prototype user interface that you can use to verify
the business logic design that has been developed. The users will be able to interact with the prototype and provide
feedback and verification of the logical design.

The first prototype screen that you need to implement is the one for logging in. You can construct an activity
diagram to help define the activities the user needs to perform when logging in to the system, as shown in Figure 4-15.

Enter Name

Enter Password

Submit

Cancel

Display Error
Message

[Verified]

[Not Verified]

[Try Again]

[Cancel Login]

Figure 4-15. An activity diagram depicting user login activities

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Designing OOp sOlutiOns: a Case stuDy

56

The activity diagram reveals that the screen needs to show a table or list of products and product information.
Users must be able to filter the products by category, which can be initiated by selecting a category from a category
list. Users also need to be able to initiate an order request or exit the application. Figure 4-18 shows a prototype screen
that can be used to view the products. Clicking the Add to Order button adds the product to the order and launches
the order details screen, where the user can adjust the quantity of the order.

Analyzing the activity diagram reveals that you can implement the login screen as a fairly generic interface. This
screen should allow the user to enter a username and password. It should include a way to indicate that the user is
logging in as either an employee or a manager. A manager must log in as an employee to make a purchase request and
as a manager to approve requests. The final requirement is to include a way for the user to abort the login process.
Figure 4-16 shows a prototype of the login screen.

Figure 4-16. Login screen prototype

The next screen you need to consider is the product catalog screen. Figure 4-17 depicts the activity diagram for
viewing and filtering the products.

Select
Category

View
Products

Initiate
Order

Cancel
Order

Figure 4-17. An activity diagram depicting activities for viewing products

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Designing OOp sOlutiOns: a Case stuDy

57

Figure 4-18. View products screen prototype

The final screen that needs to be prototyped for this part of the application is the shopping cart interface. This will
facilitate the adding and removing of items from an order request. It also needs to allow the user to submit the order
or abort an order request. Figure 4-19 shows a prototype of the order request screen. Clicking on the Add button will
launch the previous product catalog screen, which allows the user to add additional line items. The Remove button
will remove line items checked. Users can change the quantity of the line item by clicking the up and down arrows.

Figure 4-19. Order detail screen prototype

That completes the preliminary design for this phase of the OSO application. You applied what you learned in
Chapters 2 and 3 to model the design. Next, let’s review some common mistakes to avoid during this process.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Designing OOp sOlutiOns: a Case stuDy

58

Avoiding Some Common OOP Design Pitfalls
When you start to model your own OOP designs, you want to be sure to follow best practices. The following are some
of the common traps that you should avoid

•	 Not involving the users in the process: It is worth emphasizing that users are the consumers
of your product. They are the ones who define the business processes and functional
requirements of the system.

•	 Trying to model the whole solution at one time: When developing complex systems, break
up the system design and development into manageable components. Plan to produce the
software in phases. This will provide for faster modeling, developing, testing, and release cycles.

•	 Striving to create a perfect model: No model will be perfect from the start. Successful modelers
understand that the modeling process is iterative, and models are continuously updated and
revised throughout the application development cycle.

•	 Thinking there is only one true modeling methodology: Just as there are many different equally
viable OOP languages, there are many equally valid modeling methodologies for developing
software. Choose the one that works best for you and the project at hand.

•	 Reinventing the wheel: Look for patterns and reusability. If you analyze many of the business
processes that applications attempt to solve, a consistent set of modeling patterns emerge.
Create a repository where you can leverage these existing patterns from project to project and
from programmer to programmer.

•	 Letting the data model drive the business logic model: It is generally a bad idea to develop the
data model (database structure) first and then build the business logic design on top of it. The
solution designer should first ask what business problem needs to be solved, and then build a
data model to solve the problem.

•	 Confusing the problem domain model with the implementation model: You should develop two
distinct but complementary models when designing applications. A domain model design
describes the scope of the project and the processing involved in implementing the business
solutions. This includes what objects will be involved, their properties and behaviors, and
how they interact and relate to each other. The domain model should be implementation-
agnostic. You should be able to use the same domain model as a basis for several different
architecturally specific implementations. In other words, you should be able to take the same
domain model and implement it using a Visual Basic rich-client, two-tier architecture or a C#
(or Java, for that matter) n-tier distributed web application.

Summary
Now that you have analyzed the domain model of an OOP application, you are ready to transform the design into an
actual implementation. The next part of this book will introduce you to the C# language. You will look at the .NET
Framework and see how C# applications are built on top of the framework. You will be introduced to working in the
Visual Studio IDE and become familiar with the syntax of the C# language. The next section will also demonstrate
the process of implementing OOP constructs such as class structures, object instantiation, inheritance, and
polymorphism in C#. With your newfound skills, you will revisit the case study introduced in this chapter and apply
these skills to transform the application design into a functioning application.

4
www.it-ebooks.info

http://www.it-ebooks.info/

59

Chapter 5

Introducing the .NET Framework
and Visual Studio

Business application programming has evolved from a two-tier, tightly coupled model into a multitiered, loosely
coupled model, often involving data transfer over the Internet or a corporate intranet. In an effort to allow
programmers to be more productive and deal with the complexities of this type of model, Microsoft developed the
.NET Framework. To effectively program in C#, you need to understand the underlying framework upon which it
is built.

After reading this chapter, you should be familiar with the following:

the .NET Framework•	

the features of the Common Language Runtime (CLR)•	

how the just-in-time (JIT) compiler works•	

the .NET Framework base class library•	

namespaces and assemblies•	

the features of the Visual Studio integrated development environment•	

Introducing the .NET Framework
The .NET Framework is a collection of fundamental classes designed to provide the common services needed to run
applications. Let’s look at the goals of the .NET Framework and then review its components.

Goals of the .NET Framework
Microsoft designed the .NET Framework with certain goals in mind. The following sections examine these goals and
how the .NET Framework achieves them.

Support of Industry Standards
Microsoft wanted the .NET Framework to be based on industry standards and practices. As a result, the framework
relies heavily on industry standards such as the Extensible Markup Language (XML), HTML 5, and OData. Microsoft

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ IntroduCIng the .net Framework and VIsual studIo

60

has also submitted a Common Language Infrastructure (CLI) Working Document to the European Computer
Manufacturers Association (ECMA), which oversees many of the common standards in the computer industry.

The CLI is a set of specifications needed to create compilers that conform to the .NET Framework. Third-party
vendors can use these specifications to create .NET-compliant language compilers; for example, Interactive Software
Engineering (ISE) has created a .NET compiler for Eiffel. Third-party vendors can also create a CLR that will allow
.NET-compliant languages to run on different platforms. One example, Mono is an open source, cross platform
implementation of the CLR that gives C# applications the ability to run on the Linux platform.

Extensibility
To create a highly productive environment in which to program, Microsoft realized the .NET Framework had to be
extensible. As a result, Microsoft exposed the framework class hierarchy to developers. Through inheritance and
interfaces, you can easily access and extend the functionality of these classes. For example, you could create a button
control class that not only inherits its base functionality from the button class exposed by the .NET Framework, but
also extends the base functionality in the unique way required by your application.

Microsoft has also made it much easier to work with the underlying operating system. By repackaging and
implementing the Windows operating system application programming interface (API) functions in a class-based
hierarchy, Microsoft has made it more intuitive and easier for OOP programmers to work with the functionality
exposed by the underlying operating system.

Unified Programming Models
Another important goal Microsoft incorporated into the .NET Framework was cross-language independence and
integration. To achieve this goal, all languages that support the Common Language Specification (CLS) compile
into the same intermediate language, support the same set of basic data types, and expose the same set of code-
accessibility methods. As a result, not only can classes developed in the different CLS-compliant languages
communicate seamlessly with one another, but you can also implement OOP constructs across languages. For
example, you could develop a class written in C# that inherits from a class written using Visual Basic (VB). Microsoft
has developed several languages that support the .NET Framework. Along with C#, the languages are VB.NET,
managed C++, JScript, and F#. In addition to these languages, many third-party vendors have developed versions of
other popular languages designed to run under the .NET Framework, such as Pascal and Python.

Easier Deployment
Microsoft needed a way to simplify application deployment. Before the development of the .NET Framework,
when components were deployed, component information had to be recorded in the system registry. Many of
these components, especially system components, were used by several different client applications. When a client
application made a call to the component, the registry was searched to determine the metadata needed to work with
the component. If a newer version of the component was deployed, it replaced the registry information of the old
component. Often, the new components were incompatible with the old version and caused existing clients to fail.
You have probably experienced this problem after installing a service pack that ended up causing more problems than
it fixed!

The .NET Framework combats this problem by storing the metadata for working with the component in a file
called a manifest, which is packaged in the assembly containing the component code. An assembly is a package
containing the code, resources, and metadata needed to run an application. By default, an assembly is marked as
private and placed in the same directory as the client assembly. This ensures that the component assembly is not
inadvertently replaced or modified and also allows for a simpler deployment because there is no need to work with
the registry. If a component needs to be shared, its assembly is deployed to a special directory referred to as the Global
Assembly Cache (GAC). The manifest of the assembly contains versioning information, so newer versions of the

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ IntroduCIng the .net Framework and VIsual studIo

61

component can be deployed side by side with the older versions in the GAC. By default, client assemblies continue to
request and use the versions of the components they were intended to use. Older client assemblies will no longer fail
when newer versions of the component are installed.

Improved Memory Management
A common problem of programs developed for the Windows platform has been memory management. Often,
these programs have caused memory leaks. A memory leak occurs when a program allocates memory from the
operating system but fails to release the memory after it is finished working with the memory. This memory is no
longer available for other applications or the operating system, causing the computer to run slowly or even to stop
responding. This problem is compounded when the program is intended to run for a long time, such as a service that
runs in the background. To combat this problem, the .NET Framework uses nondeterministic finalization. Instead of
relying on the applications to deallocate the unused memory, the framework uses a garbage collection object. The
garbage collector periodically scans for unused memory blocks and returns them to the operating system.

Improved Security Model
Implementing security in today’s highly distributed, Internet-based applications is an extremely important issue. In
the past, security has focused on the user of the application. Security identities were checked when users logged in to
an application, and their identities were passed along as the application made calls to remote servers and databases.
This type of security model has proven to be inefficient and complicated to implement for today’s enterprise-level,
loosely coupled systems. In an effort to make security easier to implement and more robust, the .NET Framework uses
the concept of code identity and code access.

When an assembly is created, it is given a unique identity. When a server assembly is created, you can grant
access permissions and rights. When a client assembly calls a server assembly, the runtime will check the permissions
and rights of the client, and then grant or deny access to the server code accordingly. Because each assembly has an
identity, you can also restrict access to the assembly through the operating system. If a user downloads a component
from the Web, for example, you can restrict the component’s ability to read and write files on the user’s system.

Components of the .NET Framework
Now that you have seen some of the major goals of the .NET Framework, let’s take a look at the components it contains.

Common Language Runtime
The fundamental component of the .NET Framework is the CLR. The CLR manages the code being executed and
provides for a layer of abstraction between the code and the operating system. Built into the CLR are mechanisms for
the following:

loading code into memory and preparing it for execution•	

converting the code from the intermediate language to native code•	

managing code execution•	

managing code and user-level security•	

automating deallocation and release of memory•	

debugging and tracing code execution•	

providing structured exception handling•	

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ IntroduCIng the .net Framework and VIsual studIo

62

Framework Base Class Library
Built on top of the CLR is the .NET Framework base class library. Included in this class library are reference types
and value types that encapsulate access to the system functionality. Types are data structures. A reference type is a
complex type—for example, classes and interfaces. A value type is simple type—for example, integer or Boolean.
Programmers use these base classes and interfaces as the foundation on which they build applications, components,
and controls. The base class library includes types that encapsulate data structures, perform basic input/output
operations, invoke security management, manage network communication, and perform many other functions.

Data Classes
Built on top of the base classes are classes that support data management. This set of classes is commonly referred
to as ADO.NET. Using the ADO.NET object model, programmers can access and manage data stored in a variety of
data storage structures through managed providers. Microsoft has written and tuned the ADO.NET classes and object
model to work efficiently in a loosely coupled, disconnected, multitiered environment. ADO.NET not only exposes
the data from the database, but also exposes the metadata associated with the data. Data is exposed as a sort of
mini-relational database. This means that you can get the data and work with it while disconnected from the data
source, and later synchronize the data with the data source.

Microsoft has provided support for several data providers. Data stored in Microsoft SQL Server can be accessed
through the native SQL data provider. OLEDB and Open Database Connectivity-managed (ODBC) providers are two
generic providers for systems currently exposed through the OLEDB or ODBC standard APIs. Because these managed
data providers do not interface directly with the database engine, but rather talk to the unmanaged provider, which
then talks to the database engine, using nonnative data providers is less efficient and less robust than using a native
provider. Because of the extensibility of the .NET Framework and Microsoft’s commitment to open-based standards,
many data storage vendors now supply native data providers for their systems.

Built on top of the ADO.NET provider model is the ADO.NET Entity Framework. The Entity Framework bridges
the gap between the relation data structure of the database and the object-oriented structure of the programming
language. It provides an Object/Relational Mapping (ORM) framework that eliminates the need for programmers
to write most of the plumbing code for data access. The framework provides services such as change tracking,
identity resolution, and query translation. Programmers retrieve data using Language Integrated Query (LINQ) and
manipulate data as strongly typed objects. Chapter 10 takes a detailed look at ADO.NET and data access.

Windows Applications
Prior to the .NET Framework, developing Windows Graphical User Interfaces (GUIs) was dramatically different
depending on whether you were developing using C++ or Visual Basic. Although developing GUIs in VB was easy
and could be accomplished very quickly, VB developers were isolated from and not fully exposed to the underlying
features of the Windows API. On the other hand, although exposed to the full features of the Windows API, developing
GUIs in C++ was very tedious and time-consuming. With the .NET Framework, Microsoft has incorporated a set of
base classes exposing advanced Windows GUI functionality equally among the .NET-compliant languages. This has
allowed Windows GUI development to become consistent across the various .NET-enabled programming languages,
combining the ease of development with the full features of the API.

Along with traditional Windows forms and controls, which have been around since the beginning of the Windows
Operating System, the .NET Framework includes a set of classes collectively referred to as the Windows Presentation
Foundation (WPF). WPF integrates a rendering engine that is built to take advantage of modern graphics hardware and
feature rich operating systems like Windows 7. It also includes application development features such as controls, data
binding, layout, graphics, and animation. With the WPF set of classes, programmers can create applications that provide
a very compelling user experience. You will look more closely at building WPF-based applications in Chapter 11.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ IntroduCIng the .net Framework and VIsual studIo

63

Web Applications
The .NET Framework exposes a base set of classes that can be used on a web server to create user interfaces and
services exposed to web-enabled clients. These classes are collectively referred to as ASP.NET. Using ASP.NET, you can
develop one user interface that can dynamically respond to the type of client device making the request. At runtime,
the .NET Framework takes care of discovering the type of client making the request (browser type and version) and
exposing an appropriate interface. The GUIs for web applications running on a Windows client have become more
robust because the .NET Framework exposes much of the API functionality that previously had been exposed only to
traditional Windows Forms-based C++ and VB applications. Another improvement in web application development
using the .NET Framework is that server-side code can be written in any .NET-compliant language. Prior to .NET,
server-side code had to be written in a scripting language such as VBScript or JScript.

Visual Studio 2012 and the .NET framework 4.5 support several different models for creating web apps. You
can create web apps based on an ASP.NET Web Forms project, an ASP.NET MVC project, or a Silverlight Application
project. Chapter 12 covers developing web applications.

Windows Store Applications
A new type of Windows application is available for the Windows 8 operating system: the Windows Store app. Windows
Store apps are intended for devices such as tablets and phones that take advantage of touch screens for user input,
and continuous Internet connectivity. There are two options for building Windows Store apps. You can use one of
the .NET languages (C#/VB/C++) in combination with XAML or you can use JavaScript in combination with HTML5.
Windows Store apps are built using the WinRT API which is similar to programming against the .NET Franework.
Microsoft has even added a .NET Framework API as a wrapper around the WinRT API. This means that you can use
the .NET Framework to create great Windows Store apps using the programming language and design experience
you are already familiar with. In fact, as you will see in Chapter 13, creating Windows Store applications using C# and
XAML is very similar to building WPF applications.

Application Services
Included in the .NET Framework are base class and interface support for exposing services that can be consumed
by other applications. Previous to the .NET Framework, applications developed in C++ and VB used Distributed
Component Object Model (DCOM) technology. DCOM is technology for communication among software
components distributed across networked computers. Because DCOM was based on binary standards, application-
to-application communication through firewalls and across the Internet was not easy to implement. The proprietary
nature of the DCOM also limited the types of clients that could effectively use and interact with applications exposing
services through COM.

Microsoft has addressed these limitations by exposing services through Internet standards. Included in the .NET
Framework is a set of classes collectively referred to as the Windows Communication Foundation (WCF). Using WCF,
you can send data as messages from one application to another. The message transport and content can be easily
changed depending on the consumer and environment. For example, if the service is exposed over the Web, a text-
based message over HTTP can be used. On the other hand, if the client is on the same corporate network, a binary
message over TCP can be used.

With .NET 4.5, Microsoft has also introduced a new framework for creating HTTP services called the ASP.NET
Web API. Using this API you can build services that can reach a broad range of clients, such as web browsers and
mobile devices. While you could create these services using WCF, the new Web API makes it easier to implement and
includes features such as content negotiation, query composition, and flexible hosting. In Chapter 14, you will create
and consume application services using WCF and the ASP.NET Web API.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ IntroduCIng the .net Framework and VIsual studIo

64

Working with the .NET Framework
To work with the .NET Framework, you should understand how it is structured and how managed code is compiled
and executed. .NET applications are organized and packaged into assemblies. All code executed by the .NET runtime
must be contained in an assembly.

Understanding Assemblies and Manifests
The assembly contains the code, resources, and a manifest (metadata about the assembly) needed to run the
application. Assemblies can be organized into a single file where all this information is incorporated into a single
dynamic link library (DLL) file or executable (EXE) file, or multiple files where the information is incorporated into
separate DLL files, graphics files, and a manifest file. One of the main functions of an assembly is to form a boundary
for types, references, and security. Another important function of the assembly is to form a unit for deployment.

One of the most crucial portions of an assembly is the manifest; in fact, every assembly must contain a manifest.
The purpose of the manifest is to describe the assembly. It contains such things as the identity of the assembly, a
description of the classes and other data types the assembly exposes to clients, any other assemblies this assembly
needs to reference, and security details needed to run the assembly.

By default, when an assembly is created, it is marked as private. A copy of the assembly must be placed in the
same directory or a bin subdirectory of any client assembly that uses it. If the assembly must be shared among
multiple client assemblies, it is placed in the Global Assembly Cache (GAC), a special Windows folder. To convert a
private assembly into a shared assembly, you must run a utility program to create encryption keys, and you must sign
the assembly with the keys. After signing the assembly, you must use another utility to add the shared assembly into
the GAC. By mandating such stringent requirements for creating and exposing shared assemblies, Microsoft is trying
to ensure that malicious tampering of shared assemblies will not occur. This also ensures a new version of the same
assembly can exist without breaking current applications using the old assembly.

Referencing Assemblies and Namespaces
To make the .NET Framework more manageable, Microsoft has given it a hierarchical structure. This hierarchical
structure is organized into what are referred to as namespaces. By organizing the framework into namespaces, the
chances of naming collisions are greatly reduced. Organizing related functionality of the framework into namespaces
also greatly enhances its usability for developers. For example, if you want to build a window’s GUI, it is a pretty good
bet the functionality you need exists in the System.Windows namespace.

All of the .NET Framework classes reside in the System namespace. The System namespace is further subdivided
by functionality. The functionality required to work with a database is contained in the System.Data namespace.
Some namespaces run several levels deep; for example, the functionality used to connect to a SQL Server database is
contained in the System.Data.SqlClient namespace.

An assembly may be organized into a single namespace or multiple namespaces. Several assemblies may also be
organized into the same namespace.

To gain access to the classes in the .NET Framework, you need to reference the assembly that contains the
namespace in your code. Then you can access classes in the assembly by providing their fully qualified names. For
example, if you want to add a text box to a form, you create an instance of the System.Windows.Controls.TextBox
class, like so:

private System.Windows.Controls.TextBox newTextBox;

Fortunately, in C#, you can use the using statement at the top of the code file so that you do not need to
continually reference the fully qualified name in the code:

using System.Windows.Controls;
private TextBox newTextBox;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ IntroduCIng the .net Framework and VIsual studIo

65

Compiling and Executing Managed Code
When .NET code is compiled, it is converted into a .NET portable executable (PE) file. The compiler translates the
source code into Microsoft intermediate language (MSIL) format. MSIL is CPU-independent code, which means it
needs to be further converted into CPU-specific native code before executing.

Along with the MSIL code, the PE file includes the metadata information contained within the manifest. The
incorporation of the metadata in the PE file makes the code self-describing. There is no need for additional type
library or Interface Definition Language (IDL) files.

Because the source code for the various .NET-compliant languages is compiled into the same MSIL and metadata
format based on a common type system, the .NET platform supports language integration. This is a step beyond
Microsoft’s COM components, where, for example, client code written in VB could instantiate and use the methods of
a component written in C++. With .NET language integration, you could write a .NET class in VB that inherits from a
class written in C#, and then overrides some of its methods.

Before the MSIL code in the PE file is executed, a .NET Framework just-in-time (JIT) compiler converts it into
CPU-specific native code. To improve efficiency, the JIT compiler does not convert all the MSIL code into native code
at the same time. MSIL code is converted on an as-needed basis. When a method is executed, the compiler checks to
see if the code has already been converted and placed in cache. If it has, the compiled version is used; otherwise, the
MSIL code is converted and stored in the cache for future calls.

Because JIT compilers are written to target different CPUs and operating systems, developers are freed from
needing to rewrite their applications to target various platforms. It is conceivable that the programs you write for a
Windows server platform will also run on a UNIX server. All that is needed is a JIT compiler for the UNIX architecture.

Using the Visual Studio Integrated Development Environment
You can write C# code using a simple text editor and compile it with a command-line compiler. You will find,
however, that programming enterprise-level applications using a text editor can be frustrating and inefficient. Most
programmers who code for a living find an integrated development environment (IDE) invaluable in terms of ease of
use and increased productivity. Microsoft has developed an exceptional IDE in Visual Studio (VS). Integrated into VS
are many features that make programming for the .NET Framework more intuitive, easier, and more productive. Some
of Visual Studio’s useful features are:

editor features such as automatic syntax checking, autocomplete, and color highlighting•	

one IDE for all .NET languages•	

extensive debugging support, including the ability to set breakpoints, step through code, •	
and view and modify variables

integrated help documentation•	

drag-and-drop GUI development•	

XML and HTML editing•	

automated deployment tools that integrate with Windows Installer•	

the ability to view and manage servers from within the IDE•	

a fully customizable and extensible interface•	

The following activities will introduce you to some of the many features available in the VS IDE. As you work
through these steps, don’t worry about the coding details. Just concentrate on getting used to working within the
VS IDE. You’ll learn more about the code in upcoming chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ IntroduCIng the .net Framework and VIsual studIo

66

Note■ If you do not have Visual studio 2012 installed, refer to appendix C for installation instructions.

aCtIVItY 5-1. tOUrING VISUaL StUDIO

In this activity, you will become familiar with the following:

customizing the Ide•	

creating a .net project and setting project properties•	

using the various editor windows in the Vs Ide•	

using the auto-syntax check and autocomplete features of the Vs Ide•	

compiling assemblies with the Vs Ide•	

Customizing the IDe

to customize the Ide, follow these steps:

start Visual studio 2012.1.

Note■ If this is the first time you have started Vs, you will be asked to choose a default development setting. Choose
the Visual C# development settings.

You will be presented with the start page. the start page contains several panes, 2.
including one that has links to useful documentation posted on the msdn (microsoft
developer network) web site. Clicking one of these links will launch a browser window
hosted inside Vs, which will open the documentation on the msdn site. take some time
to investigate the information and the various links exposed to you on the start page.

microsoft has taken considerable effort to make Vs a customizable design environment. 3.
You can customize just about every aspect of the layout, from the various windows
and menus down to the color coding used in the code editor. select tools ➤ options to
open the options dialog box, shown in Figure 5-1, which allows you to customize many
aspects of the Ide.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ IntroduCIng the .net Framework and VIsual studIo

67

Click projects and solutions in the category list on the left side of the dialog box. You are 4.
presented with options to change the default location of projects and what happens when
you build and run a project. select the show output window when Build starts option.

Investigate some of the other customizable options available. Close the options dialog 5.
box when you are finished by clicking the ok button.

Creating a New project

to create a new project, follow these steps:

1. on the start page, click the Create project link, which launches the new project dialog
box. (You can also choose File ➤ new ➤ project to open this dialog box.)

2. the new project dialog box allows you to create various projects using built-in templates.
there are templates for creating windows projects, web projects, wCF projects, as well
as many others, depending on what options you chose when installing Vs.

3. In the templates pane, expand the Visual C# node and select the windows node, as
shown in Figure 5-2. observe the various C# project templates. there are templates
for creating various types of windows applications, including windows Forms-based
applications, class libraries, and console applications.

Figure 5-1. VS Options dialog box

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ IntroduCIng the .net Framework and VIsual studIo

68

4. Click the windows Forms application template. Change the name of the application to
demoChapter5 and click the ok button.

when the project opens, you will be presented with a form designer for a default form (named Form1) that has
been added to the project. to the right of this window, you should see the solution explorer.

Investigating the Solution explorer and Class View

the solution explorer displays the projects and files that are part of the current solution, as shown in Figure 5-3. By
default, when you create a project, a solution is created with the same name as the project. the solution contains
some global information, project-linking information, and customization settings, such as a task list and debugging
information. a solution may contain more than one related project.

Figure 5-2. VS New Project dialog box

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ IntroduCIng the .net Framework and VIsual studIo

69

Figure 5-3. Solution Explorer

under the solution node is the project node. the project node organizes the various files and settings related to
a project. the project file organizes this information in an Xml document, which contains references to the class
files that are part of the project, any external references needed by the project, and compilation options that have
been set. under the project node is a properties node, references node, an app.config file, a class file for the
Form1 class, and a Program class file.

to practice using the solution explorer and some Vs features and views, follow these steps:

1. In the solution explorer window, right-click the properties node and select open. this
launches the project properties window. along the left side of the window are several
tabs you can use to explore and set various application settings.

2. select the application tab, as shown in Figure 5-4. notice that, by default, the assembly
name and default namespace are set to the name of the project.

Figure 5-4. Project Properties Window

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ IntroduCIng the .net Framework and VIsual studIo

70

3. explore some of the other tabs in the project properties window. Close the window when
you are finished by clicking on the x in the tab of the window.

4. In the solution explorer window, expand the references node. under the node are the
external assemblies referenced by the application. notice that several references have
been included by default. the default references depend on the type of project. For
example, since this is a windows application project, a reference to the
System.Windows.Forms namespace is included by default.

5. the Form1 class file under the solution explorer’s project node has a .cs extension to
indicate it is written in C# code. By default, the name of the file has been set to the same
name as the form. double-click the file in the solution explorer window. the form is
shown in design View. Click the View Code button in the toolbar at the top of the solution
explorer, and the code editor for the Form1 class will open.

6. select View ➤ Class View to launch the Class View window. the top part of the
Class View window organizes the project files in terms of the namespace hierarchy.
expanding the demoChapter5 root node reveals three sub nodes: a references node,
the demoChapter5 namespace node, and demoChapter5 properties node. a namespace
node is designated by the { } symbol to the left of the node name.

7. listed under the demoChapter5 namespace node are the classes that belong to the
namespace. expanding the Form1 node reveals a Base types folder. expanding Base
types shows the classes and interfaces inherited and implemented by the Form1 class,
as shown in Figure 5-5. You can further expand the nodes to show the classes and
interfaces inherited and implemented by the Form base class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ IntroduCIng the .net Framework and VIsual studIo

71

8. the bottom section of the Class View window is a listing of the class’s methods,
properties, and events. select the Form node in the top section of the Class View window.
notice the considerable number of methods, properties, and events listed in the bottom
section of the window.

9. right-click the demoChapter5 project node and select add ➤ Class. name the class
DemoClass1 and click the add button. If the class code is not visible in the code editor,
double-click the demoClass1 node in the Class View window to display it. wrap the class
definition code in a namespace declaration as follows:

namespace DemoChapter5
{
 namespace MyDemoNamespace
 {
 class DemoClass1
 {
 }
 }
}

Figure 5-5. Expanded nodes in the Class View

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ IntroduCIng the .net Framework and VIsual studIo

72

10. notice the updated hierarchy in the Class View. DemoClass1 now belongs to the
MyDemoNamespace, which belongs to the DemoChapter5 namespace. the fully qualified
name of DemoClass1 is now DemoChapter5.MyDemoNamespace.DemoClass1.

11. add the following code to the DemoClass1 definition. as you add the code, notice the
auto-selection drop-down list provided (see Figure 5-6). pressing the tab key will select
the current item on the list.

 class DemoClass1: System.Collections.CaseInsensitiveComparer
{
}

Figure 5-6. Code selection drop-down list

12. notice the updated hierarchy in the Class View. expand the Base types node under
the demoClass1 node, and you will see the base CaseInsensitiveComparer
class node. select this node and you will see the methods and properties of the
CaseInsensitiveComparer class in the lower section of the Class View window.

13. right-click the Compare method of the CaseInsensitiveComparer class node and
choose Browse definition. the object Browser window is opened as a tab in the main
window and information about the Compare method is displayed. notice it takes two
object arguments, compares them, and returns an integer value based on the result
(see Figure 5-7).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ IntroduCIng the .net Framework and VIsual studIo

73

14. the object Browser enables you to explore the object hierarchies and to view information
about items and methods within the hierarchy. take some time to explore the object
Browser. when you are finished, close the object Browser and close the Class View
window.

exploring the toolbox and properties Window

to explore the Vs toolbox and properties window, follow these steps:

1. In the solution explorer window, double-click the Form1.cs node. this brings up the
Form1 design tab in the main editing window. locate the toolbox tab to the left of the
main editing window. Click the tab and the toolbox window should expand, as shown in
Figure 5-8. In the upper-right corner of the toolbox, you should see the auto-hide icon,
which looks like a thumbtack. Click the icon to turn off the auto-hide feature.

Figure 5-7. Object Browser

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ IntroduCIng the .net Framework and VIsual studIo

74

2. under the all windows Forms node of the toolbox are controls that you can drag and drop
onto your form to build the guI. there are also other nodes that contain nongraphical
components that help make some common programming tasks easier to create and
manage. For example, the data node contains controls for accessing and managing data
stores. scroll down the toolbox window and observe the various controls exposed by the
designer.

3. under the all windows Forms node, select the label control. move the cursor over the
form; it should change to a crosshairs pointer. draw a label on the form by clicking,
dragging, and then releasing the mouse. In a similar fashion, draw a textBox control and
a Button control on the form. Figure 5-9 shows how the form should look.

Figure 5-8. VS Toolbox

Figure 5-9. Sample form layout

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ IntroduCIng the .net Framework and VIsual studIo

75

4. turn the auto-hide feature of the toolbox back on by clicking the auto hide (thumbtack)
icon in the upper-right corner of the toolbox window.

5. locate the properties window to the right of the main editing window under the solution
explorer window. (You can also select View ➤ properties window in the menu step
to open the properties window.) the properties window displays the properties of the
currently selected object in the design View. You can also edit many of the object’s
properties through this window.

6. In the Form1 design window, click label1. the label1 control should be selected in the
drop-down list at the top of the properties window (see Figure 5-10). locate the Text
property and change it to “enter your password:” (minus the quotes).

Figure 5-10. VS Properties window

Note ■ You may need to rearrange the controls on the form to see all the text.

7. set the Password Char property of textBox1 to *. Change the Text property of Button1
to ok. (Click the control on the form or use the drop-down list at the top of the properties
window to see the control’s properties.)

8. save the project by choosing File ➤ save all.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ IntroduCIng the .net Framework and VIsual studIo

76

Building and executing the assembly

to build and execute the assembly, follow these steps:

1. In the solution explorer, double click Form1 to bring up the design window.

2. In the form designer, double click the Button1 control. the code editor for Form1 will be
displayed in the main editing window. a method that handles the button click event is
added to the code editor.

3. add the following code to the method. this code will display the password entered in
textBox1 on the title bar of the form.

private void button1_Click(object sender, EventArgs e)
{
 this.Text = "Your password is " + textBox1.Text;
}

4. select Build ➤ Build solution. the output window shows the progress of compiling
the assembly (see Figure 5-11). once the assembly has been compiled, it is ready for
execution. (If you can’t locate the output window, select View menu ➤ output.)

Figure 5-11. Progress of build displayed in the Output window

5. select debug ➤ start debugging. this runs the assembly in debug mode. once the form
loads, enter a password and click the ok button. You should see the message containing
the password in the form’s title bar. Close the form by clicking the x in the upper right
corner.

6. select File ➤ save all, and then exit Vs by selecting File ➤ exit.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ IntroduCIng the .net Framework and VIsual studIo

77

In this activity, you will become familiar with the following:

setting breakpoints and stepping through the code•	

using the various debugging windows in the Vs Ide•	

locating and fixing build errors using the error list window•	

stepping through Code

to step through your code, follow these steps:

1. start Vs. select File ➤ new ➤ project.

2. under the C# windows templates, select the Console application. rename the project
activity5_2.

3. You will see a program class file open in the code editor. the class file has a Main method
that gets executed first when the application runs. add the following code to the program
class. this code contains a method that loads a list of numbers and displays the contents
of the list in the console window.

class Program
{
 static List<int> numList = new List<int>();
 static void Main(string[] args)
 {
 LoadList(10);
 foreach (int i in numList)
 {
 Console.WriteLine(i);
 }
 Console.ReadLine();
 }
 static void LoadList(int iMax)
 {
 for (int i = 1; i <= iMax; i++)
 {
 numList.Add(i);
 }
 }
}

4. to set a breakpoint (which pauses program execution), place the cursor on the
declaration line of the Main method, right-click, and choose Breakpoint ➤ Insert
Breakpoint. a red dot will appear in the left margin to indicate that a breakpoint has been
set (see Figure 5-12).

aCtIVItY 5-2. USING the DeBUGGING FeatUreS OF VS

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ IntroduCIng the .net Framework and VIsual studIo

78

5. select debug ➤ start debugging. program execution will pause at the breakpoint.
a yellow arrow indicates the next line of code that will be executed.

6. select View ➤ toolbars and click the debug toolbar. (a check next to the toolbar name
indicates it is visible.) to step through the code one line at a time, select the step Into
button on the debug toolbar (see Figure 5-13). (You can also press the F11 key.) Continue
stepping through the code until you get to the loadlist.

Figure 5-12. Setting a breakpoint in the code editor

Figure 5-13. Using the Debug toolbar

7. step through the code until the for loop has looped a couple of times. at this point, you
are probably satisfied that this code is working and you want to step out of this method.
on the debug toolbar, click the step out button. You should return to the main method.

8. Continue stepping through the code until the for-each loop has looped a couple of times.
at this point, you may want to return to runtime mode. to do this, click the Continue
button on the debug toolbar. when the Console window appears, hit the enter key to
close the window.

9. start the application in debug mode again. step through the code until you get to the
method call LoadList(10);.

10. on the debug toolbar, choose the step over button. this will execute the method and
reenter break mode after execution returns to the calling code. after stepping over the
method, continue stepping through the code for several lines, and then choose the stop
button on the debug toolbar. Click the red dot in the left margin to remove the breakpoint.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ IntroduCIng the .net Framework and VIsual studIo

79

Setting Conditional Breakpoints

to set conditional breakpoints, follow these steps:

1. In the program.cs file locate the LoadList method. set a breakpoint on the following line
of code:

 numList.Add(i);

2. open the Breakpoints window by selecting debug ➤ windows ➤ Breakpoints. You

should see the breakpoint you just set listed in the Breakpoints window (see Figure 5-14).

Figure 5-14. Breakpoints window

3. right-click the breakpoint in the Breakpoints window and select Condition. You will see
the Breakpoint Condition dialog box. enter i == 3 as the condition expression and click
the ok button (see Figure 5-15).

Figure 5-15. Breakpoint Condition dialog box

4. select debug ➤ start. program execution will pause, and you will see a yellow arrow
indicating the next line that will be executed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ IntroduCIng the .net Framework and VIsual studIo

80

5. select debug ➤ windows ➤ locals. the locals window is displayed at the bottom of the
screen (see Figure 5-16). the value of i is displayed in the locals window. Verify that it is
3. step through the code using the debug toolbar and watch the value of i change in the
locals window. Click the stop debugging button in the debug toolbar.

Figure 5-16. Locals window

6. locate the Breakpoints window at the bottom of your screen. right-click the breakpoint
in the Breakpoints window and select Condition. Clear the current condition by clearing
the Condition check box, and then click the ok button.

7. right-click the breakpoint in the Breakpoints window and select hit Count. set the
breakpoint to break when the hit count equals 4, and then click ok.

8. select debug ➤ start. program execution will pause and the yellow arrow indicates the
next line of code that will execute.

9. right-click the numList statement and select add watch. a watch window will be displayed
with numList in it. notice that numList is a System.Collections.Generics.List
type. Click the plus sign next to numList. Verify that the list contains three items (see
Figure 5-17). step through the code and watch the array fill with items. Click the stop
button in the debug toolbar.

Figure 5-17. The Watch window

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ IntroduCIng the .net Framework and VIsual studIo

81

Locating and Fixing Build errors

to locate and fix build errors, follow these steps:

1. In the Program class, locate the following line of code and comment it out by placing a
two slashes in front of it, as shown here:

//static List<int> numList = new List<int>();

2. notice the red squiggly lines under the numList in the code. this indicates a build error
that must be fixed before the application can run. hovering over the line reveals more
information about the error.

3. select Build ➤ Build solution. the error list window will appear at the bottom of the
screen, indicating a build error (see Figure 5-18).

Figure 5-18. Locating build errors with the Error List window

4. double-click the line containing the build error in the error list window. the
corresponding code will become visible in the code editor.

5. uncomment the line you commented in step 1 by deleting the slashes.
select Build ➤ Build solution. this time, the output window is displayed at the bottom
of the screen, indicating that there were no build errors.

6. save the project and exit Vs.

Summary
This chapter introduced you to the fundamentals of the .NET Framework. You reviewed some of the underlying goals
of the .NET Framework. You also looked at how the .NET Framework is structured and how code is compiled and
executed by the CLR. These concepts are relevant and consistent across all .NET-compliant programming languages.
In addition, you explored some of the features of the Visual Studio integrated development environment. While you
do not need an IDE to develop .NET applications, using one is invaluable when it comes to productivity, debugging,
and code management.

There are many types of applications you can develop using C#. These include Windows desktop apps using WPF,
web apps using ASP.NET, Windows Store apps using WinRT, and Application Service apps using WCF or ASP.NET Web
API. You will look at each of these technologies in future chapters, but first you need to learn how to program using
C#. The next chapter is the first in a series that looks at how the OOP concepts—such as class structure, inheritance,
and polymorphism—are implemented in C# code.

www.it-ebooks.info

http://www.it-ebooks.info/

83

Chapter 6

Creating Classes

In the Chapter 5, you looked at how the .NET Framework was developed and how programs execute under the
framework. That chapter introduced you to the Visual Studio IDE, and you gained some familiarity with working in it.
You are now ready to start coding! This chapter is the first of a series that will introduce you to how classes are created
and used in C#. It covers the basics of creating and using classes. You will create classes, add attributes and methods,
and instantiate object instances of the classes in client code.

After reading this chapter, you should be familiar with the following:

how objects used in OOP depend on class definition files•	

the important role encapsulation plays in OOP•	

how to define the properties and methods of a class•	

the purpose of class constructors•	

how to use instances of classes in client code•	

the process of overloading class constructors and methods•	

how to create and test class definition files with Visual Studio•	

Introducing Objects and Classes
In OOP, you use objects in your programs to encapsulate the data associated with the entities with which the program
is working. For example, a human resources application needs to work with employees. Employees have attributes
associated with them that need to be tracked. You may be interested in such things as the employee names, addresses,
departments, and so on. Although you track the same attributes for all employees, each employee has unique values
for these attributes. In the human resources application, an Employee object obtains and modifies the attributes
associated with an employee. In OOP, the attributes of an object are referred to as properties.

Along with the properties of the employees, the human resource application also needs an established set of
behaviors exposed by the Employee object. For example, one employee behavior of interest to the human resources
department is the ability to request time off. In OOP, objects expose behaviors through methods. The Employee object
contains a RequestTimeOff method that encapsulates the implementation code.

The properties and methods of the objects used in OOP are defined through classes. A class is a blueprint that
defines the attributes and behaviors of the objects that are created as instances of the class. If you have completed
the proper analysis and design of the application, you should be able to refer to the UML design documentation to
determine which classes need to be constructed and what properties and methods these classes will contain. The
UML class diagram contains the initial information you need to construct the classes of the system.

To demonstrate the construction of a class using C#, you will look at the code for a simple Employee class. The
Employee class will have properties and methods that encapsulate and work with employee data as part of a fictitious
human resources application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Creating Classes

84

Defining Classes
Let’s examine the source code needed to create a class definition. The first line of code defines the code block as a
class definition using the keyword class followed by the name of the class. The body of the class definition is enclosed
by an open and closing curly bracket. The code block is structured like this:

class Employee
{
}

Creating Class Properties
After defining the starting and ending point of the class code block, the next step is to define the instance variables
(often referred to as fields) contained in the class. These variables hold the data that an instance of your class will
manipulate. The private keyword ensures that these instance variables can be manipulated only by the code inside
the class. Here are the instance variable definitions:

private int _empID;
private string _loginName;
private string _password;
private string _department;
private string _name;

When a user of the class (client code) needs to query or set the value of these instance variables, public properties
are exposed to them. Inside the property block of code are a Get block and a Set block. The Get block returns the
value of the private instance variable to the user of the class. This code provides a readable property. The Set block
provides a write-enabled property; it passes a value sent in by the client code to the corresponding private instance
variable. Here is an example of a property block:

public string Name
{
 get { return _name; }
 set { _name = value; }
}

There may be times when you want to restrict access to a property so that client code can read the property
value but not change it. By eliminating the set block inside the property block, you create a read-only property. The
following code shows how to make the EmployeeID property read-only:

public int EmployeeID
{
 get { return _empID; }
}

Note ■ the private and public keywords affect the scope of the code. For more information about scoping,
see appendix a.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Creating Classes

85

Newcomers to OOP often ask why it’s necessary to go through so much work to get and set properties. Couldn’t
you just create public instance variables that the user could read and write to directly? The answer lies in one of the
fundamental tenets of OOP: encapsulation. Encapsulation means that the client code does not have direct access
to the data. When working with the data, the client code must use clearly defined properties and methods accessed
through an instance of the class. The following are some of the benefits of encapsulating the data in this way:

preventing unauthorized access to the data•	

ensuring data integrity through error checking•	

creating read-only or write-only properties•	

isolating users of the class from changes in the implementation code•	

For example, you could check to make sure the password is at least six characters long via the following code:

public string Password
{
 get { return _password; }
 set
 {
 if (value.Length >= 6)
 {
 _password = value;
 }
 else
 {
 throw new Exception("Password must be at least 6 characters");
 }
 }
}

Creating Class Methods
Class methods define the behaviors of the class. For example, the following defines a method for the Employee class
that verifies employee logins:

public Boolean Login(string loginName, string password)
{
 if (loginName == "Jones" & password == "mj")
 {
 _empID = 1;
 Department = "HR";
 Name = "Mary Jones";
 return true;
 }
 else if (loginName == "Smith" & password == "js")
 {
 _empID = 2;
 Department = "IS";
 Name = "Jerry Smith";
 return true;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Creating Classes

86

 else
 {
 return false;
 }
}

When client code calls the Login method of the class, the login name and password are passed into the method
(these are called input parameters). The parameters are checked. If they match a current employee, the instance of
the class is populated with attributes of the employee and a Boolean value of true is passed back to the calling code.
If the login name and password do not match a current employee, a Boolean value of false is passed back to the
client code. The return keyword is used to return control to the client code with the value indicated.

In the previous method, a value is returned to the client code. This is indicated by the Boolean keyword, which
assigns the Boolean type to the return value. The following AddEmployee method is another method of the Employee
class. It’s called when an employee needs to be added to the database, and it returns the newly assigned employee
ID (as an integer type) to the client. The method also populates the object instance of the Employee class with the
attributes of the newly added employee.

public int AddEmployee(string loginName, string password,
 string department, string name)
{
 //Data normally saved to database.
 _empID = 3;
 LoginName = loginName;
 Password = password;
 Department = department;
 Name = name;
 return EmployeeID;
}

Not all methodes return a value to the client. In this case, the method is declared with the void keyword to
indicate there is no return value. The following method updates a password, but does not return a value to the client.

public void UpdatePassword(string password)
{
 //Data normally saved to database.
 Password = password;
}

aCtIVItY 6-1. CreatING the eMpLOYee CLaSS

in this activity, you will become familiar with the following:

how to create a C# class definition file using Visual studio•	

how to create and use an instance of the class from client code•	

Note ■ if you have not already done so, download the starter files. see appendix C for instructions. this lab is a
Windows Form application which is one of the Windows client type applications you can build with Visual studio.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Creating Classes

87

Defining the employee Class

to create the employee class, follow these steps:

1. start Visual studio. select File ➤ Open ➤ project.

2. navigate to the activity6_1starter folder, click the Activity6_1.sln file, and click Open.
When the project opens, it will contain a login form. You will use this form later to test the
Employee class you create.

3. select project ➤ add Class. in the add new item dialog box, rename the class file to
Employee.cs, and then click add. Visual studio adds the Employee.cs file to the project
and adds the following class definition code to the file (along with the name space
definition and some using declarations.):

class Employee
{
}

4. enter the following code between the opening and closing brackets to add the private
instance variables to the class body in the definition file:

private int _empID;
private string _loginName;
private string _password;
private int _securityLevel;

5. next, add the following public properties to access the private instance variables defined
in step 4:

 public int EmployeeID
 {
 get { return _empID; }
 }
 public string LoginName
 {
 get { return _loginName; }
 set { _loginName = value; }
 }
 public string Password
 {
 get { return _password; }
 set { _password = value; }
 }
 public int SecurityLevel
 {
 get { return _securityLevel; }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Creating Classes

88

6. after the properties, add the following Login method to the class definition:

 public Boolean Login(string loginName, string password)
 {
 LoginName = loginName;
 Password = password;
 //Data nomally retrieved from database.
 //Hard coded for demo only.
 if (loginName == "Smith" & password == "js")
 {
 _empID = 1;
 _securityLevel = 2;
 return true;

 }
 else if (loginName == "Jones" & password == "mj")
 {
 _empID = 2;
 _securityLevel = 4;
 return true;
 }
 else
 {
 return false;
 }
 }

7. select Build ➤ Build solution. Make sure there are no build errors in the error list

window. if there are, fix them, and then rebuild.

testing the employee Class

to test the Employee class, follow these steps:

1. Open frmLogin in the code editor and locate the btnLogin click event code.

Tip ■ Double-clicking the login button in the form designer will also bring up the event code in the code editor.

2. in the body of the btnLogin click event, declare and instantiate a variable of type
employee called oEmployee:

Employee oEmployee = new Employee();

3. next, call the Login method of the oEmployee object, passing in the values of the login
name and the password from the text boxes on the form. Capture the return value in a
Boolean variable called bResult:

Boolean bResult = oEmployee.Login(txtName.Text,txtPassword.Text);

s
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Creating Classes

89

4. after calling the Login method, if the result is true, show a message box stating the
user’s security level, which is retrieved by reading the securitylevel property of the
oEmployee object. if the result is false, show a login failed message.

If (bResult == true)
{
 MessageBox.Show("Your security level is " + oEmployee.SecurityLevel);
}
else
{
 MessageBox.Show("Login Failed");
}

5. select Build ➤ Build solution. Make sure there are no build errors in the error list
window. if there are, fix them, and then rebuild.

6. select Debug ➤ start to run the project. test the login form by entering a login name of
smith and a password of js. You should get a message indicating a security level of 2.
try entering your name and a password of pass. You should get a message indicating the
login failed.

7. after testing the login procedure, close the form; this will stop the debugger.

Note ■ the code in this chapter uses exceptions for invalid logins. this is just for demonstration purposes. throwing
errors is an expensive process and should not be used for business processing logic. For more information on proper use
of throwing errors see appendix B.

Using Constructors
In OOP, you use constructors to perform any processing that needs to occur when an object instance of the class
becomes instantiated. For example, you could initialize properties of the object instance or establish a database
connection. The class constructor method is named the same as the class. When an object instance of a class is
instantiated by client code, the constructor method is executed. The following constructor is used in the Employee
class to initialize the properties of an object instance of the Employee class. An employee ID is passed in to the
constructor to retrieve the values from data storage, like so:

public Employee(int empID)
{
 //Retrieval of data hardcoded for demo
 if (empID == 1)
 {
 _empID = 1;
 LoginName = "Smith";
 Password = "js";
 Department = "IT";
 Name = "Jerry Smith";
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Creating Classes

90

 else if (empID == 2)
 {
 _empID = 2;
 LoginName = "Jones";
 Password = "mj";
 Department = "HR";
 Name = "Mary Jones";
 }
 else
 {
 throw new Exception("Invalid EmployeeID");
 }
}

Overloading Methods
The ability to overload methods is a useful feature of OOP languages. You overload methods in a class by defining
multiple methods that have the same name but contain different signatures. A method signature is a combination
of the name of the method and its parameter type list. If you change the parameter type list, you create a different
method signature. For example, the parameter type lists can contain a different number of parameters or different
parameter types. The compiler will determine which method to execute by examining the parameter type list passed
in by the client.

Note ■ Changing how a parameter is passed (in other words, from byVal to byRef) does not change the method
signature. altering the return type of the method also does not create a unique method signature. For a more detailed
discussion of method signatures and passing arguments, refer to appendix a.

Suppose you want to provide two methods of the Employee class that will allow you to add an employee to the
database. The first method assigns a username and password to the employee when the employee is added. The
second method adds the employee information but defers the assignment of username and password until later.
You can easily accomplish this by overloading the AddEmployee method of the Employee class, as the following code
demonstrates:

public int AddEmployee(string loginName, string password,
 string department, string name)
{
 //Data normally saved to database.
 _empID = 3;
 LoginName = loginName;
 Password = password;
 Department = department;
 Name = name;
 return EmployeeID;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Creating Classes

91

public int AddEmployee(string department, string name)
{
 //Data normally saved to database.
 _empID = 3;
 Department = department;
 Name = name;
 return EmployeeID;
}

Because the parameter type list of the first method (string, string, string, string) differs from the parameter type
list of the second method (string, string), the compiler can determine which method to invoke. A common technique
in OOP is to overload the constructor of the class. For example, when an instance of the Employee class is created,
one constructor could be used for new employees and another could be used for current employees by passing in the
employee ID when the class instance is instantiated by the client. The following code shows the overloading of a class
constructor:

public Employee()
{
 _empID = -1;
}

public Employee(int empID)
{
 //Retrieval of data hard coded for demo
 if (empID == 1)
 {
 _empID = 1;
 LoginName = "Smith";
 Password = "js";
 Department = "IT";
 Name = "Jerry Smith";

 }
 else if (empID == 2)
 {
 _empID = 2;
 LoginName = "Jones";
 Password = "mj";
 Department = "HR";
 Name = "Mary Jones";
 }
 else
 {
 throw new Exception("Invalid EmployeeID");
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Creating Classes

92

in this activity, you will become familiar with the following:

how to create and overload the class constructor method•	

how to use overloaded constructors of a class from client code•	

how to overload a method of a class•	

how to use overloaded methods of a class from client code•	

Creating and Overloading Class Constructors

to create and overload class constructors, follow these steps:

1. start Visual studio. select File ➤ Open ➤ project.

2. navigate to the activity6_2starter folder, click the activity6_2.sln file, and then click
Open. When the project opens, it will contain a frmemployeeinfo form that you will use to
test the Employee class. the project also includes the Employee.cs file, which contains
the Employee class definition code.

3. Open employee.cs in the code editor and examine the code. the class contains several
properties pertaining to employees that need to be maintained.

4. after the property declaration code, add the following private method to the class. this
method simulates the generation of a new employee iD.

 private int GetNextID()
 {
 //simulates the retrieval of next
 //available id from database
 return 100;
 }

5. Create a default class constructor, and add code that calls the GetNextID method and

assigns the return value to the private instance variable _empID:

 public Employee()
 {
 _empID = GetNextID();
 }

6. Overload the default constructor method by adding a second constructor method that

takes an integer parameter of empID, like so:

 public Employee(int empID)
 {
 //Constructor for existing employee
 }

aCtIVItY 6-2. CreatING CONStrUCtOrS aND OVerLOaDING MethODS

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Creating Classes

93

7. add the following code to the overloaded constructor, which simulates extracting the
employee data from a database and assigns the data to the instance properties of
the class:

 //Simulates retrieval from database
 if (empID == 1)
 {
 _empID = empID;
 LoginName = "smith";
 PassWord = "js";
 SSN = 123456789;
 Department = "IS";
 }
 else if (empID == 2)
 {
 _empID = empID;
 LoginName = "jones";
 PassWord = "mj";
 SSN = 987654321;
 Department = "HR";
 }
 else
 {
 throw new Exception("Invalid Employee ID");
 }

8. select Build ➤ Build solution. Make sure there are no build errors in the error list

window. if there are, fix them, and then rebuild.

testing the employee Class Constructors

to test the Employee class constructors, follow these steps:

1. Open the employeeinfoForm in the form editor and double click the new employee button
to bring up the click event code in the code editor.

2. in the click event method body, declare and instantiate a variable of type employee called
oEmployee:

Employee oEmployee = new Employee();

3. next, update the employeeiD text box with the employee iD, disable the employee iD text
box, and clear the remaining textboxes:

 txtEmpID.Text = oEmployee.EmpID.ToString();
 txtEmpID.Enabled = false;
 txtLoginName.Text = "";
 txtPassword.Text = "";
 txtSSN.Text = "";
 txtDepartment.Text = "";

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Creating Classes

94

4. select Build ➤ Build solution. Make sure there are no build errors in the error list
window. if there are, fix them, and then rebuild.

5. Open the employeeinfoForm in the form editor and double click the existing employee
button to bring up the click event code in the code editor.

6. in the click event method body, declare and instantiate a variable of type employee called
oEmployee. retrieve the employee iD from the txtEmpID text box and pass it as an
argument in the constructor. the int.Parse method converts the text to an integer
data type:

Employee oEmployee = new Employee(int.Parse(txtEmpID.Text));

7. next, disable the employee iD textbox and fill in the remaining text boxes with the values
of the Employee object’s properties:

 txtEmpID.Enabled = false;
 txtLoginName.Text = oEmployee.LoginName;
 txtPassword.Text = oEmployee.PassWord;
 txtSSN.Text = oEmployee.SSN.ToString();
 txtDepartment.Text = oEmployee.Department;

8. select Build ➤ Build solution. Make sure there are no build errors in the error list

window. if there are, fix them, and then rebuild.

9. select Debug ➤ start to run the project and test the code.

10. When the employeeinfo form is displayed, click the new employee button. You should see
that a new employee iD has been generated in the employee iD textbox.

11. Click the reset button to clear and enable the employee iD text box.

12. enter a value of 1 for the employee iD and click the existing employee button. the
information for the employee is displayed on the form.

13. after testing the constructors, close the form, which will stop the debugger.

Overloading a Class Method

to overload a class method, follow these steps:

1. Open the employee.cs code in the code editor.

2. add the following Update method to the Employee class. this method simulates the
updating of the employee security information to a database:

 public string Update(string loginName, string password)
 {
 LoginName = loginName;
 PassWord = password;
 return "Security info updated.";
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Creating Classes

95

3. add a second Update method to simulate the updating of the employee human resources
data to a database:

 public string Update(int ssNumber, string department)
 {
 SSN = ssNumber;
 Department = department;
 return "HR info updated.";
 }

4. select Build ➤ Build solution. Make sure there are no build errors in the error list

window. if there are, fix them, and then rebuild.

testing the Overloaded Update Method

to test the overloaded Update method, follow these steps:

1. Open the employeeinfo Form in the Form editor and double click the Update si button.
You are presented with the click event code in the Code editor window.

2. in the click event method, declare and instantiate a variable of type employee called
oEmployee. retrieve the employee iD from the txtempiD text box and pass it as an
argument in the constructor:

Employee oEmployee = new Employee(int.Parse(txtEmpID.Text));

3. next, call the Update method, passing the values of the login name and password from
the text boxes. show the method return message to the user in a message box:

MessageBox.Show(oEmployee.Update(txtLoginName.Text, txtPassword.Text));

4. Update the login name and password text boxes with the property values of the
Employee object:

 txtLoginName.Text = oEmployee.LoginName;
 txtPassword.Text = oEmployee.PassWord;

5. repeat this process to add similar code to the Update hr button click event method to

simulate updating the human resources information. add the following code to the click
event method:

 Employee oEmployee = new Employee(int.Parse(txtEmpID.Text));
 MessageBox.Show(oEmployee.Update(int.Parse(txtSSN.Text), txtDepartment.Text));
 txtSSN.Text = oEmployee.SSN.ToString();
 txtDepartment.Text = oEmployee.Department;

6. select Build ➤ Build solution. Make sure there are no build errors in the error list

window. if there are, fix them, and then rebuild.

7. select Debug ➤ start to run the project and test the code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Creating Classes

96

8. enter a value of 1 for the employee iD and click the existing employee button.

9. Change the values for the security information and click the Update button.

10. Change the values for the human resources information and click the Update button.

11. You should see that the correct Update method is called in accordance with the
parameters passed into it. after testing the Update method, close the form.

Summary
This chapter gave you a firm foundation in creating and using classes in C# code. Now that you are comfortable
constructing and using classes, you are ready to look at implementing some of the more advanced features of OOP.
In Chapter 7, you will concentrate on how inheritance and polymorphism are implemented in C# code. As an
object-oriented programmer, it is important for you to become familiar with these concepts and learn how to
implement them in your programs.

www.it-ebooks.info

http://www.it-ebooks.info/

97

Chapter 7

Creating Class Hierarchies

In Chapter 6, you learned how to create classes, add attributes and methods, and instantiate object instances of the
classes in client code. This chapter introduces the concepts of inheritance and polymorphism.

Inheritance is one of the most powerful and fundamental features of any OOP language. Using inheritance, you
create base classes that encapsulate common functionality. Other classes can be derived from these base classes. The
derived classes inherit the properties and methods of the base classes and extend the functionality as needed.

A second fundamental OOP feature is polymorphism. Polymorphism lets a base class define methods that must
be implemented by any derived classes. The base class defines the message signature that derived classes must
adhere to, but the implementation code of the method is left up to the derived class. The power of polymorphism lies
in the fact that clients know they can implement methods of classes of the base type in the same fashion. Even though
the internal processing of the method may be different, the client knows the inputs and outputs of the methods will be
the same.

After reading this chapter, you will learn the following:

how to create and use base classes•	

how to create and use derived classes•	

how access modifiers control inheritance•	

how to override base class methods•	

how to implement interfaces•	

how to implement polymorphism through inheritance and through interfaces•	

Understanding Inheritance
One of the most powerful features of any OOP language is inheritance. Inheritance is the ability to create a base class
with properties and methods that can be used in classes derived from the base class.

Creating Base and Derived Classes
The purpose of inheritance is to create a base class that encapsulates properties and methods that can be used by
derived classes of the same type. For example, you could create a base class Account. A GetBalance method is defined
in the Account class. You can then create two separate classes: SavingsAccount and CheckingAccount. Because the
SavingsAccount class and the CheckingAccount class use the same logic to retrieve balance information, they inherit
the GetBalance method from the base class Account. This enables you to create one common code base that is easier
to maintain and manage.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Creating Class hierarChies

98

Derived classes are not limited to the properties and methods of the base class, however. The derived classes
may require additional methods and properties that are unique to their needs. For example, the business rules for
withdrawing money from a checking account may require that a minimum balance be maintained. A minimum
balance, however, may not be required for withdrawals from a savings account. In this scenario, the derived
CheckingAccount and SavingsAccount classes would each need their own unique definition for a Withdraw method.

To create a derived class in C#, you enter the name of the class, followed by a colon (:) and the name of the base
class. The following code demonstrates how to create a CheckingAccount class that derives from an Account
base class:

class Account
{
 long _accountNumber;

 public long AccountNumber
 {
 get { return _accountNumber; }
 set { _accountNumber = value; }
 }
 public double GetBalance()
 {
 //code to retrieve account balance from database
 return (double)10000;
 }
}

class CheckingAccount : Account
{
 double _minBalance;

 public double MinBalance
 {
 get { return _minBalance; }
 set { _minBalance = value; }
 }
 public void Withdraw(double amount)
 {
 //code to withdraw from account
 }
}

The following code could be implemented by a client creating an object instance of CheckingAccount. Notice that
the client perceives no distinction between the call to the GetBalance method and the call to the Withdraw method.
In this case, the client has no knowledge of the Account class; instead, both methods appear to have been defined by
CheckingAccount.

CheckingAccount oCheckingAccount = new CheckingAccount();
double balance;
oCheckingAccount.AccountNumber = 1000;
balance = oCheckingAccount.GetBalance();
oCheckingAccount.Withdraw(500);

4
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Creating Class hierarChies

99

Creating a Sealed Class
By default, any C# class can be inherited. When creating classes that can be inherited, you must take care that they
are not modified in such a way that derived classes no longer function as intended. If you are not careful, you can
create complex inheritance chains that are hard to manage and debug. For example, suppose you create a derived
CheckingAccount class based on the Account class. Another programmer can come along and create a derived class
based on the CheckingAccount and use it in ways you never intended. (This could easily occur in large programming
teams with poor communication and design methods.)

By using the sealed modifier, you can create classes that you know will not be derived from. This type of class is
often referred to as a sealed or final class. By making a class not inheritable, you avoid the complexity and overhead
associated with altering the code of base classes. The following code demonstrates the use of the sealed modifier
when constructing a class definition:

sealed class CheckingAccount : Account

Creating an Abstract Class
At this point in the example, a client can access the GetBalance method through an instance of the derived
CheckingAccount class or directly through an instance of the base Account class. Sometimes, you may want to have a
base class that can’t be instantiated by client code. Access to the methods and properties of the class must be through
a derived class. In this case, you construct the base class using the abstract modifier. The following code shows the
Account class definition with the abstract modifier:

abstract class Account

This makes the Account class an abstract class. For clients to gain access to the GetBalance method, they must
create an instance of the derived CheckingAccount class.

Using Access Modifiers in Base Classes
When setting up class hierarchies using inheritance, you must manage how the properties and methods of your
classes are accessed. Two access modifiers you have looked at so far are public and private. If a method or property of
the base class is exposed as public, it is accessible by both the derived class and any client of the derived class. If you
expose the property or method of the base class as private, it is not accessible directly by the derived class or the client.

You may want to expose a property or method of the base class to a derived class, but not to a client of the derived
class. In this case, you use the protected access modifier. The following code demonstrates the use of the protected
access modifier:

protected double GetBalance()
{
 //code to retrieve account balance from database
 return (double)10000;
}

By defining the GetBalance method as protected, it becomes accessible to the derived class CheckingAccount,
but not to the client code accessing an instance of the CheckingAccount class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Creating Class hierarChies

100

aCtIVItY 7-1. IMpLeMeNtING INherItaNCe USING BaSe
aND DerIVeD CLaSSeS

in this activity, you will become familiar with the following:

creating a base class and derived classes that inherit its methods•	

using the protected access modifier to restrict use of base class methods•	

creating an abstract base class•	

Creating a Base Class and Derived Classes

to create the Account class, follow these steps:

1. start Visual studio. select File ➤ Open ➤ project.

2. navigate to the activity7_1starter folder, click the activity7_1.sln file, and then click
Open. When the project opens, it will contain a teller form. You will use this form later to
test the classes you create.

3. in the solution explorer window, right click the project node and select add ➤ Class.

4. in the add new item dialog box, rename the class file as account.cs and click Open. the
account.cs file is added to the project, and the Account class definition code is added to
the file.

5. add the following code to the class definition file to create the private instance variable
(private is the default modifier for instance variables):

int _accountNumber;

6. add the following GetBalance method to the class definition:

public double GetBalance(int accountNumber)
{
 _accountNumber = accountNumber;
 //Data normally retrieved from database.
 if (_accountNumber == 1)
 {
 return 1000;
 }
 else if (_accountNumber == 2)
 {
 return 2000;
 }
 else
 {
 return -1; //Account number is incorrect
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Creating Class hierarChies

101

7. after the Account class, add the following code to create the CheckingAccount and
SavingsAccount derived classes:

class CheckingAccount : Account
{
}
class SavingsAccount : Account
{
}

8. select Build ➤ Build solution. Make sure there are no build errors in the error list
window. if there are, fix them, and then rebuild.

testing the Classes

to test the classes, follow these steps:

1. Open the teller form in the code editor and locate the btnGetBalance click event code.

2. inside the event procedure, prior to the try block, declare and instantiate a variable of
type CheckingAccount called oCheckingAccount, a variable of type SavingsAccount
called oSavingsAccount, and a variable of type Account called oAccount:

CheckingAccount oCheckingAccount = new CheckingAccount();
SavingsAccount oSavingsAccount = new SavingsAccount();
Account oAccount = new Account();

3. Depending on which radio button is selected, call the GetBalance method of the
appropriate object and pass the account number value from the AccountNumber text box.
show the return value in the Balance text box. place the following code in the try block
prior to the catch statement:

if (rdbChecking.Checked)
{
 txtBalance.Text =
 oCheckingAccount.GetBalance(int.Parse(txtAccountNumber.Text)).ToString();
}
else if (rdbSavings.Checked)
{
 txtBalance.Text =
 oSavingsAccount.GetBalance(int.Parse(txtAccountNumber.Text)).ToString();
}
else if (rdbGeneral.Checked)
{
 txtBalance.Text =
 oAccount.GetBalance(int.Parse(txtAccountNumber.Text)).ToString();
}

4. select Build ➤ Build solution. Make sure there are no build errors in the error list
window. if there are, fix them, and then rebuild.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Creating Class hierarChies

102

5. select Debug ➤ start to run the project. enter an account number of 1 and click the get
Balance button for the Checking account type. You should get a balance of 1,000. test the
other account types. You should get the same result, since all classes are using the same
GetBalance function defined in the base class.

6. after testing, close the form, which will stop the debugger.

restricting Use of a Base Class Method to Its Derived Classes

at this point, the GetBalance method of the base class is public, which means that it can be accessed by derived
classes and their clients. let’s alter this so that the GetBalance method can be accessed only by the derived
classes alone, and not by their clients. to protect the GetBalance method in this way, follow these steps:

1. locate the GetBalance method of the Account class.

2. Change the access modifier of the GetBalance method from public to protected.

3. switch to the frmteller code editor and locate the btnGetBalance click event code.

4. hover the cursor over the call to the GetBalance method of the oCheckingAccount
object. You will see a warning stating that it is a protected function and is not accessible
in this context.

5. Comment out the code between the try and the catch statements.

6. switch to the account.cs code editor.

7. add the following code to create the following private instance variable to the
SavingsAccount class definition file:

double _dblBalance;

8. add the following Withdraw method to the SavingsAccount class. this function calls the
protected method of the Account base class:

public double Withdraw(int accountNumber, double amount)
{
 _dblBalance = GetBalance(accountNumber);
 if (_dblBalance >= amount)
 {
 _dblBalance -= amount;
 return _dblBalance;
 }
 else
 {
 Return -1; //Not enough funds
 }
}

9. select Build ➤ Build solution. Make sure there are no build errors in the error list
window. if there are, fix them, and then rebuild.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Creating Class hierarChies

103

testing the protected Base Class Method

to test the Withdraw method, follow these steps:

1. Open the frmteller form in the code editor and locate the btnWithdraw click event code.

2. inside the event procedure, prior to the try block, declare and instantiate a variable of
type SavingsAccount called oSavingsAccount.

SavingsAccount oSavingsAccount = new SavingsAccount();

3. Call the Withdraw method of the oSavingsAccount. pass the account number value from
the AccountNumber text box and the withdrawal amount from the Amount text box. show
the return value in the Balance text box. place the following code in the try block prior
to the catch statement:

txtBalance.Text = oSavingsAccount.Withdraw
(int.Parse(txtAccountNumber.Text),double.Parse(txtAmount.Text)).ToString();

4. select Build ➤ Build solution. Make sure there are no build errors in the error list
window. if there are, fix them and then rebuild.

5. select Debug ➤ start to run the project.

6. test the Withdraw method of the SavingsAccount class by entering an account number
of 1 and a withdrawal amount of 200. Click the Withdraw button. You should get a
resulting balance of 800.

7. enter an account number of 1 and a withdrawal amount of 2000. Click the Withdraw
button. You should get a -1 indicating there are insufficient funds.

8. after testing the Withdraw method, close the form, which will stop the debugger.

restricting Use of all Members of a Base Class to Its Derived Classes

Because the Account base class is public, it can be instantiated by clients of the derived classes. You can alter
this by making the Account base class an abstract class. an abstract class can be accessed only by its derived
classes and can’t be instantiated and accessed by their clients. to create and test the accessibility of the abstract
class, follow these steps:

1. locate the Account class definition in the account.cs code.

2. add the abstract keyword to the class definition code, like so:

abstract class Account

3. select Build ➤ Build solution. You should receive a build error in the error list window.
Find the line of code causing the error.

Account oAccount = new Account();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Creating Class hierarChies

104

4. Comment out the line of code, and select Build ➤ Build solution again. it should now
build without any errors.

5. save and close the project.

Overriding the Methods of a Base Class
When a derived class inherits a method from a base class, it inherits the implementation of that method. As the
designer of the base class, you may want to let a derived class implement the method in its own unique way. This is
known as overriding the base class method.

By default, a derived class can’t override the implementation code of its base class. To allow a base class method
to be overridden, you must include the keyword virtual in the method definition. In the derived class, you define a
method with the same method signature and indicate it is overriding a base class method with the override keyword.
The following code demonstrates the creation of an overridable Deposit method in the Account base class:

public virtual void Deposit(double amount)
{
 //Base class implementation
}

To override the Deposit method in the derived CheckingAccount class, use the following code:

public override void Deposit(double amount)
{
 //Derived class implementation
}

One scenario to watch for is when a derived class inherits from the base class and a second derived class inherits
from the first derived class. When a method overrides a method in the base class, it becomes overridable by default.
To limit an overriding method from being overridden further up the inheritance chain, you must include the sealed
keyword in front of the override keyword in the method definition of the derived class. The following code in the
CheckingAccount class prevents the overriding of the Deposit method if the CheckingAccount class is derived from:

public sealed override void Deposit(double amount)
{
 //Derived class implementation
}

When you indicate that a base class method is overridable, derived classes have the option of overriding
the method or using the implementation provided by the base class. In some cases, you may want to use a base
class method as a template for the derived classes. The base class has no implementation code, but is used to define
the method signatures used in the derived classes. This type of class is referred to as an abstract base class. You define
the class and the methods with the abstract keyword. The following code is used to create an abstract Account base
class with an abstract Deposit method:

public abstract class Account
{
 public abstract void Deposit(double amount);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Creating Class hierarChies

105

Notice that because there is no implementation code defined in the base class for the Deposit method, the body
of the method is omitted.

Calling a Derived Class Method from a Base Class
A situation may arise in which you are calling an overridable method in the base class from another method of the
base class, and the derived class overrides the method of the base class. When a call is made to the base class method
from an instance of the derived class, the base class will call the overridden method of the derived class. The following
code shows an example of this situation. A CheckingAccount base class contains an overridable GetMinBalance
method. The InterestBearingCheckingAccount class, inheriting from the CheckingAccount class, overrides the
GetMinBalance method.

class CheckingAccount
{
 private double _balance = 2000;

 public double Balance
 {
 get { return _balance; }
 }
 public virtual double GetMinBalance()
 {
 return 200;
 }
 public virtual void Withdraw(double amount)
 {
 double minBalance = GetMinBalance();
 if (minBalance < (Balance - amount))
 {
 _balance -= amount;
 }
 else
 {
 throw new Exception("Minimum balance error.");
 }
 }
}
class InterestBearingCheckingAccount : CheckingAccount
{
 public override double GetMinBalance()
 {
 return 1000;
 }
}

A client creates an object instance of the InterestBearingCheckingAccount class and calls the Withdraw
method. In this case, the overridden GetMinimumBalance method of the InterestBearingCheckingAccount class is
executed, and a minimum balance of 1,000 is used.

InterestBearingCheckingAccount oAccount = new InterestBearingCheckingAccount();
oAccount.Withdraw(500);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Creating Class hierarChies

106

When the call was made to the Withdraw method, you could have prefaced it with the this qualifier:

double minBalance = this.GetMinBalance();

Because the this qualifier is the default qualifier if none is used, the code would execute the same way as
previously demonstrated. The most derived class implementation (that has been instantiated) of the method
is executed. In other words, if a client instantiates an instance of the InterestBearingCheckingAccount class,
as was demonstrated previously, the base class’s call to GetMinimumBalance is made to the derived class’s
implementation. On the other hand, if a client creates an instance of the CheckingAccount class, the base class’s call to
GetMinimumBalance is made to its own implementation.

Calling a Base Class Method from a Derived Class
In some cases, you may want to develop a derived class method that still uses the implementation code in the base
class but also augments it with its own implementation code. In this case, you create an overriding method in the
derived class and call the code in the base class using the base qualifier. The following code demonstrates the use of
the base qualifier:

public override void Deposit(double amount)
{
 base.Deposit(amount);
 //Derived class implementation.
}

Overloading Methods of a Base Class
Methods inherited by the derived class can be overloaded. The method signature of the overloaded class must use
the same name as the overloaded method, but the parameter lists must differ. This is the same as when you overload
methods of the same class. The following code demonstrates the overloading of a derived method:

class CheckingAccount
{
 public void Withdraw(double amount)
 {
 }
}
class InterestBearingCheckingAccount : CheckingAccount
{
 public void Withdraw(double amount, double minBalance)
 {
 }
}

Client code instantiating an instance of the InterestBearingCheckingAccount has access to both
Withdraw methods.

InterestBearingCheckingAccount oAccount = new InterestBearingCheckingAccount();
oAccount.Withdraw(500);
oAccount.Withdraw(500, 200);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Creating Class hierarChies

107

Hiding Base Class Methods
If a method in a derived class has the same method signature as that of the base class method, but it is not marked
with the override keyword, it effectively hides the method of the base class. Although this may be the intended
behavior, sometimes it can occur inadvertently. Although the code will still compile, the IDE will issue a warning
asking if this is the intended behavior. If you intend to hide a base class method, you should explicitly use the new
keyword in the definition of the method of the derived class. Using the new keyword will indicate to the IDE this is the
intended behavior and dismiss the warning. The following code demonstrates hiding a base class method:

class CheckingAccount
{
 public virtual void Withdraw(double amount)
 {
 }
}

class InterestBearingCheckingAccount : CheckingAccount
{
 public new void Withdraw(double amount)
 {
 }
 public void Withdraw(double amount, double minBalance)
 {
 }
}

aCtIVItY 7-2. OVerrIDING BaSe CLaSS MethODS

in this activity, you will become familiar with the following:

overriding methods of a base class•	

using the base qualifier in a derived class•	

Overriding Base Class Methods

to override the Account class, follow these steps:

1. start Vs. select File ➤ Open ➤ project.

2. navigate to the activity7_2starter folder, click the activity7_2.sln file, and then click
Open. When the project opens, it will contain a teller form. You will use this form later to
test the classes you will create. the project also contains a BankClasses.cs file. this file
contains code for the Account base class and the derived classes SavingsAccount and
CheckingAccount.

3. examine the Withdraw method defined in the base class Account. this method checks
to see whether there are sufficient funds in the account and, if there are, updates the
balance. You will override this method in the CheckingAccount class to ensure that a
minimum balance is maintained.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Creating Class hierarChies

108

4. Change the Withdraw method definition in the Account class to indicate it is overridable,
like so:

public virtual double Withdraw(double amount)

5. add the following GetMinimumBalance method to the CheckingAccount class definition:

public double GetMinimumBalance()
{
 return 200;
}

6. add the following overriding Withdraw method to the CheckingAccount class definition.
this method adds a check to see that the minimum balance is maintained after a
withdrawal.

public override double Withdraw(double amount)
{
 if (Balance >= amount + GetMinimumBalance())
 {
 _balance -= amount;
 return Balance;
 }
 else
 {

 return -1; //Not enough funds
 }
}

7. select Build ➤ Build solution. Make sure there are no build errors in the error list
window. if there are, fix them and then rebuild.

testing the Overwritten Methods

to test the modified Withdraw methods you have created, follow these steps:

1. Open the frmteller form in the code editor and locate the btnWithdraw click event code.

2. Depending on which radio button is selected, call the Withdraw method of the
appropriate object and pass the value of the txtAmount text box. add the following code
in the try block to show the return value in the txtBalance text box:

if (rdbChecking.Checked)
{
 oCheckingAccount.AccountNumber = int.Parse(txtAccountNumber.Text);
 txtB alance.Text =

oCheckingAccount.Withdraw(double.Parse(txtAmount.Text)).ToString();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Creating Class hierarChies

109

else if (rdbSavings.Checked)
{
 oSavingsAccount.AccountNumber = int.Parse(txtAccountNumber.Text);
 txtB alance.Text =

oSavingsAccount.Withdraw(double.Parse(txtAmount.Text)).ToString();
}

3. select Build ➤ Build solution. Make sure there are no build errors in the error list
window. if there are, fix them, and then rebuild.

4. select Debug ➤ start to run the project.

5. enter an account number of 1, choose the Checking option button, and click the get
Balance button.You should get a balance of 1000.

6. enter a withdrawal amount of 200 and click the Withdraw button. You should get a
resulting balance of 800.

7. enter a withdrawal amount of 700 and click the Withdraw button. You should get
a -1 (indicating insufficient funds) because the resulting balance would be less than
the minimum balance of 200.

8. enter an account number of 1, choose the savings option button, and click the get
Balance button. You should get a balance of 1000.

9. enter a withdrawal amount of 600 and click the Withdraw button. You should get
a resulting balance of 400.

10. enter a withdrawal amount of 400 and click the Withdraw button. You should get a
resulting balance of 0 because there is no minimum balance for the savings account that
uses the Account base class’s Withdraw method.

11. after testing, close the form, which will stop the debugger.

Using the Base Qualifier to Call a Base Class Method

at this point, the Withdraw method of the CheckingAccount class overrides the Account class’s Withdraw
method. none of the code in the base class’s method is executed. You will now alter the code so that when
the CheckingAccount class’s code is executed, it also executes the base class’s Withdraw method. Follow
these steps:

1. locate the Withdraw method of the Account class.

2. Change the implementation code so that it decrements the balance by the amount
passed to it.

public virtual double Withdraw(double amount)
{
 _balance -= amount;
 return Balance;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Creating Class hierarChies

110

3. Change the Withdraw method of the CheckingAccount class so that after it checks for
sufficient funds, it calls the Withdraw method of the Account base class.

public override double Withdraw(double amount)
{
 if (Balance > = amount + GetMinimumBalance())
 {
 return base.Withdraw(amount);
 }
 else
 {
 return -1; //Not enough funds.
 }
}

4. add a Withdraw method to the SavingsAccount class that is similar to the Withdraw
method of the CheckingAccount class, but does not check for a minimum balance.

public override double Withdraw(double amount)
{
 if (Balance > = amount)
 {
 return base.Withdraw(amount);
 }
 else
 {
 return -1; //Not enough funds.
 }
}

5. select Build ➤ Build solution. Make sure there are no build errors in the error list
window. if there are, fix them, and then rebuild.

testing the Use of the Base Modifier

to test the Withdraw method, follow these steps:

1. select Debug ➤ start.

2. enter an account number of 1, choose the Checking option button, and click the get
Balance button. You should get a balance of 1000.

3. enter a withdrawal amount of 600 and click the Withdraw button. You should get a
resulting balance of 400.

4. enter a withdrawal amount of 300 and click the Withdraw button. You should get a -1
(insufficient funds) because the resulting balance would be less than the 200 minimum.

5. enter an account number of 1, choose the savings option button, and click the get
Balance button. You should get a balance of 1000.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Creating Class hierarChies

111

6. enter a withdrawal amount of 600 and click the Withdraw button. You should get a
resulting balance of 400.

7. enter a withdrawal amount of 300 and click the Withdraw button. You should get a
resulting balance of 100, because there is no minimum balance for the savings account
that uses the Account base class’s Withdraw method.

8. after testing, close the form, which will stop the debugger.

Implementing Interfaces
As you saw earlier, you can create an abstract base class that does not contain any implementation code but defines
the method signatures that must be used by any class that inherits from the base class. When you use an abstract class,
classes that derive from it must implement its inherited methods. You could use another technique to accomplish
a similar result. In this case, instead of defining an abstract class, you define an interface that defines the method
signatures.

Classes that implement an interface are contractually required to implement the interface signature definition
and can’t alter it. This technique is useful to ensure that client code using the classes knows which methods are
available, how they should be called, and the return values to expect. The following code shows how to declare an
interface definition:

public interface IAccount
{
 string GetAccountInfo(int accountNumber);
}

A class implements the interface by using a semicolon followed by the name of the interface after the class name.
When a class implements an interface, it must provide implementation code for all methods defined by the interface.
The following code demonstrates how a CheckingAccount implements the IAccount interface:

public class CheckingAccount : IAccount
{
 public string GetAccountInfo(int accountNumber)
 {
 return "Printing checking account info";
 }
}

Because implementing an interface and inheriting from an abstract base class are similar, you might ask why
you should bother using an interface. One advantage of using interfaces is that a class can implement multiple
interfaces. The .NET Framework does not support inheritance from more than one class. As a workaround to multiple
inheritance, the ability to implement multiple interfaces is included. Interfaces are also useful to enforce common
functionality across disparate types of classes.

Understanding Polymorphism
Polymorphism is the ability of derived classes inheriting from the same base class to respond to the same method call
in their own unique way. This simplifies client code because the client code does not need to worry about which class
type it is referencing, as long as the class types implement the same method interfaces.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Creating Class hierarChies

112

For example, suppose you want all account classes in a banking application to contain a GetAccountInfo
method with the same interface definition but different implementations based on account type. Client code could
loop through a collection of account-type classes, and the compiler would determine at runtime which specific
account-type implementation needs to be executed. If you later added a new account type that implements the
GetAccountInfo method, you would not need to alter existing client code.

You can achieve polymorphism either by using inheritance or by implementing interfaces. The following code
demonstrates the use of inheritance. First, you define the base and derived classes.

public abstract class Account
{
 public abstract string GetAccountInfo();
}

public class CheckingAccount : Account
{
 public override string GetAccountInfo()
 {
 return "Printing checking account info";
 }
}
public class SavingsAccount : Account
{
 public override string GetAccountInfo()
 {
 return "Printing savings account info";
 }
}

You then create a list of type Account and add a CheckingAccount and a SavingsAccount.

List <Account> AccountList = new List <Account> ();
CheckingAccount oCheckingAccount = new CheckingAccount();
SavingsAccount oSavingsAccount = new SavingsAccount();
AccountList.Add(oCheckingAccount);
AccountList.Add(oSavingsAccount);

You then loop through the List and call the GetAccountInfo method of each Account. Each Account type will
implement its own implementation of the GetAccountInfo.

foreach (Account a in AccountList)
{
 MessageBox.Show(a.GetAccountInfo());
}

You can also achieve a similar result by using interfaces. Instead of inheriting from the base class Account,
you define and implement an IAccount interface.

public interface IAccount
 {
 string GetAccountInfo();
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Creating Class hierarChies

113

public class CheckingAccount : IAccount
{
 public string GetAccountInfo()
 {
 return "Printing checking account info";
 }
}
public class SavingsAccount : IAccount
{
 public string GetAccountInfo()
 {
 return "Printing savings account info";
 }
}

You then create a list of type IAccount and add a CheckingAccount and a SavingsAccount.

List<IAccount>AccountList = new List<IAccount>();
CheckingAccount oCheckingAccount = new CheckingAccount();
SavingsAccount oSavingsAccount = new SavingsAccount();
AccountList.Add(oCheckingAccount);
AccountList.Add(oSavingsAccount);

You then loop through the AccountList and call the GetAccountInfo method of each Account. Each Account
type will implement its own implementation of the GetAccountInfo.

foreach (IAccount a in AccountList)
{
 MessageBox.Show(a.GetAccountInfo());
}

aCtIVItY 7-3. IMpLeMeNtING pOLYMOrphISM

in this activity, you will become familiar with the following:

creating polymorphism through inheritance•	

creating polymorphism through interfaces•	

Implementing polymorphism Using Inheritance

to implement polymorphism using inheritance, follow these steps:

1. start Visual studio. select File ➤ new ➤ project.

2. select the Console application template under the C# templates. name the project
activity7_3.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Creating Class hierarChies

114

3. the project includes a program.cs file. this file contains a Main method that launches
a Windows Console application. right click the project node in the solution explorer
Window and select add ➤ class. name the file account.cs.

4. in the account.cs file alter the code to create an abstract base Account class. include
an accountNumber property and an abstract method GetAccountInfo that takes no
parameters and returns a string.

public abstract class Account
{
 private int _accountNumber;

 public int AccountNumber
 {
 get { return _accountNumber; }
 set { _accountNumber = value; }
 }

 public abstract string GetAccountInfo();
}

5. add the following code to create two derived classes: CheckingAccount and SavingsAccount.
these classes will override the GetAccountInfo method of the base class.

public class CheckingAccount : Account
{
 public override string GetAccountInfo()
 {
 return "Printing checking account info for account number "
 + AccountNumber.ToString();
 }
}
public class SavingsAccount : Account
 {
 public override string GetAccountInfo()
 {
 return "Printing savings account info for account number "
 + AccountNumber.ToString();
 }
}

6. select Build ➤ Build solution. Make sure there are no build errors in the error list
window. if there are, fix them, and then rebuild.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Creating Class hierarChies

115

testing the polymorphic Inheritance Method

to test the polymorphic method, follow these steps:

1. Open the program.cs file in the code editor and locate the Main method.

2. Create an instance of a list of account types.

List <Account> AccountList = new List <Account> ();

3. Create instances of CheckingAccount and SavingsAccount.

CheckingAccount oCheckingAccount = new CheckingAccount();
oCheckingAccount.AccountNumber = 100;
SavingsAccount oSavingsAccount = new SavingsAccount();
oSavingsAccount.AccountNumber = 200;

4. add the oCheckingAccount and oSavingsAccount to the list using the Add method of
the list.

AccountList.Add(oCheckingAccount);
AccountList.Add(oSavingsAccount);

5. loop through the list and call the GetAccountInfo method of each account type in the
list and show the results in a console window.

foreach (Account a in AccountList)
{
 Console.WriteLine(a.GetAccountInfo());
}
Console.ReadLine();

6. select Build ➤ Build solution. Make sure there are no build errors in the error list
window. if there are, fix them, and then rebuild.

7. select Debug ➤ start to run the project. You should see a console window with the return
string for the GetAccountInfo method of each object in the list.

8. after testing the polymorphism, hit the enter key to close the console window, which will
stop the debugger.

Implementing polymorphism Using an Interface

to implement polymorphism using an interface, follow these steps:

1. View the code for the account.cs file in the code editor.

2. Comment out the code for the Account, CheckingAccount, and SavingsAccount classes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Creating Class hierarChies

116

3. Define an interface IAccount that contains the GetAccountInfo method.

public interface IAccount
{
 string GetAccountInfo();
}

4. add the following code to create two classes: CheckingAccount and SavingsAccount.
these classes will implement the IAccount interface.

public class CheckingAccount : IAccount
{
 private int _accountNumber;
 public int AccountNumber
 {
 get { return _accountNumber; }
 set { _accountNumber = value; }
 }
 public string GetAccountInfo()
 {
 return "Printing checking account info for account number "
 + AccountNumber.ToString();
 }
}
public class SavingsAccount : IAccount
{
 private int _accountNumber;
 public int AccountNumber
 {
 get { return _accountNumber; }
 set { _accountNumber = value; }
 }
 public string GetAccountInfo()
 {
 return "Printing savings account info for account number "
 + AccountNumber.ToString();
 }
}

5. select Build ➤ Build solution. Make sure there are no build errors in the error list
window. if there are, fix them, and then rebuild.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Creating Class hierarChies

117

testing the polymorphic Interface Method

to test the polymorphic method, follow these steps:

1. Open the program.cs file in the code editor and locate the Main method.

2. Change the code to create an instance of a list of IAccount types.

List <IAccount>AccountList = new List <IAccount> ();

3. Change the code for each loop to loop through the list and call the GetAccountInfo
method of each IAccount type in the list.

foreach (IAccount a in AccountList)
{
 Console.WriteLine(a.GetAccountInfo());
}
Console.ReadLine();

4. select Build ➤ Build solution. Make sure there are no build errors in the error list
window. if there are, fix them, and then rebuild.

5. select Debug ➤ start to run the project. You should see a console window with the return
string for the GetAccountInfo method of each object in the list.

6. after testing the polymorphism, hit the enter key to close the console window, which will
stop the debugger.

Summary
This chapter introduced you to two of OOP’s most powerful features: inheritance and polymorphism. Knowing how
to implement these features is fundamental to becoming a successful object-oriented programmer, regardless of the
language you use.

In Chapter 8, you will take a closer look at how the objects in your applications collaborate. The topics covered
include how objects pass messages to one another, how events drive your programs, how data is shared among
instances of a class, and how exceptions are handled.

www.it-ebooks.info

http://www.it-ebooks.info/

119

Chapter 8

Implementing Object Collaboration

In Chapter 7, you learned how to create and use class hierarchies in C#. That chapter also introduced the concepts
of inheritance, polymorphism, and interfaces. In this chapter, you’ll learn how to get the objects of an application to
work together to perform tasks. You will see how objects communicate through messaging and how events initiate
application processing. You’ll also learn how the objects respond and communicate exceptions that may occur as they
carry out their assigned tasks.

After reading this chapter, you should be familiar with the following:

the process of object communication through messaging•	

the different types of messaging that can occur•	

how to use delegation in C# applications•	

how objects can respond to events and publish their own events•	

the process of issuing and responding to exceptions•	

how to create shared data and procedures among several instances of the same class•	

how to issue message calls asynchronously•	

Communicating Through Messaging
One of the advantages of OOP is that many aspects of it mimic the real world. Previously, you saw how you can use
the analogy of employees in a company representing instances of an Employee class. We can extend this analogy to
how instances of classes (objects) interact in an application. For example, in large companies, the employees perform
specialized functions. One person is in charge of accounts payable processing, and another is responsible for the
accounts receivable operations. When an employee needs to request a service—paid time off (PTO), for example—the
employee sends a message to her manager. We can think of this interaction as a service request between the requester
(employee) and a service provider (manager). This request can involve just a single object (a self-serviced request),
two objects, or it can be a complex chain of requester/service provider requests. For example, the employee requests
the PTO from her manager, who, in turn, checks with the human resources (HR) department to see if the employee
has enough accumulated time. In this case, the manager is both a service provider to the employee and a service
requester to the HR department.

Defining Method Signatures
When a message passes between a requester and a service provider, the requester may or may not expect a response.
For example, when an employee requests PTO, she expects a response indicating approval or denial. However,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ ImplementIng ObjeCt COllabOratIOn

120

when the accounting department issues paychecks, the staff members do not expect everyone in the company to issue
a response e-mail thanking them!

A common requirement when a message is issued is to include the information necessary to carry out the
request. When an employee requests PTO, her manager expects her to provide him with the dates off she is
requesting. In OOP terminology, you refer to the name of the method (requested service) and the input parameters
(requester-supplied information) as the method signature.

The following code demonstrates how methods are defined in C#. The access modifier is first followed by the
return type (void is used if no return value is returned) and then the name of the method. Parameter types and names
are listed in parenthesis separated by commas. The body of the method is contained in opening and closing
curly brackets.

public int AddEmployee(string firstName,string lastName)
{
 //Code to save data to database
}
public void LogMessage(string message)
{
 //Code to write to log file.
}

Passing Parameters
When you define a method in the class, you also must indicate how the parameters are passed. Parameters may be
passed by value or by reference.

If you choose to pass the parameters by value, a copy of the parameter data is passed from the calling routine to
the requested method. The requested method works with the copy and, if changes are made to the data, the requested
method must pass the copy back to the calling routine so that the caller can choose to discard the changes or replicate
them. Returning to the company analogy, think about the process of updating your employee file. The HR department
does not give you direct access to the file; instead, it sends you a copy of the values in the file. You make changes to the
copy, and then you send it back to the HR department. The HR department then decides whether to replicate these
changes to the actual employee file. In C#, passing parameters by value is the default, so no keyword is used. In the
following method, the parameter is passed by value:

public int AddEmployee(string firstName)
{
 //Code to save data to database
}

Another way you can pass parameters is by reference. In this case, the requesting code does not pass in a copy of
the data, but instead passes a reference to where the data is located. Using the previous example, instead of sending
you a copy of the data in your employee file when you want to make updates, the HR department informs you where
the file is located, and tells you to go to it to make the changes. In this case, clearly, it would be better to pass the
parameters by reference. In C# code, when passing parameters by reference, the ref keyword is used. The following
code shows how to define the method to pass values by reference:

public int AddEmployee(ref string firstName)
{
 //Code to save data to database
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ ImplementIng ObjeCt COllabOratIOn

121

When applications are designed as components that communicate across processing boundaries, and that are
even hosted on different computers, it is advantageous to pass parameters by value instead of by reference. Passing
parameters by reference can cause increased overhead, because when the service-providing object must work with
parameter information, it needs to make calls across the processing boundaries and the network. A single processing
request can result in many calls back and forth between the requester and the server provider. Passing values by
reference can also cause problems when maintaining data integrity. The requester is opening a channel for the data to
be manipulated without the server’s knowledge or control.

On the other hand, passing values by reference may be the better choice when the calling code and the requested
method are in the same processing space (they occupy the same “cubicle,” so to speak) and have a clearly established
trust relationship. In this situation, allowing direct access to the memory storage location and passing the parameters
by reference may offer a performance advantage over passing the parameters by value.

The other situation in which passing parameters by reference may be advantageous is if the object is a complex
data type, such as another object. In this case, the overhead of copying the data structure and passing it across process
and network boundaries outweighs the overhead of making repeated calls across the network.

Note ■ the .net Framework addresses the problem of complex data types by allowing you to efficiently copy and
pass those types by serializing and deserializing them in an Xml structure.

Understanding Event-Driven Programming
So far, you have been looking at messaging between the objects in which a direct request initiates the message
interaction. If you think about how you interact with objects in real life, you often receive messages in response to
an event that has occurred. To continue the office analogy, for example, when the sandwich vendor comes into the
building, a message is issued over the intercom informing employees that the lunch truck has arrived. This type of
messaging is referred to as broadcast messaging. A message is issued, and the receiver decides whether to ignore or
respond to the message.

Another way this event message could be issued is by the receptionist sending an e-mail to a list of employees
who are interested in knowing when the sandwich vendor shows up. In this case, the interested employees
would subscribe with the receptionist to receive the event message. This type of messaging is often referred to as
subscription-based messaging.

Applications built with the .NET Framework are object-oriented, event-driven programs. If you trace the
request/service provider processing chains that occur in your applications, you can identify the event that kicked off
the processing. In the case of Windows applications, the user interacting with a GUI usually initiates the event. For
example, a user might initiate the process of saving data to a database by clicking a button. Classes in applications
can also initiate events. A security class could broadcast an event message when an invalid login is detected. You can
also subscribe to external events. You could create a Web service that would issue an event notification when a change
occurs in a stock that you are tracking in the stock market. You could write an application that subscribes to the
service and responds to the event notification.

Understanding Delegation
In order to implement event-based programming in C#, you must first understand delegation. Delegation is when you
request a service by making a method call to a service provider. The service provider then reroutes this service request
to another method, which services the request. The delegate class can examine the service request and dynamically
determines at runtime where to route the request. Returning to the company analogy, when a manager receives a
service request, she often delegates it to a member of her department. (In fact, many would argue that a common trait
among successful managers is the ability to know when and how to delegate responsibilities.)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ ImplementIng ObjeCt COllabOratIOn

122

When you create a delegated method, you first define the delegated method’s signature. Because the delegated
method does not actually service the request, it does not contain any implementation code. The following code shows
a delegated method used to compare integer values:

public delegate Boolean CompareInt(int I1, int I2);

Once the delegated method’s signature is defined, you can then create the methods to which to delegate. These
methods must have the same parameters and return types as the delegated method. The following code shows two
methods to which the delegated method will delegate:

private Boolean AscendOrder(int I1, int I2)
{
 if (I1 < I2)
 { return true;}
 else
 { return false; }
}
private Boolean DescendOrder(int I1, int I2)
{
 if (I1 > I2)
 { return true; }
 else
 { return false; }
}

Once the delegate and its delegating methods have been defined, you are ready to use the delegate. The following
code shows a portion of a sorting routine that determines which delegated method to call depending on a SortType
passed in as a parameter:

public void SortIntegers(SortType sortDirection, int[] intArray)
{
 CompareInt CheckOrder;
 if (sortDirection == SortType.Ascending)
 { CheckOrder = new CompareInt(AscendOrder); }
 else
 { CheckOrder = new CompareInt(DescendOrder); }
 // Code continues ...
}

Implementing Events
In C#, when you want to issue event messages, first you declare a delegate type for the event. The delegate type defines
the set of arguments that will be passed to the method that handles the event.

public delegate void DataUpdateEventHandler(string msg);

Once the delegate is declared, an event of the delegate type is declared.

public event DataUpdateEventHandler DataUpdate;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ ImplementIng ObjeCt COllabOratIOn

123

When you want to raise the event, you call the event passing in the appropriate arguments.

public void SaveInfo()
{
 try
 {
 DataUpdate("Data has been updated");
 }
 catch
 {
 DataUpdate("Data could not be updated");
 }
}

Responding To Events
To consume an event in client code, an event handling method is declared that executes program logic in response to
the event. This event handler must have the same method signature as the event delegate declared in the class issuing
the event.

void odata_DataUpdate(string msg)
{
 MessageBox.Show(msg);
}

This event handler is registered with the event source using the += operator. This process is referred to as event
wiring. The following code wires up the event handler for the DataUpdate event declared previously:

Data odata = new Data();
odata.DataUpdate += new DataUpdateEventHandler(odata_DataUpdate);
odata.SaveInfo();

Windows Control Event Handling
Windows Forms also implement event handlers by using the += operator to wire up the event handler to the event.
The following code wires up a button to a click event and a textbox to a mouse down event:

this.button1.Click += new System.EventHandler(this.button1_Click);
this.textBox1.MouseDown += new System.Windows.Forms.MouseEventHandler(this.textBox1_MouseDown);

The event handler methods for control events take two parameters: the first parameter, sender, provides a
reference to the object that raised the event. The second parameter passes an object containing information specific
to the event that is being handled. The following code shows an event handler method for a button click event and an
event handler for the textbox mouse down event. Notice how e is used to determine if the left button was clicked.

private void button1_Click(object sender, EventArgs e)
{

}
private void textBox1_MouseDown(object sender, MouseEventArgs e)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ ImplementIng ObjeCt COllabOratIOn

124

{
 if (e.Button == System.Windows.Forms.MouseButtons.Left)
 {
 //code goes here.
 }
}

aCtIVItY 8-1. ISSUING aND reSpONDING tO eVeNt MeSSaGeS

In this activity, you will learn to do the following:

create and raise events from a server class•	

handle events from client classes•	

handle gUI events•	

adding and raising event Messaging in the Class Definition

to add and raise event messaging in a class definition file, follow these steps:

1. Start Visual Studio. Select File ➤ new ➤ project.

2. Choose a Windows Forms application project. name the project activity8_1.

3. a default form is included in the project. add controls to the form and change the property
values, as listed in table 8-1. Your completed form should look similar to Figure 8-1.

Table 8-1. Login Form and Control Properties

Object Property Value

Form1 Name frmLogin

Text Login

Label1 Name lblName

Text Name:

Label2 Name lblPassword

Text Password:

Textbox1 Name txtName

Text (empty)

Textbox2 Name txtPassword

Text (empty)

PasswordChar *

Button1 Name btnLogin

Text Login

Button2 Name btnClose

Text Close

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ ImplementIng ObjeCt COllabOratIOn

125

4. Select project ➤ add Class. name the class Employee. Open the Employee class code in
the code editor.

5. above the class declaration, add the following line of code to define the login event
handler delegate. You will use this event to track employee logins to your application.

public delegate void LoginEventHandler(string loginName, Boolean status);

6. Inside the class declaration, add the following line of code to define the LoginEvent as
the delegate type:

public event LoginEventHandler LoginEvent;

7. add the following Login method to the class, which will raise the LoginEvent:

public void Login(string loginName, string password)
{
 //Data normally retrieved from database.
 if (loginName == "Smith" && password == "js")
 {
 LoginEvent(loginName, true);
 }
 else
 {
 LoginEvent(loginName, false);
 }
}

8. Select build ➤ build Solution. make sure there are no build errors in the error list
window. If there are, fix them, and then rebuild.

receiving events in the Client Class

to receive events in the client class, follow these steps:

1. Open frmlogin in the design window.

2. Double-click the login button to view the login button click event handler.

Figure 8-1. The completed login form

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ ImplementIng ObjeCt COllabOratIOn

126

3. add the following code to wire up the Employee class’s LoginEvent with an event
handler in the form class:

private void btnLogin_Click(object sender, EventArgs e)
{
 Employee oEmployee = new Employee();
 oEmployee.LoginEvent += new LoginEventHandler(oEmployee_LoginEvent);
 oEmployee.Login(txtName.Text, txtPassword.Text);
}

4. add the following event handler method to the form that gets called when the Employee
class issues a LoginEvent:

void oEmployee_LoginEvent(string loginName, bool status)
{
 MessageBox.Show("Login status :" + status);
}

5. Select build ➤ build Solution. make sure there are no build errors in the error list
window. If there are, fix them, and then rebuild.

6. Select Debug ➤ Start to run the project.

7. to test to make sure the Login event is raised, enter a login name of Smith and a
password of js. this should trigger a login status of true.

8. after testing the login event, close the form, which will stop the debugger.

handling Multiple events with One Method

to handle multiple events with one method, follow these steps:

1. Open frmlogin in the form designer by right-clicking the frmlogin node in the Solution
explorer and choosing View Designer.

2. From the toolbox, add a menuStrip control to the form. Click where it says “type here”
and enter File for the top-level menu and exit for its submenu, as shown in Figure 8-2.

Figure 8-2. Adding the MenuStrip control

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ ImplementIng ObjeCt COllabOratIOn

127

3. add the following method to handle the click event of the menu and the Close button:

private void FormClose(object sender, EventArgs e)
{
 this.Close();
}

4. Open frmlogin in the designer window. In the properties window, select the
exittoolStripmenuItem. Select the event button (lightning bolt) at the top of the properties
window to show the events of the control. In the click event drop-down, select the
FormClose method (see Figure 8-3).

Figure 8-3. Wiring up an event handler

5. repeat step 4 to wire up the btnClose button click event to the FormClose method.

6. expand the Form1.cs node in the Solution window. right click on the Form1.Designer.cs
node and select View Code.

7. In the code editor, expand the Windows Form Designer generated code region. Search
for the code listed below. this code was generated by the form designer to wire up the
events to the FormClose method.

this.btnClose.Click += new System.EventHandler(this.FormClose);
this.exitToolStripMenuItem.Click += new System.EventHandler(this.FormClose);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ ImplementIng ObjeCt COllabOratIOn

128

8. Select build ➤ build Solution. make sure there are no build errors in the error list
window. If there are, fix them, and then rebuild.

9. Select Debug ➤ Start to run the project. test the exit menu and the Close button.

10. after testing, save the project, and then exit Visual Studio.

Handling Exceptions in the .NET Framework
When objects collaborate, things can go wrong. Exceptions are things that you do not expect to occur during normal
processing. For example, you may be trying to save data to a database over the network when the connection fails, or
you may be trying to save to a drive without a disk in the drive. Your applications should be able to gracefully handle
any exceptions that occur during application processing.

The .NET Framework uses a structured exception handling mechanism. The following are some of the benefits of
this structured exception handling:

common support and structure across all .NET languages•	

support for the creation of protected blocks of code•	

the ability to filter exceptions to create efficient robust error handling•	

support of termination handlers to guarantee that cleanup tasks are completed, regardless of •	
any exceptions that may be encountered

The .NET Framework also provides an extensive number of exception classes used to handle common exceptions
that might occur. For example, the FileNotFoundException class encapsulates information such as the file name,
error message, and the source for an exception that is thrown when there is an attempt to access a file that does not
exist. In addition, the .NET Framework allows the creation of application-specific exception classes you can write to
handle common exceptions that are unique to your application.

Using the Try-Catch Block
When creating code that could end up causing an exception, you should place it in a try block. Code placed inside
the try block is considered protected. If an exception occurs while the protected code is executing, code processing
is transferred to the catch block, where it is handled. The following code shows a method of a class that tries to read
from a file that does not exist. When the exception is thrown, it is caught in the catch block.

public string ReadText(string filePath)
{
 StreamReader sr;
 try
 {
 sr = File.OpenText(filePath);
 string fileText = sr.ReadToEnd();
 sr.Close();
 return fileText;
 }
 catch(Exception ex)
 {
 return ex.Message;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ ImplementIng ObjeCt COllabOratIOn

129

All try blocks require at least one nested catch block. You can use the catch block to catch all exceptions that
may occur in the try block, or you can use it to filter exceptions based on the type of exception. This enables you to
dynamically respond to different exceptions based on the exception type. The following code demonstrates filtering
exceptions based on the different exceptions that could occur when trying to read a text file from disk:

public string ReadText(string filePath)
{
 StreamReader sr;
 try
 {
 sr = File.OpenText(filePath);
 string fileText = sr.ReadToEnd();
 sr.Close();
 return fileText;
 }
 catch (DirectoryNotFoundException ex)
 {
 return ex.Message;
 }
 catch (FileNotFoundException ex)
 {
 return ex.Message;
 }
 catch(Exception ex)
 {
 return ex.Message;
 }
}

Adding a Finally Block
Additionally, you can nest a finally block at the end of the try block. Unlike the catch block, the use of the finally
block is optional. The finally block is for any cleanup code that needs to occur, even if an exception is encountered.
For example, you may need to close a database connection or release a file. When the code of the try block is
executed and an exception occurs, processing will evaluate each catch block until it finds the appropriate catch
condition. After the catch block executes, the finally block will execute. If the try block executes and no exception is
encountered, the catch blocks don’t execute, but the finally block will still get processed. The following code shows
a finally block being used to close and dispose a StreamReader:

public string ReadText(string filePath)
{
 StreamReader sr = null;
 try
 {
 sr = File.OpenText(filePath);
 string fileText = sr.ReadToEnd();
 return fileText;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ ImplementIng ObjeCt COllabOratIOn

130

 catch (DirectoryNotFoundException ex)
 {
 return ex.Message;
 }
 catch (FileNotFoundException ex)
 {
 return ex.Message;
 }
 catch (Exception ex)
 {
 return ex.Message;
 }
 finally
 {
 if (sr != null)
 {
 sr.Close();
 sr.Dispose();
 }
 }
}

Throwing Exceptions
During code execution, when an inappropriate call is made, for example, a parameter to a method has an invalid
value or an parameter passed to a method causes an exception, you can throw an exception to inform the calling
code of the violation. In the following code, if the orderDate parameter is greater than the current date, an
ArgumentOutOfRangeException is thrown back to the calling code informing them of the violation.

if (orderDate > DateTime.Now)
{
 throw new ArgumentOutOfRangeException ("Order date can not be in the future.");
}
//Processing code...

Note ■ If you cannot find an appropriate predefined exception class in the .net Framework, you can create a custom
exception class that derives from the System.Exception class.

Nesting Exception Handling
In some cases, you may be able to correct an exception that occurred and continue processing the rest of the code in
the try block. For example, a division-by-zero error may occur, and it would be acceptable to assign the result a value
of zero and continue processing. In this case, a try-catch block could be nested around the line of code that would

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ ImplementIng ObjeCt COllabOratIOn

131

cause the exception. After the exception is handled, processing would return to the line of code in the outer try-catch
block immediately after the nested try block. The following code demonstrates nesting one try block within another:

try
{
 try
 {
 Y = X1 / X2;
 }
 catch (DivideByZeroException ex)
 {
 Y = 0;
 }
 //Rest of processing code.
}
catch (Exception ex)
{
 //Outer exception processing
}

Note ■ For more information about handling exceptions and the .net Framework exception classes, refer to appendix b.

Static Properties and Methods
When you declare an object instance of a class, the object instantiates its own instances of the properties and methods
of the class it implements. For example, if you were to write a counting routine that increments a counter, then
instantiated two object instances of the class, the counters of each object would be independent of each other; when
you incremented one counter, the other would not be affected. Normally, this object independence is the behavior
you want. However, sometimes you may want different object instances of a class to access the same, shared variables.
For example, you might want to build in a counter that logs how many of the object instances have been instantiated.
In this case, you would create a static property value in the class definition. The following code demonstrates how you
create a static TaxRate property in a class definition:

public class AccountingUtilities
{
 private static double _taxRate = 0.06;

 public static double TaxRate
 {
 get { return _taxRate; }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ ImplementIng ObjeCt COllabOratIOn

132

To access the static property, you don’t create an object instance of the class; instead, you refer to the class
directly. The following code shows a client accessing the static TaxRate property defined previously:

public class Purchase
{
 public double CalculateTax(double purchasePrice)
 {
 return purchasePrice * AccountingUtilities.TaxRate;
 }
}

Static methods are useful if you have utility functions that clients need to access, but you don’t want the
overhead of creating an object instance of a class to gain access to the method. Note that static methods can access
only static properties. The following code shows a static method used to count the number of users currently logged
in to an application:

public class UserLog
{
 private static int _userCount;
 public static void IncrementUserCount()
 {
 _userCount += 1;
 }
 public static void DecrementUserCount()
 {
 _userCount -= 1;
 }
}

When client code accesses a static method, it does so by referencing the class directly. The following code
demonstrates accessing the static method defined previously:

public class User
{
 //other code ...
 public void Login(string userName, string password)
 {
 //code to check credentials
 //if successful
 UserLog.IncrementUserCount();
 }
}

Although you may not use static properties and methods often when creating the classes in your applications,
they are useful when creating base class libraries and are used throughout the .NET Framework system classes. The
following code demonstrates the use of the Compare method of the System.String class. This is a static method
that compares two strings alphabetically. It returns a positive value if the first string is greater, a negative value if the
second string is greater, or zero if the strings are equal.

public Boolean CheckStringOrder(string string1, string string2)
{
 if (string.Compare(string1, string2) >= 0)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ ImplementIng ObjeCt COllabOratIOn

133

 {
 return true;
 }
 else
 {
 return false;
 }
}

aCtIVItY 8-2. IMpLeMeNtING eXCeptION haNDLING aND StatIC
MethODS

In this activity, you will learn how to do the following:

create and call static methods of a class•	

use structured exception handling•	

Creating Static Methods

to create the static methods, follow these steps:

1. Start Visual Studio. Select File ➤ new ➤ project.

2. Choose a Windows application project. name the project activity8_2.

3. Visual Studio creates a default form for the project which you’ll use to create a login
form named logger. add controls to the form and change the property values, as listed in
table 8-2. Your completed form should look similar to Figure 8-4.

Table 8-2. Logger Form and Control Properties

Object Property Value

Form1 Name frmLogger

Text Logger

Textbox1 Name txtLogPath

Text c:\Test\LogTest.txt

Textbox2 Name txtLogInfo

Text Test Message

Button1 Name btnL ogInfo

Text Log Info

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ ImplementIng ObjeCt COllabOratIOn

134

4. Select project ➤ add Class. name the class Logger.

5. because you will be using the System.IO class within the Logger class, add a using
statement to the top of the class file:

using System.IO;

6. add a static LogWrite method to the class. this method will write information to a log
file. to open the file, create a FileStream object. then create a StreamWriter object to
write the information to the file. notice the use of the using blocks to properly dispose
the FileStream and StreamWriter objects and release the resources.

public static string LogWrite(string logPath, string logInfo)
{
 using (FileStream oFileStream = new FileStream(logPath, FileMode.Open,

FileAccess.Write))
 {
 using (StreamWriter oStreamWriter = new StreamWriter(oFileStream))
 {
 oFileStream.Seek(0, SeekOrigin.End);
 oStreamWriter.WriteLine(DateTime.Now);
 oStreamWriter.WriteLine(logInfo);
 oStreamWriter.WriteLine();
 }
 }
 return "Info Logged";
}

7. Open frmlogger in the visual design editor. Double click the btnlogInfo button to bring up
the btnLogInfo_Click event method in the code editor. add the following code, which
runs the LogWrite method of the Logger class and displays the results in the form’s text
property. note that because you designated the LogWrite method as static (in step 6),
the client does not need to create an object instance of the Logger class. Static methods
are accessed directly through a class reference.

Figure 8-4. The completed logger form

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ ImplementIng ObjeCt COllabOratIOn

135

private void btnLogInfo_Click(object sender, EventArgs e)
{
 this.Text = Logger.LogWrite(txtLogPath.Text, txtLogInfo.Text);
}

8. Select build ➤ build Solution. make sure there are no build errors in the error list
window. If there are, fix them, and then rebuild.

9. Select Debug ➤ run. When the form launches, click the log Info button. You should get
an unhandled exception message of type System.IO.DirectoryNotFoundException.
Stop the debugger.

Creating the Structured exception handler

to create the structured exception handler, follow these steps:

1. Open the Logger class code in the code editor.

2. locate the LogWrite method and add a try-catch block around the current code. In the
catch block, return a string stating the logging failed.

try
{
 using (FileStream oFileStream = new FileStream(logPath, FileMode.Open,

FileAccess.Write))
 {
 using (StreamWriter oStreamWriter = new StreamWriter(oFileStream))
 {
 oFileStream.Seek(0, SeekOrigin.End);
 oStreamWriter.WriteLine(DateTime.Now);
 oStreamWriter.WriteLine(logInfo);
 oStreamWriter.WriteLine();
 }
 }
 return "Info Logged";}
catch
{
 return "Logging Failed";
}

3. Select build ➤ build Solution. make sure there are no build errors in the error list
window. If there are, fix them, and then rebuild.

4. Select Debug ➤ run. When the form launches, click the log Info button. this time, you
should not get the exception message because it was handled by the LogWrite method.
You should see the message “logging Failed” in the form’s caption. Close the form.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ ImplementIng ObjeCt COllabOratIOn

136

Filtering exceptions

to filter exceptions, follow these steps:

1. alter the catch block to return different messages, depending on which exception
is thrown.

catch (FileNotFoundException ex)
{
 return ex.Message;
}
catch (IOException ex)
{
 return ex.Message;
}
catch
{
 return "Logging Failed";
}

2. Set a break point on the LogWrite method of the logger class.

3. Select Debug ➤ Start to run the project. test the catch block by clicking the log Info
button. execution will stop at the break point. Step through the code and notice it gets
caught by the IOException block.

4. after testing, close the form.

5. Using notepad, create the logtest.txt file in a test folder on the C drive and close the file.
make sure the file and folder are not marked as read only.

6. Select Debug ➤ Start to run the project. test the WriteLog method by clicking the
log Info button. this time, the form’s caption should indicate that the log write was
successful.

7. Stop the debugger.

8. Open the logtest.txt file using notepad and verify that the information was logged.

9. Save the project, and then exit Visual Studio.

Using Asynchronous Messaging
When objects interact by passing messages back and forth, they can pass the message synchronously or
asynchronously.

When a client object makes a synchronous message call to a server object, the client suspends processing and
waits for a response back from the server before continuing. Synchronous messaging is the easiest to implement and
is the default type of messaging implemented in the .NET Framework. However, sometimes this is an inefficient way
of passing messages. For example, the synchronous messaging model is not well suited for long-running file reading
and writing, making service calls across slow networks, or message queuing in disconnected client scenarios. To more
effectively handle these types of situations, the .NET Framework provides the plumbing needed to pass messages
between objects asynchronously.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ ImplementIng ObjeCt COllabOratIOn

137

When a client object passes a message asynchronously, the client can continue processing. After the server
completes the message request, the response information will be sent back to the client.

If you think about it, you interact with objects in the real world both synchronously and asynchronously. A good
example of synchronous messaging is when you are in the checkout line at the grocery store. When the clerk can’t
determine the price of one of the items, he calls the manager for a price check and suspends the checkout process
until a result is returned. An example of an asynchronous message call is when the clerk notices that he is running low
on change. He alerts the manager that he will need change soon, but he can continue to process his customer’s items
until the change arrives.

In an effort to make asynchronous programming easier to implement, the .NET Framework 4.5 has introduced
the Task-Based Asynchronous Pattern (TAP). When conforming to TAP, asynchronous methods return a task object.
This task object represents the ongoing operation and allows communication back to the caller. When calling the
asynchronous method, the client simply uses the await modifier and the compiler takes care of all the necessary
plumbing code.

In the .NET Framework, when you want to create a method that can be called asynchronously, you use the async
modifier. An async method provides a way to perform potentially long-running processes without blocking the caller.
This is very useful if the main thread containing the User Interface (UI) needs to call a long running process. If the
process is called synchronously, then the UI will freeze until the process completes.

An async method should contain at least one await statement. When the await statement is encountered,
processing is suspended and control is returned to the caller (UI in this case). So the user can continue to interact
with the UI. Once the async task is complete, processing is returned back to the await statement and the caller can
be alerted that the processing is finished. In order to alert the caller that the process is complete, you create a Task
return type. If the async method needs to pass information back to the caller a Task<TResult> is used. The following
code shows a method that reads a text file asynchronously. Notice the async modifier and the await keyword used to
call the ReadToEndAsync method of the StreamReader class. The method passes back a Task object to the caller with a
string result.

public static async Task<string> LogReadAsync(string filePath)
{
 StreamReader oStreamReader;
 string fileText;
 try
 {
 oStreamReader = File.OpenText(filePath);
 fileText = await oStreamReader.ReadToEndAsync();
 oStreamReader.Close();
 return fileText;
 }
 catch (FileNotFoundException ex)
 {
 return ex.Message;
 }
 catch (IOException ex)
 {
 return ex.Message;
 }
 catch
 {
 return "Logging Failed";
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ ImplementIng ObjeCt COllabOratIOn

138

aCtIVItY 8-3. CaLLING MethODS aSYNChrONOUSLY

In this activity, you will learn how to do the following:

call methods synchronously•	

call methods asynchronously•	

Creating a Method and Calling It Synchronously

to create the method and call it synchronously, follow these steps:

1. Start Visual Studio. Select File ➤ Open ➤ project.

2. Open the solution file you completed in activity8_2.

3. add the buttons shown in table 8-3 to the frmlogger form. Figure 8-5 shows the
completed form.

4. Open the Logger class in the code editor.

5. recall that because you are using the System.IO namespace within the Logger class,
you added a using statement to the top of the file. You are also going to use System.
Threading namespace, so add a using statement to include this namespace.

using System.Threading;

Figure 8-5. The completed logger form for synchronous and asynchronous reading

Table 8-3. Additional Buttons for the Logger Form

Object Property Value

Button1 Name btnSyncRead

Text Sync Read

Button2 Name btnAsyncRead

Text Async Read

Button3 Name btnMessage

Text Message

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ ImplementIng ObjeCt COllabOratIOn

139

6. add a static LogRead function to the class. this function will read information from a
log file. to open the file, create a FileStream object. then create StreamReader object
to read the information from the file. You are also using the Thread class to suspend
processing for five seconds to simulate a long call across a slow network.

public static string LogRead(string filePath)
{
 StreamReader oStreamReader;
 string fileText;
 try
 {
 oStreamReader = File.OpenText(filePath);
 fileText = oStreamReader.ReadToEnd();
 oStreamReader.Close();
 Thread.Sleep(5000);
 return fileText;
 }
 catch (FileNotFoundException ex)
 {
 return ex.Message;
 }
 catch (IOException ex)
 {
 return ex.Message;
 }
 catch
 {
 return "Logging Failed";
 }
}

7. Open frmlogger in the visual design editor. Double click the btnmessage button to
bring up the btnMessage_Click event method in the code editor. add code to display a
message box.

private void btnMessage_Click(object sender, EventArgs e)
{
 MessageBox.Show("Hello");
}

8. Open frmlogger in the visual design editor. Double-click the btnSyncread button to bring
up the btnSyncRead_Click event method in the code editor. add code that calls the
LogRead method of the Logger class and displays the results in a message box.

private void btnSyncRead_Click(object sender, EventArgs e)
{
 MessageBox.Show(Logger.LogRead(txtLogPath.Text));
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ ImplementIng ObjeCt COllabOratIOn

140

9. Select build ➤ build Solution. make sure there are no build errors in the error list
window. If there are, fix them, and then rebuild.

10. Select Debug ➤ run. When the form launches, click the Sync read button. after
clicking the Sync read button, try clicking the message button. You should not get a
response when clicking the message button because you called the ReadLog method
synchronously. after the readlog method returns a result, the message button will
respond when clicked.

11. When you have finished testing, close the form.

Creating and Calling an asynchronous Method

to create an asynchronous method, follow these steps:
1. Open the Logger class code in the code editor.

2. Check for the following using statement at the top of the file. this namespace exposes
the Task class and other types that are used to implement asynchronous programming.

using System.Threading.Tasks;

3. Create an asynchronous method that reads the text file. the use of the task’s Delay
method is to simulate a long running process.

public static async Task<string> LogReadAsync(string filePath)
{
 string fileText;
 try
 {
 using (StreamReader oStreamReader = File.OpenText(filePath))
 {
 fileText = await oStreamReader.ReadToEndAsync();
 }
 await Task.Delay(10000);
 return fileText;
 }
 catch (FileNotFoundException ex)
 {
 return ex.Message;
 }
 catch (IOException ex)
 {
 return ex.Message;
 }
 catch
 {
 return "Logging Failed";
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ ImplementIng ObjeCt COllabOratIOn

141

4. Open frmlogger in the visual design editor. Double-click the btnasyncread button to
bring up the btnAsyncRead_Click event method in the code editor. alter the method so
that it is asynchronous.

private async void btnAsyncRead_Click(object sender, EventArgs e)

5. add code to call the LogReadAsync method of the Logger class and display the results
in a message box.

btnAsyncRead.Enabled = false;
string s = await Logger.LogReadAsync(txtLogPath.Text);
MessageBox.Show(s);
btnAsyncRead.Enabled = true;

6. Select build ➤ build Solution. make sure there are no build errors in the error list
window. If there are, fix them, and then rebuild.

7. Select Debug ➤ run. When the form launches, click the async read button. after clicking
the async read button, click the message button. this time, you should get a response
because you called the ReadLog method asynchronously. after five seconds you should
see a message box containing the results of the Logger.LogReadAsync method.

8. When you have finished testing, close the form.

9. Save the project, and then exit Visual Studio.

Summary
This chapter described how the objects in your applications collaborate. You saw how objects pass messages to one
another, how events drive your programs, how instances of a class share data, and how to handle exceptions.

In Chapter 9, we look at collections and arrays. Collections and arrays organize similar objects into a group.
Working with collections is one of the most common programming constructs you will need to apply in your
applications. You will examine some of the basic types of collections available in the NET Framework and learn how
to employ collections in your code.

www.it-ebooks.info

http://www.it-ebooks.info/

143

Chapter 9

Working with Collections

In the previous chapter, you looked at how objects collaborate and communicate in object-oriented programs.
That chapter introduced the concepts of messaging, events, delegation, exception handling, and asynchronous
programming. In this chapter, you will look at how collections of objects are organized and processed. The .NET
Framework contains an extensive set of classes and interfaces for creating and managing collections of objects.
You will look at the various types of collection structures .NET provides and learn what they are designed for and
when to use each. You will also look at how to use generics to create highly reusable, efficient collections.

In this chapter, you will learn the following:

the various types of collections exposed by the .NET Framework•	

how to work with arrays and array lists•	

how to create generic collections•	

how to implement queues and stacks•	

Introducing the .NET Framework Collection Types
Programmers frequently need to work with collections of types. For example, if you are working with employee time
records in a payroll system, you need to group the records by employee, loop through the records, and add up the
hours for each.

All collections need a basic set of functions, such as adding objects, removing objects, and iterating through their
objects. In addition to the basic set, some collections need additional specialized functions. For example, a collection
of help desk e-mail requests may need to implement a first-in, first-out functionality when adding and removing items
from the collection. On the other hand, if the requests were prioritized by severity, the collection would need the
ability to sort its items by priority.

The .NET Framework provides a variety of basic and specialized collection classes for you to use. The
System.Collections namespace contains interfaces and classes that define various types of collections, such as lists,
queues, hash tables, and dictionaries. Table 9-1 lists and describes some of the commonly used collection classes.
If you do not find a collection class with the functionality you need, you can extend a .NET Framework class to create
your own.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Working With ColleCtions

144

Table 9-2 describes some of the interfaces implemented by these collection classes.

Table 9-1. Commonly Used Collection Classes

Class Description

Array Provides the base class for language implementations that support strongly typed arrays.

ArrayList Represents a weakly typed list of objects using an array whose size is dynamically increased
as required.

SortedList Represents a collection of key/value pairs that are sorted by the keys and are accessible
by key and by index.

Queue Represents a first-in, first-out (FIFO) collection of objects.

Stack Represents a simple last-in, first-out (LIFO), nongeneric collection of objects.

Hashtable Represents a collection of key/value pairs that are organized based on the hash code
of the key.

CollectionBase Provides the abstract base class for a strongly typed collection.

DictionaryBase Provides the abstract base class for a strongly typed collection of key/value pairs.

Table 9-2. Collection Class Interfaces

Interface Description

ICollection Defines size, enumerators, and synchronization methods for all nongeneric collections.

IComparer Exposes a method that compares two objects.

IDictionary Represents a nongeneric collection of key/value pairs.

IDictionaryEnumerator Enumerates the elements of a nongeneric dictionary.

IEnumerable Exposes the enumerator, which supports a simple iteration over a nongeneric collection.

IEnumerator Supports a simple iteration over a nongeneric collection.

IList Represents a nongeneric collection of objects that can be individually accessed by index.

In this chapter, you will work with some of the commonly used collection classes, beginning with the Array and
ArrayList classes.

Working with Arrays and Array Lists
An array is one of the most common data structures in computer programming. An array holds data elements of the
same data type. For example, you can create an array of integers, strings, or dates. Arrays are often used to pass values
to methods as parameters. For example, when you use a console application, it’s common to provide command line
switches. The following DOS command is used to copy a file on your computer:

copy win.ini c:\windows /y

The source file, destination path, and overwrite indicator are passed into the copy program as an array of strings.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Working With ColleCtions

145

You access the elements of an array through its index. The index is an integer representing the position of the
element in the array. For example, an array of strings representing the days of the week has the following index values:

Index Value

0 Sunday

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

This days-of-the-week example is a one-dimensional array, which means the index is represented by a single
integer. Arrays can also be multidimensional. The index of an element of a multidimensional array is a set of integers
equal to the number of dimensions. Figure 9-1 shows a seating chart that represents a two-dimensional array where a
student’s name (value) is referenced by the ordered pair of row number, seat number (index).

Row 0

Seat 0

Seat 1

Seat 2

Mary
(0,0)

Bob
(0,1)

Amy
(0,2)

Morgan
(1,2)

Greg
(2,2)

Noah
(1,1)

Cindy
(2,1)

Jim
(1,0)

Jane
(2,0)

Row 1 Row 2

Figure 9-1. A two-dimensional array

You implement array functionality when you declare its type. The common types implemented as arrays are
numeric types such as integers or double types, as well as the character and string types. When declaring a type as
an array, you use square brackets ([]) after the type, followed by the name of the array. The elements of the array are
designated by a comma-separated list enclosed by curly brackets ({}). For example, the following code declares an
array of type int and fills it with five values:

int[] intArray = { 1, 2, 3, 4, 5 };

Once a type is declared as an array, the properties and methods of the Array class are exposed. Some of the
functionality includes querying for the upper and lower bounds of the array, updating the elements of the array, and
copying the elements of the array. The Array class contains many static methods used to work with arrays, such as
methods for clearing, reversing, and sorting its elements.

The following code demonstrates declaring and working with an array of integers. It also uses several static
methods exposed by the Array class. Notice the foreach loop used to list the values of the array. The foreach loop
provides a way to iterate through the elements of the array.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Working With ColleCtions

146

int[] intArray = { 1, 2, 3, 4, 5 };
Console.WriteLine("Upper Bound");
Console.WriteLine(intArray.GetUpperBound(0));
Console.WriteLine("Array elements");
foreach (int item in intArray)
{
 Console.WriteLine(item);
}
Array.Reverse(intArray);
Console.WriteLine("Array reversed");
foreach (int item in intArray)
{
 Console.WriteLine(item);
}
Array.Clear(intArray, 2, 2);
Console.WriteLine("Elements 2 and 3 cleared");
foreach (int item in intArray)
{
 Console.WriteLine(item);
}
intArray[4] = 9;
Console.WriteLine("Element 4 reset");
foreach (int item in intArray)
{
 Console.WriteLine(item);
}
Console.ReadLine();

Figure 9-2 shows the output of this code in the console window.

Figure 9-2. One-dimensional array output

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Working With ColleCtions

147

Although one-dimensional arrays are the most common type you will run into, you should understand
how to work with the occasional multidimensional array. Two-dimensional arrays are used to store (in active
memory) and process data that fits in the rows and columns of a table. For example, you may need to process a
series of measurements (temperature or radiation level) taken at hourly intervals over several days. To create a
multidimensional array, you place one or more commas inside the square brackets to indicate the number of
dimensions. One comma indicates two dimensions; two commas indicate three dimensions, and so forth. When
filling a multidimensional array, curly brackets within curly brackets define the elements. The following code declares
and fills a two-dimensional array:

int[,] twoDArray = { { 1, 2 }, { 3, 4 }, { 5, 6 } };
//Print the index and value of the elements
for (int i = 0; i <= twoDArray.GetUpperBound(0); i++)
{
 for (int x = 0; x <= twoDArray.GetUpperBound(1); x++)
 {
 Console.WriteLine("Index = [{0},{1}] Value = {2}", i, x, twoDArray[i, x]);
 }
}

Figure 9-3 shows the output of this code in the console window.

Figure 9-3. Two-dimensional array output

When you work with collections, you often do not know the number of items they need to contain until runtime.
This is where the ArrayList class fits in. The capacity of an array list automatically expands as required, with the
memory reallocation and copying of elements performed automatically. The ArrayList class also provides methods
and properties for working with the array elements that the Array class does not provide. The following code
demonstrates some of these properties and methods. Notice that the capacity of the list expands dynamically as more
names are added.

ArrayList nameList = new ArrayList();
nameList.Add("Bob");
nameList.Add("Dan");
nameList.Add("Wendy");
Console.WriteLine("Original Capacity");
Console.WriteLine(nameList.Capacity);
Console.WriteLine("Original Values");
foreach (object name in nameList)
{
 Console.WriteLine(name);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Working With ColleCtions

148

nameList.Insert(nameList.IndexOf("Dan"), "Cindy");
nameList.Insert(nameList.IndexOf("Wendy"), "Jim");
Console.WriteLine("New Capacity");
Console.WriteLine(nameList.Capacity);
Console.WriteLine("New Values");
foreach (object name in nameList)
{
 Console.WriteLine(name);
}

Figure 9-4 shows the output in the console window.

Figure 9-4. The ArrayList output

Although it’s often easier to work with an array list than with an array, an array list can have only one dimension.
Also, an array of a specific type offers better performance than an array list, because the elements of ArrayList are
of type Object. When types are added to the array list, they are cast to a generic Object type. When the items are
retrieved from the list, they must be cast once again to the specific type.

aCtIVItY 9-1. WOrKING WIth arraYS aND arraY LIStS

in this activity, you will become familiar with the following:

creating and using arrays•	

working with multidimensional arrays•	

working with array lists•	

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Working With ColleCtions

149

Creating and Using arrays

to create and populate an array, follow these steps:

start Visual studio. select File 1. ➤ new ➤ project.

Choose a console application project. name the project activity9_1. the console 2.
application contains a class called program with a Main method. the Main method is the
first method that is accessed when the application is launched.

notice that the Main method accepts an input parameter of a string array called args. the 3.
args array contains any command line arguments passed in when the console application
is launched. the members of the args array are separated by a space when passed in.

static void Main(string[] args)
{
}

add the following code to the Main method to display the command line arguments 4.
passed in:

Console.WriteLine("parameter count = {0}", args.Length);

for (int i = 0; i < args.Length; i++)
{
 Console.WriteLine("Arg[{0}] = [{1}]", i, args[i]);
}
Console.ReadLine();

in solution explorer, right-click the project node and choose properties. in the project properties 5.
window, select the Debug tab. in the command line arguments field, enter “C# coding is fun”
(see Figure 9-5).

Figure 9-5. Adding comand line arguments

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Working With ColleCtions

150

select Debug 6. ➤ start to run the project. the console window should launch with the
output shown in Figure 9-6. after viewing the output, stop the debugger.

Figure 9-6. The console output for the array

add the following code before the Console.readline method in the Main method. this 7.
code clears the value of the array at index 1 and sets the value at index 3 to “great”.

Array.Clear(args, 1, 1);
args[3] = "great";
for (int i = 0; i < args.Length; i++)
{
 Console.WriteLine("Arg[{0}] = [{1}]", i, args[i]);
}

select Debug 8. ➤ start to run the project. the console window should launch with the
additional output shown in Figure 9-7. after viewing the output, stop the debugger.

Figure 9-7. The console output for the updated array

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Working With ColleCtions

151

Working with Multidimensional arrays

to create and populate a multidimensional array, follow these steps:

1. Comment out the code in the Main method.

2. add the following code to the Main method to create and populate a two-dimensional array:

string[,] seatingChart = new string[2,2];
seatingChart[0, 0] = "Mary";
seatingChart[0, 1] = "Jim";
seatingChart[1, 0] = "Bob";
seatingChart[1, 1] = "Jane";

3. add the following code to loop through the array and print the names to the
console window:

for (int row = 0; row < 2; row++)
{
 for (int seat = 0; seat < 2; seat++)
 {
 Console.WriteLine("Row: {0} Seat: {1} Student: {2}",
 (row + 1),(seat + 1),seatingChart[row, seat]);
 }
}
Console.ReadLine();

4. select Debug ➤ start to run the project. the console window should launch with the
output that shows the seating chart of the students (see Figure 9-8).

Figure 9-8. The console output for the two-dimensional array

5. after viewing the output, stop the debugger.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Working With ColleCtions

152

Working with array Lists

although the two dimensional array you just created works, it may be more intuitive to store the information about
each student’s seating assignment in a seating assignment class and then to organize these objects into an array
list structure. to create and populate an array list of seating assignments, follow these steps:

1. add a class file to the project named seatingassignment.cs.

2. add the following code to create the SeatingAssignment class. this class contains a
Row, Seat, and Student property. it also contains an overloaded constructor to set these
properties.

public class SeatingAssignment
{
 int _row;
 int _seat;
 string _student;
 public int Row
 {
 get { return _row; }
 set { _row = value; }
 }
 public int Seat
 {
 get { return _seat; }
 set { _seat = value; }
 }
 public string Student
 {
 get { return _student; }
 set { _student = value; }
 }
 public SeatingAssignment(int row, int seat, string student)
 {
 this.Row = row;
 this.Seat = seat;
 this.Student = student;
 }
}

3. in the Main method of the Program class, comment out the previous code and add the
following using statement to the top of the file:

using System.Collections;

4. add the following code to create an ArrayList of seating assignments:

ArrayList seatingChart = new ArrayList();
seatingChart.Add(new SeatingAssignment(0, 0, "Mary"));
seatingChart.Add(new SeatingAssignment(0, 1, "Jim"));
seatingChart.Add(new SeatingAssignment(1, 0, "Bob"));
seatingChart.Add(new SeatingAssignment(1, 1, "Jane"));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Working With ColleCtions

153

5. after the ArrayList is populated, add the following code to write the
SeatingAssignment information to the console window.

foreach (SeatingAssignment sa in seatingChart)
{
 Console.WriteLine("Row: {0} Seat: {1} Student: {2}",
 (sa.Row + 1), (sa.Seat + 1), sa.Student);
}
Console.ReadLine();

6. select Debug ➤ start to run the project. the console window should launch with the
same output as shown in Figure 9-8 (the seating chart of the students).

7. one of the advantages of the arraylist class is the ability to add and remove items
dynamically. add the following code after the code in step 4 to add two more students to
the seating chart:

seatingChart.Add(new SeatingAssignment(2, 0, "Bill"));
seatingChart.Add(new SeatingAssignment(2, 1, "Judy"));

8. select Debug ➤ start to run the project. the console window should launch with the
output showing the new students.

9. When finished, stop the debugger, and close Visual studio.

Using Generic Collections
Working with collections is a common requirement of application programming. Most of the data we work with needs
to be organized in a collection. For example, you may need to retrieve customers from a database and load them into
a drop-down list in the UI (User Interface). The customer information is represented by a customer class, and the
customers are organized into a customer collection. The collection can then be sorted, filtered, and looped through
for processing.

With the exception of a few of the specialized collections strongly typed to hold strings, the collections provided
by the .NET Framework are weakly typed. The items held by the collections are of type Object, and so they can be of
any type, since all types derive from the Object type.

Weakly typed collections can cause performance and maintenance problems for your application. One problem
is that there are no inherent safeguards for limiting the types of objects stored in the collection. The same collection
can hold any type of item, including dates, integers, or a custom type such as an employee object. If you build and
expose a collection of integers, and that collection inadvertently gets passed a date, the chances are high that the code
will fail at some point.

Fortunately, C# supports generics, and the .NET Framework provides generic-based collections in the
System.Collections.Generic namespace. Generics let you define a class without specifying its type. The type is
specified when the class is instantiated. Using a generic collection provides the advantages of type safety and the
performance of a strongly typed collection while also providing the code reuse associated with weakly typed collections.

The following code shows how to create a strongly typed collection of customers using the Generic.List class.
The list type (in this case, Customer) is placed between the angle brackets (<>). Customer objects are added to the
collection, and then the customers in the collection are retrieved, and the customer information is written out to the
console. (You will look at binding collections to UI controls in Chapter 11.)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Working With ColleCtions

154

List<Customer> customerList = new List<Customer>();
customerList.Add(new Customer
 ("WHITC", "White Clover Markets", "Karl Jablonski"));
customerList.Add(new Customer("RANCH", "Rancho grande", "Sergio Gutiérrez"));
customerList.Add(new Customer("ALFKI","Alfreds Futterkiste","Maria Anders"));
customerList.Add
 (new Customer("FRANR", "France restauration", "Carine Schmitt"));
foreach (Customer c in customerList)
{
 Console.WriteLine("Id: {0} Company: {1} Contact: {2}",
 c.CompanyId, c.CompanyName, c.ContactName);
}

There may be times when you need to extend the functionality of the collection provided by the .NET Framework.
For example, you may need the ability to sort the collection of customers by either the CompanyId or the CompanyName.
To implement sorting, you need to define a sorting class that implements the IComparer interface. The IComparer
interface ensures the sorting class implements a Compare method with the appropriate signature. (Interfaces were
covered in Chapter 7.) The following CustomerSorter class sorts a list of Customer by CompanyName. Note that since the
CompanyName property is a string, you can use the string comparer to sort them.

public class CustomerSorter : IComparer<Customer>
{
 public int Compare(Customer customer1, Customer customer2)
 {
 return customer1.CompanyName.CompareTo(customer2.CompanyName);
 }
}

Now you can sort the customers by CompanyName and then display them.

customerList.Sort(new CustomerSorter());

The output is shown in Figure 9-9.

Figure 9-9. The console output for the sorted list of Customer

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Working With ColleCtions

155

aCtIVItY 9-2. IMpLeMeNtING aND eXteNDING GeNerIC COLLeCtIONS

in this activity, you will become familiar with the following:

implementing a generic collection•	

extending a generic collection to implement sorting•	

to create and populate a generic list, follow these steps:

1. start Visual studio. select File ➤ new ➤ project.

2. Choose a console application project. name the project activity9_2.

3. select project ➤ add Class. name the class file request.cs.

4. add the following properties to the Request class:

public class Request
{
 string _requestor;
 int _priority;
 DateTime _date;
 public string Requestor
 {
 get { return _requestor; }
 set { _requestor = value; }
 }
 public int Priority
 {
 get { return _priority; }
 set { _priority = value; }
 }
 public DateTime Date
 {
 get { return _date; }
 set { _date = value; }
 }

5. overload the constructor of the Request class to set the properties in the constructor.

public Request(string requestor, int priority, DateTime date)
{
 this.Requestor = requestor;
 this.Priority = priority;
 this.Date = date;
}

6. add a method to override the ToString method of the base Object class. this will return
the request information as a string when the method is called.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Working With ColleCtions

156

public override string ToString()
{
 return String.Format("{0}, {1}, {2}",this.Requestor,
 this.Priority.ToString(), this.Date);
}

7. open the Program class in the code editor and add the following code to the Main
method. this code populates a generic list of type Request and displays the values in the
console window.

static void Main(string[] args)
{
 List<Request> reqList = new List<Request>();
 reqList.Add(new Request("Dan",2 ,new DateTime(2011,4,2)));
 reqList.Add(new Request("Alice", 5, new DateTime(2011, 2, 5)));
 reqList.Add(new Request("Bill", 3, new DateTime(2011, 6, 19)));
 foreach (Request req in reqList)
 {
 Console.WriteLine(req.ToString());
 }
 Console.ReadLine();
}

8. select Debug ➤ start to run the project. the console window should launch with the
request items listed in the order they were added to the reqList.

9. select project ➤ add Class. name the class DateSorter.

10. add the following code to the DateSorter class. this class implements the IComparer
interface and is used to enable sorting requests by date.

public class DateSorter:IComparer<Request>
 {
 public int Compare(Request R1, Request R2)
 {
 return R1.Date.CompareTo(R2.Date);
 }
}

11. add the following code in the Main method of the Program class prior to the
Console.ReadLine method. this code sorts the reqList by date and displays the
values in the console window.

Console.WriteLine("Sorted by date.");
reqList.Sort(new DateSorter());
foreach (Request req in reqList)
{
 Console.WriteLine(req.ToString());
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Working With ColleCtions

157

12. select Debug ➤ start to run the project. the console window should launch with the output
shown in Figure 9-10. after viewing the output, stop the debugger and exit Visual studio.

Figure 9-10. Generic collection unsorted and sorted by date

Programming with Stacks and Queues
Two special types of collections often used in programming are the stack and the queue. A stack is a last-in, first-out
collection of objects. A queue represents a first-in, first-out collection of objects.

A stack is a good way to maintain a list of moves made in a chess game. When a user wants to undo his moves,
he begins with his most recent move, which is the last one added to the list and also the first one retrieved. Another
example of using a stack occurs when a program executes a series of method calls. A stack maintains the addresses
of the methods, and execution returns to the methods in the reverse order in which they were called. When placing
items in a stack, you use the push method. The pop method removes items from the stack. The peek method returns
the object at the top of the stack without removing it. The following code demonstrates adding and removing items
from a stack. In this case, you’re using generics to implement a stack of ChessMove objects. The RecordMove method
adds the most recent move to the stack. The GetLastMove method returns the most recent move on the stack.

Stack<ChessMove> moveStack = new Stack<ChessMove>();
void RecordMove(ChessMove move)
{
 moveStack.Push(move);
}
 ChessMove GetLastMove()
{
 return moveStack.Pop();
}

An application that services help desk requests is a good example of when to use a queue. A collection
maintains a list of help desk requests sent to the application. When requests are retrieved from the collection for
processing, the first ones in should be the first ones retrieved. The Queue class uses the enqueue and dequeue methods
to add and remove items. It also implements the peek method to return the item at the beginning of the queue without
removing the item. The following code demonstrates adding and removing items from a PaymentRequest queue.
The AddRequest method adds a request to the queue and the GetNextRequest method removes a request from
the queue.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Working With ColleCtions

158

Queue<PaymentRequest> payRequest = new Queue<PaymentRequest>();
void AddRequest(PaymentRequest request)
{
 payRequest.Enqueue(request);
}
PaymentRequest GetNextRequest()
{
 return payRequest.Dequeue();
}

aCtIVItY 9-3. IMpLeMeNtING StaCKS aND QUeUeS

in this activity, you will become familiar with the following:

•	 implementing a stack collection

implementing a queue collection•	

to create and populate a generic list, follow these steps:

1. start Visual studio. select File ➤ new ➤ project.

2. Choose a console application project. name the project activity9_3.

3. add the following code to the Main method of the Program class.this code creates a
stack of strings and loads it with strings representing moves in a game. it then uses the
Peek method to write out the move stored at the top of the stack to the console window.

Stack<string> moveStack = new Stack<string>();
Console.WriteLine("Loading Stack");
for (int i = 1; i <= 5; i++)
{
 moveStack.Push("Move " + i.ToString());
 Console.WriteLine(moveStack.Peek().ToString());
}

4. add the following code to the Main method of the Program class after the code in step 3.
this code removes the moves from the stack using the Pop method and writes them to
the console window.

Console.WriteLine("Press the enter key to unload the stack.");
Console.ReadLine();
for (int i = 1; i <= 5; i++)
{
 Console.WriteLine(moveStack.Pop().ToString());
}
Console.ReadLine();

5. select Debug ➤ start to run the project. the console window should launch with the
output shown in Figure 9-11. notice the last-in, first-out pattern of the stack. after
viewing the output, stop the debugger.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Working With ColleCtions

159

6. Comment out the code entered in steps 3 and 4. add the following code to the Main
method of the Program class. this code creates a queue of strings and loads it with
strings representing requests to a consumer help line. it then uses the Peek method to
write out the request stored at the beginning of the queue of to the console window.

Queue<string> requestQueue = new Queue<string>();
Console.WriteLine("Loading Queue");
for (int i = 1; i <= 5; i++)
{
 requestQueue.Enqueue("Request " + i.ToString());
 Console.WriteLine(requestQueue.Peek().ToString());
}

7. add the following code to the Main method of the Program class after the code in step 6.
this code removes the requests from the queue using the Dequeue method and writes
them to the console window.

Console.WriteLine("Press the enter key to unload the queue.");
Console.ReadLine();
for (int i = 1; i <= 5; i++)
{
 Console.WriteLine(requestQueue.Dequeue().ToString());
}
Console.ReadLine();

8. select Debug ➤ start to run the project. the console window should launch with the
output shown in Figure 9-12. notice that as the queue is loaded the first request stays at
the top of the queue. also notice the first-in, first-out pattern of the queue. after viewing
the output, stop the debugger and exit Visual studio.

Figure 9-11. The last-in, first-out pattern of the stack

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Working With ColleCtions

160

Summary
In this chapter, you examined the various types of collections exposed by the .NET Framework. You learned how to
work with arrays, array lists, queues, stacks, and generic collections.

This chapter is the final one in a series that introduced you to the various OOP constructs such as classes,
inheritance, and polymorphism. You should have a firm understanding of how class structures, object collaboration,
and collections are implemented in C#. You have been introduced to the Visual Studio IDE and you’ve practiced using
it. You are now ready to put the pieces together and develop a working application.

Chapter 10 is the first in a series in which you will develop .NET applications. In the process, you will investigate
data access using ADO.NET and the Entity Framework; create a Windows-based GUI using the Windows Presentation
Foundation(WPF) and the new Windows 8 app store; create a web-based GUI using Web Forms and ASP.NET;, and
create web services using the Windows Communication Foundation (WCF) and the ASP.NET Web API.

Figure 9-12. The first-in, first-out pattern of the queue

www.it-ebooks.info

http://www.it-ebooks.info/

161

Chapter 10

Implementing the Data Access Layer

In the past several chapters, you have looked at various object-oriented programming constructs such as classes,
inheritance, and polymorphism as they are implemented in C# code. You have been introduced to and practiced
using the Visual Studio integrated development environment. You should also have a firm understanding of how class
structures and object collaboration are implemented.

You are now ready to put the pieces together and develop a working application. Because most business
applications involve working with and updating data in a back-end relational database, you will look at how the .NET
Framework provides the functionality to work with relational data.

After reading this chapter, you will understand the following:

how to establish a connection to a database using the •	 Connection object

how to use a •	 Command object to execute SQL queries

how to use a •	 Command object to execute stored procedures

how to retrieve records with the •	 DataReader object

how to populate DataTables and DataSets•	

how to establish relationships between tables in a DataSet•	

how to edit and update data in a DataSet•	

how to create an Entity Data Model•	

how to use Language-Integrated Query (LINQ) to Entity Framework (EF) to query data•	

how to use the Entity Framework to update data•	

Introducing ADO.NET
A majority of applications developed for businesses need to interact with a data storage device. Data storage can occur
in many different forms: for example, in a flat file system, as is the case with many traditional mainframe systems, or
in a relational database management system, such as SQL Server, Oracle, or MySQL You can also maintain data in
a hierarchical textual file structure, as is the case with XML. To access and work with data in a consistent way across
these various data stores, the .NET Framework provides a set of classes organized into the System.Data namespace.
This collection of classes is known as ADO.NET.

Looking at the history of Microsoft’s data access technologies reveals an evolution from a connected model to
a disconnected one. When developing the traditional two-tier client-server applications prevalent in the 1980s and
early 1990s, it was often more efficient to open a connection with the database, work with the data implementing
server-side cursors, and close the connection when finished working with the data. The problem with this approach
became apparent in the late 1990s as companies tried to evolve their data-driven applications from traditional

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

162

two-tier client-server applications to multi-tiered web-based models: opening and holding a connection open until
processing was complete was not scalable. Scalability is the ability of an application to handle an increasing number
of simultaneous clients without a noticeable degradation of performance. Microsoft designed ADO.NET to be highly
scalable. To achieve scalability, Microsoft designed ADO.NET around a disconnected model. A connection is made to
the database, the data and metadata are retrieved and cached locally, and the connection is closed.

Another problem with the traditional data access technologies developed during this time was the lack of
interoperability. Systems with a high degree of interoperability can easily exchange data back and forth regardless
of the implementation technologies of the various systems. Traditional data access technologies rely on proprietary
methods of data exchange. Using these techniques, it is hard for a system built using Microsoft technologies such as
ADO (pre-.NET) and DCOM to exchange data with a system built using Java technologies such as JDBC and CORBA.
The industry as a whole realized it was in the best interest of all parties to develop open standards for exchanging data
between disparate systems. Microsoft has embraced these standards and has incorporated support of the standards
into the .NET Framework.

Working with Data Providers
To establish a connection to a data source, such as a SQL Server database, and work with its data, you must use
the appropriate .NET provider classes. The SQL Server provider classes are located in the System.Data.SqlClient
namespace. Other data providers exist, such as the OleDb data provider for Oracle classes located in the
System.Data.OleDb namespace. Each of these providers implements a similar class structure, which you can use
to interact with its intended data source. Table 10-1 summarizes the main classes of the System.Data.SqlClient
provider namespace.

Table 10-1. Classes in the System.Data.SqlClient Namespace

Class Responsibility

SqlConnection Establishes a connection and a unique session with a database.

SqlCommand Represents a Transact-SQL statement or stored procedure to execute at the database.

SqlDataReader Provides a means of reading a forward-only stream of rows from the database.

SqlDataAdapter Fills a DataSet and updates changes back to the database.

SqlParameter Represents a parameter used to pass information to and from stored procedures.

SqlTransaction Represents a Transact-SQL transaction to be made in the database.

SqlError Collects information relevant to a warning or error returned by the database server.

SqlException Defines the exception that is thrown when a warning or error is returned by the database server.

A similar set of classes exists in the System.Data.OleDb provider namespace. For example, instead of the
SqlConnection class, you have an OleDbConnection class.

Establishing a Connection
The first step to retrieving data from a database is to establish a connection, which is done using a Connection object
based on the type of provider being used. To establish a connection to SQL Server, you instantiate a Connection
object of type SqlConnection. You also need to provide the Connection object with a ConnectionString. The
ConnectionString consists of a series of semicolon-delineated name-value pairs that provide information needed

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

163

to connect to the database server. Some of the information commonly passed by the ConnectionString is the
name of the target server, the name of the database, and security information. The following code demonstrates a
ConnectionString used to connect to a SQL Server database:

"Data Source=TestServer;Initial Catalog=Pubs;User ID=Dan;Password=training"

The attributes you need to provide through the ConnectionString are dependent on the data provider you are
using. The following code demonstrates a ConnectionString used to connect to an Access database using the OleDb
provider for Access:

"Provider=Microsoft.Jet.OleDb.4.0;Data Source=D:\Data\Northwind.mdb"

The next step is to invoke the Open method of the Connection object. This will result in the Connection object
loading the appropriate driver and opening a connection to the data source. Once the connection is open, you can
work with the data. After you are done interacting with the database, it is important you invoke the Dispose method of
the Connection object, because when a Connection object falls out of scope or is garbage-collected, the connection is
not implicitly released. The following code demonstrates the process of opening a connection to the Pubs database in
SQL Server, working with the data, and disposing the connection:

SqlConnection pubConnection = new SqlConnection();
string connString;
try
{
 connString = "Data Source=drcsrv01;Initial Catalog=pubs;Integrated Security=True";
 pubConnection.ConnectionString = connString;
 pubConnection.Open();
 //work with data
}
catch (SqlException ex)
{
 throw ex;
}
finally
{
 pubConnection.Dispose();
}

C# provides a using statement to aid in ensuring connections get closed and resources are disposed of
properly. When the execution leaves the scope of the using statement, the connection is automatically closed and
the connection object is disposed of efficiently. The previous code can be rewritten to take advantage of the using
statement as follows:

string connString = "Data Source=drcsrv01;Initial Catalog=pubs;Integrated Security=True";
using(SqlConnection pubConnection = new SqlConnection())
{
 try
 {
 pubConnection.ConnectionString = connString;
 pubConnection.Open();
 //work with data
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

164

 catch (SqlException ex)
 {
 throw ex;
 }
}

Executing a Command
Once your application has established and opened a connection to a database, you can execute SQL statements
against it. A Command object stores and executes command statements against the database. You can use the Command
object to execute any valid SQL statement understood by the data store. In the case of SQL Server, these can be Data
Manipulation Language statements (Select, Insert, Update, and Delete), Data Definition Language statements (Create,
Alter, and Drop), or Data Control Language statements (Grant, Deny, and Revoke). The CommandText property of
the Command object holds the SQL statement that will be submitted. The Command object contains three methods for
submitting the CommandText to the database depending on what is returned. If records are returned, as is the case
when a Select statement is executed, then you can use the ExecuteReader. If a single value is returned—for example,
the results of a Select Count aggregate function—you should use the ExecuteScalar method. When no records are
returned from a query—for example, from an Insert statement—you should use the ExecuteNonQuery method. The
following code demonstrates using a Command object to execute a SQL statement against the Pubs database that returns
the number of employees. Notice the use of the nested using clause, one for the connection and one for the command.

public int GetEmployeeCount()
{
 string connString = "Data Source=drcsrv01;Initial Catalog=pubs;Integrated Security=True";

 using (SqlConnection pubConnection = new SqlConnection())
 {
 using (SqlCommand pubCommand = new SqlCommand())
 {
 try
 {
 pubConnection.ConnectionString = connString;
 pubConnection.Open();
 pubCommand.Connection = pubConnection;
 pubCommand.CommandText = "Select Count(emp_id) from employee";
 return (int)pubCommand.ExecuteScalar();
 }
 catch (SqlException ex)
 {
 throw ex;
 }
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

165

Using Stored Procedures
In many application designs, instead of executing a SQL statement directly, clients must execute stored procedures.
Stored procedures are an excellent way to encapsulate the database logic, increase scalability, and enhance the
security of multi-tiered applications. To execute a stored procedure, you use a Command object, setting its CommandType
property to StoredProcedure and its CommandText property to the name of the stored procedure. The following code
executes a stored procedure that returns the number of employees in the Pubs database:

public int GetEmployeeCount()
{
 string connString = "Data Source=drcsrv01;Initial Catalog=pubs;Integrated Security=True";

 using (SqlConnection pubConnection = new SqlConnection())
 {
 using (SqlCommand pubCommand = new SqlCommand())
 {
 try
 {
 pubConnection.ConnectionString = connString;
 pubConnection.Open();
 pubCommand.Connection = pubConnection;
 pubCommand.CommandType = CommandType.StoredProcedure;
 pubCommand.CommandText = "GetEmployeeCount";
 return (int)pubCommand.ExecuteScalar();
 }
 catch (SqlException ex)
 {
 throw ex;
 }
 }
 }
}

When executing a stored procedure, you often must supply input parameters. You may also need to retrieve
the results of the stored procedure through output parameters. To work with parameters, you need to instantiate
a parameter object of type SqlParameter, and then add it to the Parameters collection of the Command object. When
constructing the parameter, you supply the name of the parameter and the SQL Server data type. For some data types,
you also supply the size. If the parameter is an output, input-output, or return parameter, then you must indicate the
parameter direction. The following example calls a stored procedure that accepts an input parameter of a letter. The
procedure passes back a count of the employees whose last name starts with the given letter. The count is returned in
the form of an output parameter.

public int GetEmployeeCount(string lastInitial)
{
 string connString = "Data Source=drcsrv01;Initial Catalog=pubs;Integrated Security=True";
 using (SqlConnection pubConnection = new SqlConnection(connString))
 {
 using (SqlCommand pubCommand = new SqlCommand())

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

166

 {
 try
 {
 pubConnection.Open();
 pubCommand.Connection = pubConnection;
 pubCommand.CommandText = "GetEmployeeCountByLastInitial";
 SqlParameter inputParameter = pubCommand.Parameters.Add
 ("@LastInitial", SqlDbType.NChar, 1);
 inputParameter.Value = lastInitial.ToCharArray()[0];
 SqlParameter outputParameter = pubCommand.Parameters.Add
 ("@EmployeeCount", SqlDbType.Int);
 outputParameter.Direction = ParameterDirection.Output;
 pubCommand.CommandType = CommandType.StoredProcedure;
 pubCommand.ExecuteNonQuery();
 return (int)outputParameter.Value;
 }
 catch (SqlException ex)
 {
 throw ex;
 }
 }
 }
}

Using the DataReader Object to Retrieve Data
A DataReader object accesses data through a forward-only, read-only stream. Oftentimes, you will want to loop
through a set of records and process the results sequentially without the overhead of maintaining the data in a cache.
A good example of this would be loading a list or array with the values returned from the database. After declaring an
object of type SqlDataReader, you instantiate it by invoking the ExecuteReader method of a Command object. The Read
method of the DataReader object accesses the records returned. The Close method of the DataReader object is called
after the records have been processed. The following code demonstrates the use of a DataReader object to retrieve a
list of names from a SQL Server database and return it to the client:

public ArrayList ListNames()
{
 string connString = "Data Source=LocalHost;Initial Catalog=pubs;Integrated Security=True";
 using (SqlConnection pubConnection = new SqlConnection(connString))
 {
 using (SqlCommand pubCommand = new SqlCommand())
 {
 try
 {
 pubConnection.ConnectionString = connString;
 pubConnection.Open();
 pubCommand.Connection = pubConnection;
 pubCommand.CommandText =
 "Select lname from employee";
 using (SqlDataReader employeeDataReader = pubCommand.ExecuteReader())

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

167

 {
 ArrayList nameArray = new ArrayList();
 while (employeeDataReader.Read())
 {
 nameArray.Add(employeeDataReader["lname"]);
 }
 return nameArray;
 }
 }
 catch (SqlException ex)
 {
 throw ex;
 }
 }
 }
}

Using the DataAdapter to Retrieve Data
In many cases, you need to retrieve a set of data from a database, work with the data, and return any updates to the
data back to the database. In that case, you use a DataAdapter as a bridge between the data source and the in-memory
cache of the data. This in-memory cache of data is contained in either a stand alone DataTable or a DataSet, which is a
collection of DataTables.

Note ■ the DataTable and DataSet objects are discussed in greater detail in the “Working with Datatables and
Datasets” section.

To retrieve a set of data from a database, first you instantiate a DataAdapter object. You then set the
SelectCommand property of the DataAdapter to an existing Command object. Finally, you execute the Fill method,
passing the name of a DataSet object to fill. If the connection object is not open when the fill method is called it is
opened to retrieve the data and then closed. If it is open when the fill method is called, it remains open after the data
is retrieved. Here you see how to use a DataAdapter to fill a DataTable and pass the DataTable back to the client:

public DataTable GetEmployees()
{
 string connString = "Data Source=LocalHost;Initial Catalog=pubs;Integrated Security=True";
 using (SqlConnection pubConnection = new SqlConnection(connString))
 {
 using (SqlCommand pubCommand = new SqlCommand())
 {
 pubCommand.Connection = pubConnection;
 pubCommand.CommandText = "Select emp_id, lname, Hire_Date from employee";
 using (SqlDataAdapter employeeAdapter = new SqlDataAdapter())

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

168

 {
 employeeAdapter.SelectCommand = pubCommand;
 DataTable employeeDataTable = new DataTable();
 employeeAdapter.Fill(employeeDataTable);
 return employeeDataTable;
 }
 }
 }
}

You may find that you need to retrieve a set of data by executing a stored procedure as opposed to passing in a
SQL statement. The following code demonstrates executing a stored procedure that accepts an input parameter and
returns a set of records. The records are loaded into a DataSet object and returned to the client.

public DataSet GetEmployees(string lastInitial)
{
 string connString = "Data Source=LocalHost;Initial Catalog=pubs;Integrated Security=True";
 using (SqlConnection pubConnection = new SqlConnection(connString))
 {
 using (SqlCommand pubCommand = new SqlCommand())
 {
 pubCommand.Connection = pubConnection;
 pubCommand.CommandText = "Select emp_id, lname, Hire_Date from employee";
 pubCommand.CommandText = "GetEmployeesByLastInitial";
 SqlParameter inputParameter = pubCommand.Parameters.Add
 ("@LastInitial", SqlDbType.NChar, 1);
 inputParameter.Value = lastInitial.ToCharArray()[0];
 pubCommand.CommandType = CommandType.StoredProcedure;
 using (SqlDataAdapter employeeAdapter = new SqlDataAdapter())
 {
 employeeAdapter.SelectCommand = pubCommand;
 DataSet employeeDataSet = new DataSet();
 employeeAdapter.Fill(employeeDataSet);
 return employeeDataSet;
 }
 }
 }
}

aCtIVItY 10-1. retrIeVING Data FrOM a SQL SerVer DataBaSe

In this activity, you will become familiar with the following:

establishing a connection to a sQl server database•	

executing queries through a •	 Command object

retrieving data with a •	 DataReader object

executing a stored procedure using a •	 Command object

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

169

Note■ For the activities in this chapter to work, you must have access to a sQl server 2005 or higher database server
with the sample microsoft pubs and northwind databases installed. you must be logged on under a Windows account that
has been given the appropriate rights to these databases. you may have to alter the ConnectionString depending on
your settings. For more information, refer to the “software requirements” section in the Introduction and appendix C.

Creating a Connection and executing SQL Queries

to create a connection and execute sQl queries, follow these steps:

1. start Visual studio. select File ➤ new ➤ project.

2. Choose a Console application project. name the project Activity10_1.

3. after the project opens, add a new class to the project named Author.

4. Open the Author class code in the code editor. add the following using statements at the
top of the file:

using System.Data;
using System.Data.SqlClient;

5. add code to declare a private class-level variable containing the connection string:

class Author
{
 string _connString = "Data Source=localhost;Initial Catalog=pubs;Integrated
Security=True";

6. add a method to the class that will use a Command object to execute a query to count the
number of authors in the Authors table. Because you are only returning a single value,
you will use the ExecuteScalar method of the Command object.

public int CountAuthors()
{
 using (SqlConnection pubConnection = new SqlConnection(_connString))
 {
 using (SqlCommand pubCommand = new SqlCommand())
 {
 pubCommand.Connection = pubConnection;
 pubCommand.CommandText = "Select Count(au_id) from authors";
 pubConnection.Open();
 return (int)pubCommand.ExecuteScalar();
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

170

7. add the following code to the Main method of the Program class, which will execute the
GetAuthorCount method defined in the Author class:

static void Main(string[] args)
{
 try
 {
 Author author = new Author();
 Console.WriteLine(author.CountAuthors());
 Console.ReadLine();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.ReadLine();
 }
}

8. select Debug ➤ start to run the project. the Console window should launch with the
number of authors displayed. after viewing the output, stop the debugger.

Using the Datareader Object to retrieve records

to use the DataReader object to retrieve records, follow these steps:

1. Open the Author class code in the code editor.

2. add a public method to the class definition called GetAuthorList that returns a generic
List of strings.

public List<string> GetAuthorList()
{
}

3. add the following code, which executes a sQl select statement to retrieve the authors’
last names. a DataReader object then loops through the records and creates a list of
names that gets returned to the client.

List<string> nameList = new List<string>();
using (SqlConnection pubConnection = new SqlConnection(_connString))
{
 using (SqlCommand authorsCommand = new SqlCommand())
 {
 authorsCommand.Connection = pubConnection;
 authorsCommand.CommandText = "Select au_lname from authors";
 pubConnection.Open();
 using (SqlDataReader authorDataReader = authorsCommand.ExecuteReader())
 {
 while (authorDataReader.Read() == true)
 {
 nameList.Add(authorDataReader.GetString(0));
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

171

 return nameList;
 }
 }
}

4. Change the code in the Main method of the Program class to show the list of names in
the console window.

static void Main(string[] args)
{
 try
 {
 Author author = new Author();
 foreach (string name in author.GetAuthorList())
 {
 Console.WriteLine(name);
 }
 Console.ReadLine();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.ReadLine();
 }
}

5. select Debug ➤ start to run the project. the Console window should launch with the
names of the authors displayed. after viewing the output, stop the debugger.

executing a Stored procedure Using a Command Object

to execute a stored procedure using a Command object, follow these steps:

1. Open the Author class code in the code editor.

2. add a public method that overloads the GetAuthorList method by accepting an integer
parameter named Royalty. this function will call the stored procedure by royalty in
the pubs database. the procedure takes an integer input of the royalty percentage and
returns a list of author IDs with the percentage.

public List<string> GetAuthorList(int royalty)
{
 List<string> nameList = new List<string>();
 using (SqlConnection pubConnection = new SqlConnection(_connString))
 {
 using (SqlCommand authorsCommand = new SqlCommand())
 {
 authorsCommand.Connection = pubConnection;
 authorsCommand.CommandType = CommandType.StoredProcedure;
 authorsCommand.CommandText = "byroyalty";
 SqlParameter inputParameter = new SqlParameter();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

172

 inputParameter.ParameterName = "@percentage";
 inputParameter.Direction = ParameterDirection.Input;
 inputParameter.SqlDbType = SqlDbType.Int;
 inputParameter.Value = royalty;
 authorsCommand.Parameters.Add(inputParameter);
 pubConnection.Open();
 using (SqlDataReader authorDataReader = authorsCommand.ExecuteReader())
 {
 while (authorDataReader.Read() == true)
 {
 nameList.Add(authorDataReader.GetString(0));
 }
 }
 return nameList;
 }
 }
}

3. In the Main method of the Program class, supply an input parameter of 25 to the
GetAuthorList method.

foreach (string name in author.GetAuthorList(25))

4. select Debug ➤ start to run the project. the Console window should launch with the IDs
of the authors displayed. after viewing the output, stop the debugger.

5. When finished testing, exit Visual studio.

Working with DataTables and DataSets
DataTables and DataSets are in-memory caches of data that provide a consistent relational programming model for
working with data regardless of the data source. A DataTable represents one table of relational data and consists of
columns, rows, and constraints. You can think of a DataSet as a minirelational database, which includes the data
tables and the relational integrity constraints between them. If you are retrieving data from a single table, you can
populate and use the DataTable directly without the overhead of creating a DataSet first. There are several ways to
create a DataTable or DataSet. The most obvious method is to populate a DataTable or DataSet from an existing
relational database management system (RDBMS) such as a SQL Server database. As mentioned previously, a
DataAdapter object provides the bridge between the RDBMS and the DataTable or DataSet. By using a DataAdapter
object, the DataTable or DataSet is totally independent from the data source. Although you need to use a specific
set of provider classes to load either type of object, you use the same set of .NET Framework classes to work with a
DataTable or DataSet, regardless of how it was created and populated. The System.Data namespace contains the
framework classes for working with DataTable or DataSet objects. Table 10-2 lists some of the main classes contained
in the System.Data namespace.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

173

Populating a DataTable from a SQL Server Database
To retrieve data from a database, you set up a connection with the database using a Connection object. After a
connection is established, you create a Command object to retrieve the data from the database. As stated earlier, if you
are retrieving data from a single table or result set, you can populate and work with a DataTable directly without
creating a DataSet object. The Load method of the DataTable fills the table with the contents of a DataReader object.
The following code fills a DataTable with data from the publishers table of the Pubs database:

public DataTable GetPublishers()
{
 string connString = "Data Source=drcsrv01;" +
 "Initial Catalog=pubs;Integrated Security=True";
 DataTable pubTable;
 using (SqlConnection pubConnection = new SqlConnection(connString))
 {
 using (SqlCommand pubCommand = new SqlCommand())
 {
 pubCommand.Connection = pubConnection;
 pubCommand.CommandText =
 "Select pub_id, pub_name, city from publishers";
 pubConnection.Open();
 using (SqlDataReader pubDataReader = pubCommand.ExecuteReader())
 {
 pubTable = new DataTable();
 pubTable.Load(pubDataReader);
 return pubTable;
 }
 }
 }
}

Table 10-2. The Main Members of the System.Data Namespace

Class Description

DataSet Represents a collection of DataTable and DataRelation objects. Organizes an
in-memory cache of relational data.

DataTable Represents a collection of DataColumn, DataRow, and Constraint objects. Organizes
records and fields related to a data entity.

DataColumn Represents the schema of a column in a DataTable.

DataRow Represents a row of data in a DataTable.

Constraint Represents a constraint that can be enforced on DataColumn objects.

ForeignKeyConstraint Enforces referential integrity of a parent/child relationship between two DataTable
objects.

UniqueConstraint Enforces uniqueness of a DataColumn or set of DataColumns. This is required to enforce
referential integrity in a parent/child relationship.

DataRelation Represents a parent/child relation between two DataTable objects.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

174

Populating a DataSet from a SQL Server Database
When you need to load data into multiple tables and maintain the referential integrity between the tables, you need to
use the DataSet object as a container for the DataTables. To retrieve data from a database and fill the DataSet, you
set up a connection with the database using a Connection object. After a connection is established, you create a
Command object to retrieve the data from the database, and then create a DataAdapter to fill the DataSet, setting
the previously created Command object to the SelectCommand property of the DataAdapter. Create a separate
DataAdapter for each DataTable. The final step is to fill the DataSet with the data by executing the Fill method of
the DataAdapter. The following code demonstrates filling a DataSet with data from the publishers table and the titles
table of the Pubs database:

public DataSet GetPubsDS()
{
 string connString = "Data Source=Localhost;" +
 "Initial Catalog=pubs;Integrated Security=True";
 DataSet bookInfoDataSet= new DataSet();
 using (SqlConnection pubConnection = new SqlConnection(connString))
 {
 //Fill pub table
 using (SqlCommand pubCommand = new SqlCommand())
 {
 pubCommand.Connection = pubConnection;
 pubCommand.CommandText =
 "Select pub_id, pub_name, city from publishers";
 using (SqlDataAdapter pubDataAdapter = new SqlDataAdapter())
 {
 pubDataAdapter.SelectCommand = pubCommand;
 pubDataAdapter.Fill(bookInfoDataSet, "Publishers");
 }
 }
 //Fill title table
 using (SqlCommand titleCommand = new SqlCommand())
 {
 titleCommand.Connection = pubConnection;
 titleCommand.CommandText =
 "Select pub_id, title, ytd_sales from titles";
 using (SqlDataAdapter titleDataAdapter = new SqlDataAdapter())
 {
 titleDataAdapter.SelectCommand = titleCommand;
 titleDataAdapter.Fill(bookInfoDataSet, "Titles");
 }
 }
 return bookInfoDataSet;
 }
}

Establishing Relationships between Tables in a DataSet
In an RDBMS system, referential integrity between tables is enforced through a primary key and foreign key
relationship. Using a DataRelation object, you can enforce data referential integrity between the tables in the
DataSet. This object contains an array of DataColumn objects that define the common field(s) between the parent

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

175

table and the child table used to establish the relation. Essentially, the field identified in the parent table is the
primary key, and the field identified in the child table is the foreign key. When establishing a relationship, create two
DataColumn objects for the common column in each table. Next, create a DataRelation object, pass a name for the
DataRelation, and pass the DataColumn objects to the constructor of the DataRelation object. The final step is to add
the DataRelation to the Relations collection of the DataSet object. The following code establishes a relationship
between the publishers and the titles tables of the bookInfoDataSet created in the previous section:

//Create relationahip between tables
DataRelation Pub_TitleRelation;
DataColumn Pub_PubIdColumn;
DataColumn Title_PubIdColumn;
Pub_PubIdColumn = bookInfoDataSet.Tables["Publishers"].Columns["pub_id"];
Title_PubIdColumn = bookInfoDataSet.Tables["Titles"].Columns["pub_id"];
Pub_TitleRelation = new DataRelation("PubsToTitles", Pub_PubIdColumn, Title_PubIdColumn);
bookInfoDataSet.Relations.Add(Pub_TitleRelation);

Editing Data in the DataSet
Clients often need to be able to update a DataSet. They may need to add records, delete records, or update an existing
record. Because DataSet objects are disconnected by design, the changes made to the DataSet are not automatically
propagated back to the database. They are held locally until the client is ready to replicate the changes back to the
database. To replicate the changes, you invoke the Update method of the DataAdapter, which determines what
changes have been made to the records and implements the appropriate SQL command (Update, Insert, or Delete)
that has been defined to replicate the changes back to the database.

When you create an Update Command, the command text references parameters in the command’s Parameters
collection that correspond to the fields in the DataTable.

SqlCommand updateCommand = new SqlCommand();
string updateSQL = "Update publishers set pub_name = @pub_name," +
 " city = @city where pub_id = @pub_id";
updateCommand = new SqlCommand(updateSQL, pubConnection);
updateCommand.CommandType = CommandType.Text;

A Parameter object is added to the Command object’s Parameter collection for each parameter in the Update
statement. The Add method of the Parameters collection is passed information on the name of the parameter, the SQL
data type, size, and the source column of the DataSet.

updateCommand.Parameters.Add("@pub_id", SqlDbType.Char, 4, "pub_id");
updateCommand.Parameters.Add("@city", SqlDbType.VarChar, 20, "city");
updateCommand.Parameters.Add("@pub_name", SqlDbType.VarChar, 40, "pub_name");

Once the parameters are created, the updateCommand object is set to the UpdateCommand property of the
DataAdapter object.

pubDataAdapter.UpdateCommand = updateCommand;

Now that the SqlDataAdapter has been set up, you call the Update method of the SQLDataAdapter passing in the
DataSet and the name of the table to update. The SQLDataAdapter examines the RowState property of the rows in the
table and executes the update statement iteratively for each row to be updated.

pubDataAdapter.Update(bookInfoDataSet, "Publishers");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

176

aCtIVItY 10-2. WOrKING WIth DataSet OBJeCtS

In a similar fashion, you could implement the InsertCommand and the DeleteCommand properties of the
DataAdapter to allow clients to insert new records or delete records in the database.

Note ■ For simple updates to a single table in the data source, the .net Framework provides a CommandBuilder class
to automate the creation of the InsertCommand, UpdateCommand, and DeleteCommand properties of the DataAdapter.

In this activity, you will become familiar with the following:

populating a •	 DataSet from a sQl server database

editing data in a •	 DataSet

updating changes from the •	 DataSet to the database

establishing relationships between tables in a •	 DataSet

populating a DataSet from a SQL Server Database

to populate a DataSet from a sQl server database, follow these steps:

1. start Visual studio. select File ➤ new ➤ project.

2. Choose Windows Forms application. rename the project to activity10_2 and click the
OK button.

3. after the project opens, add a new class to the project named Author.

4. Open the Author class code in the code editor. add the following using statements at the
top of the file:

using System.Data;
using System.Data.SqlClient;

5. add the following code to declare a private class level variable for the connection string.

class Author
{
 stri ng _connString = "Data Source=localhost;" +

"Initial Catalog=pubs;Integrated Security=True";

6. Create a method of the Author class called GetData that will use a DataAdapter object
to fill the DataSet and return it to the client.

public DataSet GetData()
{
 DataSet authorDataSet;
 using (SqlConnection pubConnection = new SqlConnection())

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

177

 {
 pubConnection.ConnectionString = _connString;
 using(SqlCommand selectCommand = new SqlCommand())
 {
 selec tCommand.CommandText =

"Select au_id, au_lname,au_fname from authors";
 selectCommand.Connection = pubConnection;
 using (SqlDataAdapter pubDataAdapter = new SqlDataAdapter())
 {
 pubDataAdapter.SelectCommand = selectCommand;
 authorDataSet = new DataSet();
 pubDataAdapter.Fill(authorDataSet, "Author");
 }
 }
 return authorDataSet;
}

7. Build the project and fix any errors.

8. add the controls listed in table 10-3 to Form1 and set the properties as shown.

Table 10-3. Form1 Controls

Control Property Value

DataGridView Name dgvAuthors

AllowUserToAddRows False

AllowUserToDeleteRows False

ReadOnly False

Button Name btnGetData

Text Get Data

Button Name btnUpdate

Text Update

9. Open the Form1 class code file in the code editor. Declare a class-level DataSet object
after the class declaration.

public partial class Form1 : Form
{
 private DataSet _pubDataSet;

10. Open Form1 in the Form Designer. Double-click on the get Data button to open the button
click event method in the code editor.

11. add the following code to the btnGetData click event procedure, which will execute the
GetData method defined in the Author class. this dataset is then loaded into the grid using
the DataSource property.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

178

private void btnGetData_Click(object sender, EventArgs e)
{
 Author author = new Author();
 _pubDataSet = author.GetData();
 dgvAuthors.DataSource = _pubDataSet.Tables["Author"];
}

12. Build the project and fix any errors. Once the project builds, run the project in debug
mode and test the GetData method. you should see the grid filled with author
information. after testing, stop the debugger.

editing and Updating Data in a DataSet

to edit and update data in a DataSet, follow these steps:

1. Open the Author class code in the code editor.

2. Create a method of the Author class called UpdateData that will use the Update method
of the DataAdapter object to pass updates made to the DataSet to the pubs database.

public void UpdateData(DataSet changedData)
{
 using (SqlConnection pubConnection = new SqlConnection())
 {
 pubConnection.ConnectionString = _connString;
 using (SqlCommand updateCommand = new SqlCommand())
 {
 updateCommand.CommandText = "Update authors set au_lname = @au_lname," +
 "au_fname = @au_fname where au_id = @au_id";
 updateCommand.Parameters.Add ("@au_id", SqlDbType.VarChar, 11, "au_id");
 updat eCommand.Parameters.Add

("@au_lname", SqlDbType.VarChar, 40, "au_lname");
 updat eCommand.Parameters.Add

("@au_lname", SqlDbType.VarChar, 40, "au_lname");
 updateCommand.Connection = pubConnection;
 using (SqlDataAdapter pubDataAdapter = new SqlDataAdapter())
 {
 pubDataAdapter.UpdateCommand = updateCommand;
 pubDataAdapter.Update(changedData, "Author");
 }
 }
 }
}

3. Build the project and fix any errors.

4. Open Form1 in the Form Designer. Double-click on the Update Data button to open the
button click event method in the code editor.

5. add the following code to the btnUpdate click event procedure, which will execute the
UpdateData method defined in the Author class. By using the GetChanges method of the
DataSet object, only data that has changed is passed for updating.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

179

private void btnUpdate_Click(object sender, EventArgs e)
{
 Author author = new Author();
 author.UpdateData(_pubDataSet.GetChanges());
}

6. Build the project and fix any errors. Once the project builds, run the project in debug
mode and test the Update method. First, click the get Data button. Change the last name
of several authors and click the Update button. Click the get Data button again to retrieve
the changed values back from the database. after testing, stop the debugger.

establishing relationships between tables in a DataSet

to establish relationships between tables in a DataSet, follow these steps:

1. add a new class named StoreSales to the project.

2. Open the StoreSales class code in the code editor. add the following using statements
at the top of the file:

using System.Data;
using System.Data.SqlClient;

3. add the following code to declare private class level variables for the connection string
and Dataset.

class StoreSales
{
 strin g _connString = "Data Source=localhost;" +

"Initial Catalog=pubs;Integrated Security=True";

4. Create a method of the StoreSales class called GetData that will select store
information and sales information and establish a relationship between them. this
information is used to fill a DataSet and return it to the client.

public DataSet GetData()
{
 DataSet storeSalesDataSet;
 storeSalesDataSet = new DataSet();
 using (SqlConnection pubConnection = new SqlConnection(_connString))
 {
 //Fill store table
 using (SqlCommand storeCommand = new SqlCommand())
 {
 storeCommand.Connection = pubConnection;
 storeCommand.CommandText =
 "SELECT [stor_id],[stor_name],[city],[state] FROM [stores]";
 using (SqlDataAdapter storeDataAdapter = new SqlDataAdapter())
 {
 storeDataAdapter.SelectCommand = storeCommand;
 storeDataAdapter.Fill(storeSalesDataSet, "Stores");
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

180

 }
 //Fill sales table command
 using (SqlCommand salesCommand = new SqlCommand())
 {
 salesCommand.Connection = pubConnection;
 salesCommand.CommandText =
 "SELECT [stor_id],[ord_num],[ord_date],[qty] FROM [sales]";
 using (SqlDataAdapter salesDataAdapter = new SqlDataAdapter())
 {
 salesDataAdapter.SelectCommand = salesCommand;
 salesDataAdapter.Fill(storeSalesDataSet, "Sales");
 }
 }
 //Create relationahip between tables
 DataColumn Store_StoreIdColumn =
 storeSalesDataSet.Tables["Stores"].Columns["stor_id"];
 DataColumn Sales_StoreIdColumn =
 storeSalesDataSet.Tables["Sales"].Columns["stor_id"];
 Data Relation StoreSalesRelation = new DataRelation

("StoresToSales", Store_StoreIdColumn, Sales_StoreIdColumn);
 storeSalesDataSet.Relations.Add(StoreSalesRelation);

 return storeSalesDataSet;
 }
 }

5. Build the project and fix any errors.

6. add a second form to the project. add the controls listed in table 10-4 to Form2 and set
the properties as shown.

Table 10-4. Form2 Controls

Control Property Value

DataGridView Name dgvStores

DataGridView Name dgvSales

Button Name btnGetData

Text Get Data

7. Open the Form2 class code file in the code editor. Declare a class-level DataSet object
after the class declaration.

public partial class Form2 : Form
{
 DataSet StoreSalesDataSet;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

181

8. Open Form2 in the Form Designer. Double-click on the get Data button to open the button
click event method in the code editor.

9. add the following code to the btnGetData click event procedure, which will execute the
GetData method defined in the StoreSales class. this stores table is then loaded into
the stores grid using the DataSource property. setting the DataMember property of the
sales grid loads it with the sales data of the store selected in the stores grid.

private void btnGetData_Click(object sender, EventArgs e)
{
 StoreSales storeSales = new StoreSales();
 StoreSalesDataSet = storeSales.GetData();
 dgvStores.DataSource = StoreSalesDataSet.Tables["Stores"];
 dgvSales.DataSource =StoreSalesDataSet.Tables["Stores"];
 dgvSales.DataMember = "StoresToSales";
}

10. Open the Program class in the code editor. Change the code to launch Form2 when the form
loads.

Application.Run(new Form2());

11. When the form loads, click the get Data button to load the grids. selecting a new row in the
stores grid should update the sales grid to show the store’s sales. When you are finished
testing, stop the debugger and exit Visual studio.

Working with the Entity Framework
The Entity Framework (EF) is an Object-Relational Mapping (ORM) technology built into ADO.NET. EF eliminates
the mismatch between the objected-oriented programming constructs of the .NET language and the relational data
constructs of the database system. For example, to load and work with a customer object, a developer has to send
a SQL string to the database engine. This requires the developer to be familiar with the relational schema of the
data. In addition, the SQL is hardcoded into the application and the application is not shielded from changes in the
underlying schema. Another disadvantage is that since the application sends the SQL statements as a string to the
database engine for processing, Visual Studio can’t implement syntax checking and issue warnings and build errors to
help with programmer productivity.

The Entity Framework provides the mapping schema that allows programmers to work at a higher level of
abstraction. They can write code using object-oriented constructs to query and load the entities (objects defined by
classes). The mapping schema translates the queries against the entities into the required database-specific language
needed to perform CRUD (create, read, update, and delete) operations against the data.

In order to use the Entity Framework in your application, you must first add an ADO.NET Entity Data Model to
your application. This step launches the Entity Data Model Wizard, which allows you to develop your model from
scratch or generate it from an existing database. Choosing to generate it from an existing database allows you to create
a connection to the database and select the tables, views, and stored procedures you want to include in the model.
The output of the wizard is an .edmx file. This file is an XML-based file that has three sections. The first consists of

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

182

store schema definition language (SSDL); this describes the tables and relationships where the data is stored.
The following code shows a portion of the SSDL for a data model generated from the Pubs database:

<EntityContainer Name="pubsModelStoreContainer">
 <EntitySet Name="sales" EntityType="pubsModel.Store.sales"
 store:Type="Tables" Schema="dbo" />
 <EntitySet Name="stores" EntityType="pubsModel.Store.stores"
 store:Type="Tables" Schema="dbo" />
 <AssociationSet Name="FK__sales__stor_id__1273C1CD"
 Association="pubsModel.Store.FK__sales__stor_id__1273C1CD">
 <End Role="stores" EntitySet="stores" />
 <End Role="sales" EntitySet="sales" />
 </AssociationSet>
 </EntityContainer>
 <EntityType Name="sales">
 <Key>
 <PropertyRef Name="stor_id" />
 <PropertyRef Name="ord_num" />
 <PropertyRef Name="title_id" />
 </Key>
 <Property Name="stor_id" Type="char" Nullable="false" MaxLength="4" />
 <Property Name="ord_num" Type="varchar" Nullable="false" MaxLength="20" />
 <Property Name="ord_date" Type="datetime" Nullable="false" />
 <Property Name="qty" Type="smallint" Nullable="false" />
 <Property Name="payterms" Type="varchar" Nullable="false" MaxLength="12" />
 <Property Name="title_id" Type="varchar" Nullable="false" MaxLength="6" />
 </EntityType>

The second section consists of conceptual schema definition language (CSDL); it specifies the entities and
relationships between them. These entities are used to work with data in the application. The following code comes
from the CSDL section of a data model generated from the Pubs database:

<EntityContainer Name="pubsEntities" annotation:LazyLoadingEnabled="true">
 <EntitySet Name="sales" EntityType="pubsModel.sale" />
 <EntitySet Name="stores" EntityType="pubsModel.store" />
 <AssociationSet Name="FK__sales__stor_id__1273C1CD"
 Association="pubsModel.FK__sales__stor_id__1273C1CD">
 <End Role="stores" EntitySet="stores" />
 <End Role="sales" EntitySet="sales" />
 </AssociationSet>
</EntityContainer>
<EntityType Name="sale">
 <Key>
 <PropertyRef Name="stor_id" />
 <PropertyRef Name="ord_num" />
 <PropertyRef Name="title_id" />
 </Key>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

183

 <Property Name="stor_id" Type="String" Nullable="false"
 MaxLength="4" Unicode="false" FixedLength="true" />
 <Property Name="ord_num" Type="String" Nullable="false"
 MaxLength="20" Unicode="false" FixedLength="false" />
 <Property Name="ord_date" Type="DateTime" Nullable="false" />
 <Property Name="qty" Type="Int16" Nullable="false" />
 <Property Name="payterms" Type="String" Nullable="false"
 MaxLength="12" Unicode="false" FixedLength="false" />
 <Property Name="title_id" Type="String" Nullable="false"
 MaxLength="6" Unicode="false" FixedLength="false" />
 <NavigationProperty Name="store"
 Relationship="pubsModel.FK__sales__stor_id__1273C1CD"
 FromRole="sales" ToRole="stores" />
 </EntityType>

The final section of the .edmx file consists of code written in the mapping specification language (MSL). The MSL
maps the conceptual model to the storage model. The following code shows a portion of the MSL section of a data
model generated from the Pubs database:

<EntityContainerMapping StorageEntityContainer="pubsModelStoreContainer"
 CdmEntityContainer="pubsEntities">
 <EntitySetMapping Name="sales"><EntityTypeMapping TypeName="pubsModel.sale">
 <MappingFragment StoreEntitySet="sales">
 <ScalarProperty Name="stor_id" ColumnName="stor_id" />
 <ScalarProperty Name="ord_num" ColumnName="ord_num" />
 <ScalarProperty Name="ord_date" ColumnName="ord_date" />
 <ScalarProperty Name="qty" ColumnName="qty" />
 <ScalarProperty Name="payterms" ColumnName="payterms" />
 <ScalarProperty Name="title_id" ColumnName="title_id" />
 </MappingFragment></EntityTypeMapping></EntitySetMapping>

Visual Studio provides a visual designer to work with the entity model. Using this designer you can update the
entities, add associations, and implement inheritance. Changes made in the visual model are translated back to
the .edmx file which is updated accordingly. Figure 10-1 shows entities in the visual designer that were generated
from the pubs database.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

184

Querying Entities with LINQ to EF
When creating the ADO.NET entity data model using the Entity Data Model Wizard, an ObjectContext class is
created that represents the entity container defined in the model. The ObjectContext class supports CRUD-based
queries against the entity model. Queries written against the ObjectContext class are written using LINQ to EF. As
noted previously, LINQ stands for Language-Integrated Query. LINQ allows developers to write queries in C# syntax,
which, when executed, are converted to the query syntax of the data provider. Once the query is executed and data is
returned, the Entity Framework converts the results back to the entity object model.

Figure 10-1. Entities in the entity model designer

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

185

The following code uses the Select method to return all the rows from the Stores table and return the results as
a list of Store entities. The store names are then written to the console window.

var context = new pubsEntities();
var query = from s in context.stores
 select s;
var stores = query.ToList();
foreach (store s in stores)
{
 Console.WriteLine(s.stor_name);
}
Console.ReadLine();

LINQ to EF provides a rich set of query operations, including filtering, ordering, and grouping operations. The
following code demonstrates filtering stores by state:

var context = new pubsEntities();
var query = from s in context.stores
 where s.state == "WA"
 select s;
var stores = query.ToList();

The following code selects sales entities that have ordered more than 25 objects and then orders them by
descending date:

var context = new pubsEntities();
var query = from s in context.sales
 where s.qty > 25
 orderby s.ord_date descending
 select s;
var sales = query.ToList();

Since the Entity Framework includes navigation properties between entities, you can easily build complex
queries based on related entities. The following query selects stores with more than five sales orders:

var context = new pubsEntities();
var query = from s in context.stores
 where s.sales.Count > 5
 select s;
var stores = query.ToList();

Note ■ For more information on the lInQ query language, refer to the msDn library at http://msdn.microsoft.com.

www.it-ebooks.info

http://msdn.microsoft.com/
http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

186

Updating Entities with the Entity Framework
The Entity Framework tracks changes made to the entity types represented in the Context object. You can add, update
or delete entity objects. When you are ready to persist the changes back to the database, you call the SaveChanges
method of the context object. The EF creates and executes the insert, update, or delete statements against the
database. You can also explicitly map stored procedures to implement the database commands. The following code
selects a store using the store ID, updates the store name, and sends it back to the database:

var context = new pubsEntities();
var store = (from s in context.stores
 where s.stor_id == storeId
 select s).First();
store.stor_name = "DRC Books";
context.SaveChanges();

aCtIVItY 10-3. retrIeVING Data WIth the eNtItY FraMeWOrK

In this activity, you will become familiar with the following:

creating an entity Data model•	

executing queries using lInQ to eF•	

Creating an entity Data Model

to create an entity data model, follow these steps:

1. start Visual studio. select File ➤ new ➤ project.

2. Choose Console application. rename the project to activity10_3 and click the OK button.

3. right-click on the project node in solution explorer and select add ➤ new Item.

4. Under the Data node in the add new Item window, select an aDO.net entity Data model.
name the model pubs.edmx and click add.

5. In the Choose model Contents screen, select the generate from database and click next.

6. In the Choose your Data Connection screen, create a connection to the pubs database
and choose next. (see Figure 10-2)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

187

7. In the Choose your Database Objects screen, expand the tables node and select the
sales, stores, and titles tables, as shown in Figure 10-3. Click Finish.

Figure 10-2. Creating a database connection with the Entity Data Model Wizard

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

188

8. you are presented with the entity model Designer containing the sales, store, and title
entities, as shown in Figure 10-4.

Figure 10-3. Selecting database objects for an Entity Data Model

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

189

9. In the entity model Designer right-click on the title entity and select rename. rename it
to book. In the book entity, rename the title1 property to title.

Querying an entity Data Model

to query this entity data model using lInQ, follow these steps:

1. Open the program.cs file in the Code editor Window.

2. add the following method to select the book entities and write their titles to the Console
window:

private static void GetTitles()
{
 var context = new pubsEntities();
 var query = from b in context.books select b;
 var books = query.ToList();
 foreach (book b in books)
 {
 Console.WriteLine(b.title);
 }
 Console.ReadLine();
}

3. Call the GetTitles method from the Main method.

static void Main(string[] args)
{
 GetTitles();
}

Figure 10-4. Entity Model Designer

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

190

4. run the program in debug mode. you should see the titles listed in the Console window.
When you are done testing, stop the debugger.

5. add the following method that gets books in the 10 to 20 dollar range and orders them
by price:

private static void GetTitlesByPrice()
{
 var context = new pubsEntities();
 var query = from b in context.books
 where b.price >= (decimal)10.00
 && b.price <= (decimal)20.00
 orderby b.price
 select b;
 var books = query.ToList();
 foreach (book b in books)
 {
 Console.WriteLine(b.price + " -- " + b.title);
 }
 Console.ReadLine();
}

6. Call the gettitlesByprice method from the main method.

static void Main(string[] args)
{
 //GetTitles();
 GetTitlesByPrice();
}

7. run the program in debug mode. you should see the titles and prices listed in the Console
window. When you are done testing, stop the debugger.

8. add the following method to list the book titles and the sum of their sales amount. notice
that this query gets the sales amount by adding up the book’s related sales entities.

private static void GetBooksSold()
{
 var context = new pubsEntities();
 var query = from b in context.books
 select new
 {
 BookID = b.title_id,
 TotalSold = b.sales.Sum(s =>(int?) s.qty)
 };
 foreach (var item in query)
 {
 Console.WriteLine(item.BookID + " -- " + item.TotalSold);
 }
 Console.ReadLine();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ ImplementIng the Data aCCess layer

191

9. Call the GetBooksSold method from the Main method.

static void Main(string[] args)
{
 //GetTitles();
 //GetTitlesByPrice();
 GetBooksSold();
}

10. run the program in debug mode. you should see the book IDs and amount sold listed in the
Console window. When you are done testing, stop the debugger and exit Visual studio.

Summary
This chapter is the first in a series that will show you how to build the various tiers of an OOP application. To
implement an application’s data access layer, you learned about ADO.NET and the classes used to work with
relational data sources. You looked at the various classes that make up the System.Data.SqlClient namespace; these
classes retrieve and update data stored in a SQL Server database. You also examined the System.Data namespace
classes that work with disconnected data. In addition, you were exposed to the Entity Framework and LINQ and saw
how they allow you to query the data using OOP constructs. You wrote queries in terms of entities, and the framework
translated the queries into the query syntax of the datasource, retrieved the data, and loaded the entities.

In Chapter 11, you will look at implementing the user interface (UI) tier of a Windows application. Along the way,
you will take a closer look at the classes and namespaces of the .NET Framework used to create rich Windows-based
user interfaces.

www.it-ebooks.info

http://www.it-ebooks.info/

193

Chapter 11

Developing WPF Applications

In Chapter 10, you learned how to build the data access layer of an application. To implement its logic, you used
the classes of the System.Data namespace. These classes retrieve and work with relational data, which is a common
requirement of many business applications. You are now ready to look at how users will interact with your application.
Users interact with an application through the user interface layer. This layer, in turn, interacts with the business logic
layer, which, in turn, interacts with the data access layer. In this chapter, you will learn how to build a user interface
layer with the .NET Windows Presentation Foundation (WPF). WPF is commonly used to develop desktop business
productivity applications running on Windows 7 and above. Business productivity applications target business
users who need to query and update data stored in a backend database. It consists of a comprehensive set of
application-development features that include Extensible Application Markup Language (XAML), controls, data
binding, and layout. The concepts discussed in this chapter will also lay a foundation for Chapter 13, in which we
look at creating the new Windows Store app user interface for Windows 8. These applications use a similar model for
creating interfaces with XAML and data binding controls.

After reading this chapter, you will be comfortable performing the following tasks:

using XAML markup to design a user interface•	

working with layout controls•	

working with display controls•	

responding to control events•	

using data binding controls•	

creating and using control templates•	

Windows Fundamentals
Windows are objects with a visual interface that are painted on the screen to provide users a way to interact with
programs. Like most objects you work with in object-oriented languages, .NET windows expose properties, methods,
and events. A window’s properties define its appearance. Its Background property, for example, determines its color.
The methods of a window define its behaviors. For example, calling its Hide method hides it from the user. A window’s
events define interactions with the user (or other objects). You can use the MouseDown event, for example, to initiate an
action when the user clicks the right mouse button on the window.

Controls are components with visual interfaces that give users a way to interact with the program. A window is
a special type of control, called a container control, which hosts other controls. You can place many different types
of controls on windows. Some common controls used on windows are TextBoxes, Labels, OptionButtons, ListBoxes,
and CheckBoxes. In addition to the controls provided by the .NET Framework, you can also create your own custom
controls or purchase controls from third-party vendors.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Developing WpF appliCations

194

Introducing XAML
WPF user interfaces are built using a declarative markup language called XAML. XAML declares the controls that will
make up the interface. An opening angle bracket (<) followed by the name of the control type and a closing bracket
define the control. For example, the following markup defines a button control inside a Grid.

<Grid>
 <Button/>
</Grid>

Notice the Grid needs a formal closing tag because it contains the Button control. Since the Button control does
not contain any other elements, you can use a forward slash (/) in front of the end bracket to close it.

The next step is to define the properties of the controls. For example, you may want to set the background color
of the button to red and write some text on it. The properties of the control are set by using attribute syntax, which
consists of the property name followed by an equal sign and the attribute value in quotation marks. The following
markup shows the Button control with some attributes added:

<Grid>
 <Button Content="Click Me" Background="Red"/>
</Grid>

For some properties of an object element a syntax known as property element syntax is used. The syntax for the
property element start tag is <typeName.propertyName>. For example, you can create rows and columns in the layout
grid to control placement of controls in the grid, as shown:

<Grid.ColumnDefinitions>
 <ColumnDefinition Width="100" />
 <ColumnDefinition Width="*" />
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
 <RowDefinition Height="25" />
 <RowDefinition Height="25" />
 <RowDefinition Height="25" />
</Grid.RowDefinitions>

Controls are positioned in the grid by including a Grid.Row and Grid.Column attribute, as shown:

<Label Grid.Column="0" Grid.Row="0" Content="Name:" />
 <Label Grid.Column="0" Grid.Row="1" Content="Password:" />
 <TextBox Name="txtName" Grid.Column="1" Grid.Row="0"/>
 <TextBox Name="txtPassword" Grid.Column="1" Grid.Row="1"/>
 <Button Grid.Column="1" Grid.Row="3"
 Content="Click Me" HorizontalAlignment="Right"
 MinWidth="80" Background="Red"/>

Figure 11-1 shows the window with two textboxes created by the previous XAML code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Developing WpF appliCations

195

Using Layout Controls
Although you can use fixed positioning to place controls on a WPF window, it’s not recommended. Using fixed
positioning usually works well for a fixed resolution size but it doesn’t scale well to different resolutions and devices.
To overcome the limitations of fixed positioning, WPF offers several layout controls. A layout control allows you to
position other controls within it using a relative positioning format. One of the main layout controls for positioning
other controls is the Grid. As seen previously, a Grid control contains columns and rows to control the placement of
its child controls. The height and width of the columns and rows can be set to a fixed value, auto, or *. The auto setting
takes up as much space as needed by the contained control. The * setting takes up as much space as is available.
The Grid control is often used to lay out data entry forms. The following code lays out a simple data entry form used to
collect user information. The resulting form (in the Visual Studio designer) is shown in Figure 11-2.

<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="28" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="200" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Label Grid.Row="0" Grid.Column="0" Content="Name:"/>
 <Label Grid.Row="1" Grid.Column="0" Content="Old Password:"/>
 <Label Grid.Row="2" Grid.Column="0" Content="New Password:"/>
 <Label Grid.Row="3" Grid.Column="0" Content="Confirm Password:"/>
 <TextBox Grid.Column="1" Grid.Row="0" Margin="3" />
 <TextBox Grid.Column="1" Grid.Row="1" Margin="3" />
 <TextBox Grid.Column="1" Grid.Row="2" Margin="3" />
 <TextBox Grid.Column="1" Grid.Row="3" Margin="3" />
 <Button Grid.Column="1" Grid.Row="4" HorizontalAlignment="Right"
 MinWidth="80" Margin="0,0,0,8" Content="Submit" />
</Grid>

Figure 11-1. A window created with XAML

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Developing WpF appliCations

196

Another useful layout control is the StackPanel. It lays out child controls either vertically or horizontally
depending on the orientation setting. The following code shows two buttons in a StackPanel control:

<StackPanel Grid.Column="1" Grid.Row="4" Orientation="Horizontal" >
 <Button MinWidth="80" Margin="0,0,0,8" Content="Submit" />
 <Button MinWidth="80" Margin="0,0,0,8" Content="Cancel" />
</StackPanel>

Some other layout controls available are the DockPanel, WrapPanel, and Canvas. The DockPanel is used to
provide docking of elements to the left, right, top, bottom, or center of the panel. The WrapPanel acts like a StackPanel
but will wrap child controls to a new line if no room is left. The Canvas control is used to lay out its child elements
with absolute positioning relative to one of its sides. It is typically used for graphics elements and not to lay out user
interface controls.

Adding Display Controls
The goal of most business applications is to present data to users and allow them to update the data and save it back
to a database. Some common controls used to facilitate this process are the Textbox, ListBox, ComboBox, Checkbox,
DatePicker, and DataGrid. You have already seen the TextBox used on a window; the following code shows how to add
a ListBox and ComboBox to a window. Figure 11-3 shows how the window is rendered.

<Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <ListBox Margin="20" Grid.Column="0">
 <ListBoxItem>Red</ListBoxItem>
 <ListBoxItem>Blue</ListBoxItem>
 <ListBoxItem>Green</ListBoxItem>
 <ListBoxItem>Yellow</ListBoxItem>
 </ListBox>
 <ComboBox Grid.Column="1" VerticalAlignment="Top">
 <ComboBoxItem>Small</ComboBoxItem>
 <ComboBoxItem>Medium</ComboBoxItem>

Figure 11-2. Input form window

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Developing WpF appliCations

197

 <ComboBoxItem>Large</ComboBoxItem>
 <ComboBoxItem>X-Large</ComboBoxItem>
 </ComboBox>
</Grid>

Figure 11-3. Window containing a ListBox and ComboBox

Although you can code the items displayed in these controls directly in the XAML markup, it is more likely that
you will use data binding to display their values. You’ll look at data binding shortly.

Using the Visual Studio Designer
Even though it’s quite possible to create your window entirely through code using a text editor, you would probably
find this process quite tedious and not a very productive use of your time. Thankfully, the Visual Studio IDE includes
an excellent designer for creating your WPF windows. Using the designer, you can drag and drop controls from
the Toolbox to the Visual Studio designer, set its properties using the Visual Studio Properties window, and get the
benefits of auto completion and syntax checking as you enter code using the XAML editor. Figure 11-4 shows a
window in the Visual Studio designer.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Developing WpF appliCations

198

Handling Control Events
Windows graphical user interface (GUI) programs are event-driven. Events are actions initiated by either a user or
the system, whenever a user clicks a button, for example, or a SqlConnection object issues a StateChange event.
Event-driven applications respond to the various events that occur by executing code that you specify. To respond to
an event, you define the event handler to execute when a particular event occurs. As you saw in Chapter 8, the .NET
Framework uses delegation to bind an event, with the event handler procedures written to respond to the event.
A delegation object maintains an invocation list of methods that have subscribed to receive notification when the
event occurs. When an event occurs—for example, a button is clicked—the control will raise the event by invoking
the delegate for the event, which in turn will call the event handler methods that have subscribed to receive the event
notification. Although this sounds complicated, the framework classes do most of the work for you.

In Visual Studio, you can add an event to a WPF control either by writing XAML code or by selecting it in the
control’s Properties window. Figure 11-5 shows wiring up an event handler in the XAML Editor window; Figure 11-6
shows wiring up an event handler using the Events tab of the Properties window. Note that when working with controls
in code, you need to give them a unique name using the Name attribute.

Figure 11-4. Designing a window in Visual Studio

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Developing WpF appliCations

199

The following code shows the event handler method inserted in the code behind file for the button click event:

private void btnSubmit_Click(object sender, RoutedEventArgs e)
{
}

By convention, the name of the event handler method begins with the name of the object issuing the event
followed by an underscore (_) and the name of the event. The actual name of the event handler, however, is
unimportant. The Click attribute in the XAML code adds this method to the invocation list of the event’s
delegation object.

All event handlers must provide two parameters, which are passed to the method when the event is fired. The
first parameter is the sender, which represents the object that initiated the event. The second parameter, of type
System.Windows.RoutedEventArgs, is an object used to pass any information specific to the particular event.

Because the .NET Framework uses delegates for event notification, you can use the same method to handle more
than one event, provided the events have the same signature. For example, you could handle a button click event and
a menu click event with the same event handler, but not a text box key press event, because it has a different signature.

Figure 11-5. Wiring up an event handler in the XAML editor

Figure 11-6. Wiring up an event handler in the Properties window

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Developing WpF appliCations

200

The following code demonstrates how to handle the button click event of two buttons that use the same handler
method. The sender parameter is cast as a Button type and interrogated to determine which button fired the event.

private void Button_Click(object sender, RoutedEventArgs e)
{
 Button btn = (Button)sender;
 if (btn.Name == "btnCancel")
 {
 //Cancel code goes here
 }
 else if (btn.Name == "btnSubmit")
 {
 //Submit code goes here
 }
}

In the following activity, you will work with forms and controls to construct a simple memo viewer application
that will allow users to load and view memo documents.

aCtIVItY 11-1. WOrKING WIth WINDOWS aND CONtrOLS

in this activity, you will become familiar with the following:

creating a Windows Form-based gUi application•	

working with Menu, statusstrip, and Dialog controls•	

working with Control events•	

Creating the Memo Viewer Interface

to create the memo viewer interface, follow these steps:

1. start visual studio. select File ➤ new ➤ project.

2. Choose a WpF application under the C# projects folder. rename the project to
activity11_1 and click the oK button.

3. the project contains a MainWindow.xaml file. this file is where you design the user
interface. the project also contains a MainWindow.xaml.cs file. this is the codebehind file
and it is where you will add the code to respond to the events. if not already open, open
the MainWindow.xaml file in the XaMl editor Window.

4. in the Window tag of the XaMlmarkup, add a name attribute with a value of
“Memoviewer”. Change the title attribute to “Memo viewer”.

<Window x:Name="Memoviewer" x:Class="Act11_1.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Memo Viewer" Height="350" Width="525">

www.it-ebooks.info

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://www.it-ebooks.info/

Chapter 11 ■ Developing WpF appliCations

201

5. add a Dockpanel control in the grid control.

<Grid>
 <DockPanel LastChildFill="True">
 </DockPanel>
</Grid>

6. add a Menu control inside the Dockpanel and dock it to the top using the
following XaMl:

<DockPanel LastChildFill="True">
 <Menu DockPanel.Dock="Top">
 <MenuItem Header="_File">
 <MenuItem Name="mnuNew" Header="_New. . ." />
 <Separator />
 <MenuItem Name="mnuOpen" Header="_Open. . ." />
 <Separator />
 <MenuItem Name="mnuSave" Header="_Save" />
 <MenuItem Name="mnuSaveAs" Header="_Save As. . ." />
 <Separator />
 <MenuItem Name="mnuExit" Header="_Exit" />
 </MenuItem>
 <MenuItem Header="_Edit">
 <MenuItem Header="_Cut. . ." />
 <MenuItem Header="_Copy. . ." />
 <MenuItem Header="_Paste" />
 </MenuItem>
 </Menu>
</DockPanel>

7. add a statusBar control by inserting the following code between the ending Menu tag and
the ending DockPanel tag. note that you are using a grid control inside the statusBar
control to lay out the items in the statusBar.

<StatusBar DockPanel.Dock="Bottom">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="4*"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 </Grid>
 <StatusBarItem Grid.Column="0" HorizontalAlignment="Left">
 <TextBlock Name="sbTextbox1">File Name</TextBlock>
 </StatusBarItem>
 <StatusBarItem Grid.Column="1" HorizontalAlignment="Right">
 <TextBlock Name="sbTextbox2">Date</TextBlock>
 </StatusBarItem>
</StatusBar>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Developing WpF appliCations

202

8. add a richtextBox control after the StatusBar end tag and before the DockPanel end tag.

 </StatusBar>
 <RichTextBox Name="rtbMemo" />
</DockPanel>

9. note that as you add the XaMl, the visual Designer updates the appearance of the
window. the Memo viewer window should look similar to the one shown Figure 11-7.

Figure 11-7. The completed MemoEditor window

10. Build the solution. if there are any errors, fix them and rebuild.

Coding the Control events

to code the control events, follow these steps:

1. in the XaMl editor window, add the Loaded event attribute to the Window, as shown:

<Window x:Class="Act11_1.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Name="MemoViewer" Title="Memo Viewer" Height="350" Width="525"
 Loaded="MemoViewer_Loaded">

www.it-ebooks.info

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://www.it-ebooks.info/

Chapter 11 ■ Developing WpF appliCations

203

2. open the codebehind file by right-clicking the XaMl code editor and selecting view Code.
add the following code to the MemoViewer_Loaded event handler. When the window
loads, it should show the message on the left side of the statuspanel and the date on
the right.

private void MemoViewer_Loaded(object sender, RoutedEventArgs e)
{
 sbTextbox1.Text = "Ready to load file";
 sbTextbox2.Text = DateTime.Today.ToShortDateString();
}

3. in the XaMl editor, add the Click event to the mnuopen control.

<MenuItem Name="mnuOpen" Header="_Open. . ."
 Click="mnuOpen_Click"/>

4. in the Code editor window of the codebehind file, add the following code to the menu
click event. this code configures and launches an open File Dialog box, which returns the
file path. the file path is then passed to a FileStream object, which loads the file into the
richtextBox. the file path is also loaded into the statusBar textBox.

private void mnuOpen_Click(object sender, RoutedEventArgs e)
{
 // Configure open file dialog box
 Microsoft.Win32.OpenFileDialog dlg = new Microsoft.Win32.OpenFileDialog();
 dlg.FileName = "Document"; // Default file name
 dlg.DefaultExt = ".txt"; // Default file extension
 dlg.Filter = "Text documents (.txt)|*.txt"; // Filter files by extension
 // Show open file dialog box
 Nullable<bool> result = dlg.ShowDialog();
 // Process open file dialog box results
 if (result == true)
 {
 // Open document and load RichTextBox
 string fileName = dlg.FileName;
 TextRange range;
 System.IO.FileStream fStream;
 if (System.IO.File.Exists(fileName))
 {
 range = new TextRange(rtbMemo.Document.ContentStart,
 rtbMemo.Document.ContentEnd);
 fStream = new System.IO.FileStream
 (fileName,System.IO.FileMode.OpenOrCreate);
 range.Load(fStream, System.Windows.DataFormats.Text);
 fStream.Close();
 }
 sbTextbox1.Text = fileName;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Developing WpF appliCations

204

5. add a click event for the mnuexit control with the following code to close the window:

private void mnuExit_Click(object sender, RoutedEventArgs e)
{
 this.Close();
}

6. Build the solution and fix any errors.

7. Create a Memos folder on the C drive. Using notepad, create a text file containing a test
message. save the file as test.txt.

8. select Debug ➤ start. test the application by loading the test.txt file. after viewing the
file, close the window by clicking the exit menu.

9. after testing the application, exit visual studio.

Creating and Using Dialog Boxes
Dialog boxes are special windows often used in Windows-based GUI applications to display or retrieve information
from users. The difference between a normal window and a dialog box is that a dialog box is displayed modally. A
modal window prevents the user from performing other tasks within the application until the dialog box has been
dismissed. When you start a new project in Visual Studio, you are presented with a New Project dialog box, as shown
in Figure 11-8. You can also use dialog boxes to present the user with critical information and query them for a
response. For example, if you try to run an application in debug mode and a build error is encountered, the Visual
Studio IDE presents you with a dialog box asking whether you want to continue (see Figure 11-9).

Figure 11-8. The New Project dialog box

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Developing WpF appliCations

205

Presenting a MessageBox to the User
The dialog box shown in Figure 11-9 is a special predefined type called a MessageBox. The MessageBox class is part
of the System.Windows namespace. The MessageBox class can display a standard Windows message dialog box.
To display a MessageBox to the user, you call the static Show method of the MessageBox, like so:

MessageBox.Show("File Saved");

The Show method is overloaded so that you can optionally show a MessageBox icon, show a title, change the
buttons displayed, and set the default button. The only required setting is the text message to be displayed on the
form. Figure 11-10 shows the MessageBox displayed by the previous code.

Figure 11-9. Displaying critical information using a dialog box

Figure 11-10. A basic MessageBox

The following code calls the Show method using some of the other parameters. Figure 11-11 shows the resulting
MessageBox that gets displayed. For more information on the various parameters and settings available, look up the
MessageBox class in the Visual Studio help file.

MessageBox.Show("Are you sure you want to quit?",
 "Closing Application",MessageBoxButton.OKCancel,
 MessageBoxImage.Question);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Developing WpF appliCations

206

You will often use a MessageBox to query for a user response to a question. The user responds by clicking
a button. The result is passed back as the return value of the MessageBox.Show method in the form of a
MessageBoxResult enumeration. The following code captures the dialog box result entered by a user and closes the
window (or not), depending on the result:

MessageBoxResult result = MessageBox.Show("Are you sure you want to quit?",
 "Closing Application",MessageBoxButton.OKCancel,
 MessageBoxImage.Question);
if (result == MessageBoxResult.OK)
{
 this.Close();
}

Creating a Custom Dialog Box
One of the most exciting features about the .NET Framework is its extensibility. Although there are many types of
dialog boxes, you can use “right-out-of-the-box” ones for such tasks as printing, saving files, and loading files. You can
also build your own custom dialog boxes. The first step in creating a custom dialog box is to add a new window to the
application. Next, add any controls needed to interact with the user. Figure 11-12 shows a dialog box you might use to
verify a user’s identity.

Figure 11-11. A more complex MessageBox

Figure 11-12. A custom dialog box

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Developing WpF appliCations

207

Setting the IsCancel property of the Cancel button to true associates it with the keyboard shortcut of the ESC key.
Setting the IsDefault property of the Login button to true associates it with the keyboard Enter key. This is shown in
the following XAML code:

<StackPanel Grid.Column="1" Grid.Row="3" Orientation="Horizontal">
 <Button Name="loginButton" IsDefault="True">Login</Button>
 <Button Name="cancelButton" IsCancel="True">Cancel</Button>
</StackPanel>

When the Login button is clicked, the click event of the button is responsible for validating the user input and
setting the DialogResult property to either true or false. This value is returned to the window that called the Show
method of the DialogWindow for further processing. The following code shows the LoginDialog window called and
the DialogResult property being interrogated. Notice that the calling window has access to the objects defined on the
DialogWindow. In this case, it is interrogating the txtName textbox’s Text property.

LoginDialog dlg = new LoginDialog();
dlg.Owner = this;
dlg.ShowDialog();
if (dlg.DialogResult == false)
{
 string user = dlg.txtName.Text;
 MessageBox.Show("Invalid login for " + user, "Warning",
 MessageBoxButton.OK, MessageBoxImage.Exclamation);
 this.Close();
}

Data Binding in Windows-Based GUIs
Once you have retrieved the data from the business logic tier, you must present it to the user. The user may need
to read through the data, edit the data, add records, or delete records. Many of the controls you’ll want to add to a
window can display data. The choice of which control to use often depends on the type of data you want to display,
the ways you want to manipulate it, and the design you have in mind for your interface. Among the controls .NET
developers commonly use to present data are the TextBox, DataGrid, Label, ListBox, CheckBox, and Calendar. When
different fields of a data source are presented to the user in separate controls (for example, a first name TextBox and
last name TextBox), it is important that the controls remain synchronized to show the same record.

The .NET Framework encapsulates much of the complexity of synchronizing controls to a data source through a
process called data binding. When you create a binding between a control and some data, you are binding a binding
target to a binding source. A binding object handles the interaction between the binding source and the binding
target. OneWay binding causes changes to the source property to automatically update the target property, but
changes to the target property are not propagated back to the source property. This is useful for read-only scenarios.
TwoWay binding causes changes to either the source property or the target property to automatically update the
other. This is useful for full data updating scenarios.

Binding Controls Using a DataContext
To bind a control to data, you need a data source object. The DataContext of a container control allows child controls
to inherit information from their parent controls about the data source that is used for binding. The following code
sets the DataContext property of the top level Window control. It uses a DataSet and a TableAdapter to fill a Table
object and set it to the DataContext of the Window.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Developing WpF appliCations

208

private void Window_Loaded(object sender, RoutedEventArgs e)
{
 pubsDataSet dsPubs = new pubsDataSet();
 pubsDataSetTableAdapters.storesTableAdapter taStores =
 new pubsDataSetTableAdapters.storesTableAdapter();
 taStores.Fill(dsPubs.stores);
 this.DataContext = dsPubs.stores.DefaultView;
}

The following XAML code binds the DataGrid columns to the Store table columns using the Path attribute. Using
Binding for the source means “look up the container hierarchy until a DataContext is found.” In this case, it’s the
DataContext of the Window container.

<DataGrid AutoGenerateColumns="False" ItemsSource="{Binding}">
 <DataGrid.Columns>
 <DataGridTextColumn x:Name="stor_idColumn"
 Binding="{Binding Path=stor_id}" Header="Id" />
 <DataGridTextColumn x:Name="stor_nameColumn"
 Binding="{Binding Path=stor_name}" Header="Name" />
 <DataGridTextColumn x:Name="stateColumn"
 Binding="{Binding Path=state}" Header="State" />
 <DataGridTextColumn x:Name="zipColumn"
 Binding="{Binding Path=zip}" Header="Zip" />
 </DataGrid.Columns>
</DataGrid>

The resulting DataGrid loaded with store data is shown in Figure 11-13.

Figure 11-13. Displaying store data with a DataGrid

In the following activity, you will bind a DataGrid control to a DataTable containing data from Pubs database. You
will also use a DataAdapter to update data changes made in the DataGrid control back to the Pubs database.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Developing WpF appliCations

209

aCtIVItY 11-2. WOrKING WIth Data BOUND CONtrOLS

in this activity, you will become familiar with the following:

binding a Datagrid to a Datatable•	

updating data using the Dataadapter•	

Binding a DataGrid to a Datatable

to bind a Datagrid to a Datatable object, follow these steps:

Create a DataSet

1. start visual studio. select File ➤ new ➤ project.

2. Choose WpF application. rename the project to activity11_2 and click the oK button.

3. after the project loads, locate the Data sources window located on the left side of the
screen. Click on the add new Data source link.

4. in the Data source Configuration wizard, choose a data source type of Database and click
next to continue.

5. in the Choose a Database Model window, select the Dataset and click next.

6. in the Choose your Data Connection window, select or create a connection to the pubs
database and click next.

7. on the next screen, save the connection to the application configuration file.

8. in the Choose Your Database objects window, expand the tables’ node and select the
authors table. Click the Finish button.

9. note in the solutions explorer window a pubsDataset.xsd file has been added to the
file. this file represents a strongly typed dataset object based on the pubs database.
Double-click the file node in solution explorer to launch the dataset visual editor.

10. the visual editor contains an authors table. select the authorstableadapter, as shown in
Figure 11-14. in the properties window, notice that the select, insert, update, and delete
commands have been generated for you (see Figure 11-15).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Developing WpF appliCations

210

Create the Window Layout

1. open the MainWindow in the XaMl editor window. Change the title of the Window to
“phone list”.

2. inside the Grid tags, add a Dockpanel control. inside the Dockpanel, add a stackpanel.

Figure 11-14. Selecting authorsTableAdapter

Figure 11-15. Viewing the generated command text

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Developing WpF appliCations

211

<Grid>
 <DockPanel>
 <StackPanel DockPanel.Dock="Top" Orientation="Horizontal">

 </StackPanel>
 </DockPanel>
</Grid>

3. inside the stackpanel, add two buttons—one for getting data and one for updating data.
add a Click event handler for each button.

<StackPanel DockPanel.Dock="Top" Orientation="Horizontal">
 <Button Name="btnGetData" Content="Get Data"
 Click="btnGetData_Click" />
 <Button Name="btnSaveData" Content="Save Data" />
</StackPanel>

4. outside the stackpanel but inside the Dockpanel, add a Datagrid.

<DataGrid Name="dgAuthors" AutoGenerateColumns="True"
 DockPanel.Dock="Bottom" />
 </DockPanel>
</Grid>

Load the DataGrid

1. open the MainWindow.xaml.cs file in the Code editor window.

2. add three class level variables of type pubsDataset, authorsTableAdapter, and
authorsDataTable.

public partial class MainWindow : Window
{
 pubsDataSet _dsPubs;
 pubsDataSetTableAdapters.authorsTableAdapter _taAuthors;
 pubsDataSet.authorsDataTable _dtAuthors;

3. in the btnGetData_Click event, add code to fill the _taauthors table and set it equal to
the DataContext of the dgauthors grid.

private void btnGetData_Click(object sender, RoutedEventArgs e)
{
 _dsPubs = new pubsDataSet();
 _taAuthors = new pubsDataSetTableAdapters.authorsTableAdapter();
 _dtAuthors = new pubsDataSet.authorsDataTable();
 _taAuthors.Fill(_dtAuthors);
 this.dgAuthors.DataContext = _dtAuthors;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Developing WpF appliCations

212

4. switch back to the XaMl editor Window and add the itemssource binding to the
Datagrid’s XaMl code. this will bind it to the DataContext.

<DataGrid Name="dgAuthors" AutoGenerateColumns="True"
 DockPanel.Dock="Bottom" ItemsSource="{Binding}" />

5. select Debug ➤ start. test the application by clicking the get Data button. the Datagrid will
load with the authors’ data (see Figure 11-16). notice that since the AutoGenerateColumns
property of the Datagrid is set to true, the grid loads with all the columns in the table. the
headers of the grid columns are also the same name as the author’s table columns.

6. after viewing the window, stop the debugger.

Figure 11-16. The authors DataGrid

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Developing WpF appliCations

213

Updating Data

1. open the MainWindow.xaml.cs file in the Code editor window. add the following code
to update the data in the btnSaveData_Click event handler. this code uses the table
adapter’s update command to send the changes back to the database. You must also
alter the btnsaveData’s XaMl to call this event when it is clicked.

private void btnSaveData_Click(object sender, RoutedEventArgs e)
{
 try
 {
 _taAuthors.Update(_dtAuthors);
 MessageBox.Show("Data Saved.",
 "Information", MessageBoxButton.OK,
 MessageBoxImage.Information);
 }
 catch (Exception ex)
 {
 MessageBox.Show("Could not save data!",
 "Warning",MessageBoxButton.OK,
 MessageBoxImage.Warning);
 }
}

2. Update the grid’s XaMl code to only show the first name, last name, and phone columns.

<DataGrid Name="dgAuthors" AutoGenerateColumns="False"
 DockPanel.Dock="Bottom" ItemsSource="{Binding}">
 <DataGrid.Columns>
 <DataGridTextColumn Header="Last Name"
 Binding="{Binding Path='au_lname'}" />
 <DataGridTextColumn Header="First Name"
 Binding="{Binding Path='au_fname'}" />
 <DataGridTextColumn Header="Phone"
 Binding="{Binding Path='phone'}" />
 </DataGrid.Columns>
</DataGrid>

3. select Debug ➤ start. test the application by clicking the get Data button. Update some
of the names. Click the save Data button and then click the get Data button to verify the
names were saved to the database.

4. after testing, stop the debugger and exit visual studio.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Developing WpF appliCations

214

The following XAML is the markup that defines the custom template used to create the rounded button in
Figure 11-17.

<Window.Resources>
 <Style x:Key="RoundedButtonStyle" TargetType="Button">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type Button}">
 <Grid>
 <Ellipse Fill="{TemplateBinding Background}"
 Stroke="{TemplateBinding BorderBrush}"/>
 <ContentPresenter HorizontalAlignment="Center"
 VerticalAlignment="Center"/>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
</Window.Resources>

The following XAML code is used to bind the custom style to a button using the button’s Style property:

<Button Content="Rounded Button" Style="{StaticResource RoundedButtonStyle}"

Figure 11-17. Creating a rounded button with a custom template

Creating and Using Control and Data Templates
In WPF, every control has a template that manages its visual appearance. If you don’t explicitly set its Style
property, then it uses a default template. Creating a custom template and assigning it to the Style property is an
excellent way to alter the look and feel of your applications. Figure 11-17 shows a rounded button created by using
a control template.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Developing WpF appliCations

215

By adding a DataTemplate to the ListBox control, you can not only get the employee data to display, but you can
also control how it gets displayed. The following XAML adds a DataTemplate to the ListBox, and Figure 11-19 shows
the result:

<ListBox ItemsSource="{Binding}" >
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <TextBlock FontWeight="Bold" Text="{Binding Path='lname'}" />
 <TextBlock Text=", " />
 <TextBlock Text="{Binding Path='fname'}" />
 <TextBlock Text=" " />
 <TextBlock Text="{Binding Path = 'minit'}" />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

Figure 11-18. ListBox using the default DataTemplate

Along with control style templates, you can also create data templates. Data templates let you customize how
your business objects will look when you bind them in your UI. A good example of when you need to use a custom
data template is the list box. By default, it renders data as a single line of text. When you try to bind it to a list of
employee objects, it calls the ToString() method and writes it out to the display. As you can see in Figure 11-18, this
is clearly not what you want.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Developing WpF appliCations

216

Figure 11-19. ListBox using a custom DataTemplate

In the following activity, you will bind a ListBox control to an entity created from the Pubs database using an
entity data model. You will also create a master detail view by synchronizing a ListBox control and a DataGrid control.

aCtIVItY 11-3. WOrKING WIth Data teMpLateS

in this activity, you will become familiar with the following:

binding a listBox to an entity•	

creating a Datatemplate•	

creating a Master Detail view•	

Binding a ListBox to an entity

to bind a listBox to an entity object, follow these steps:

1. start visual studio. select File ➤ new ➤ project.

2. Choose WpF application under the Windows templates. rename the project to
activity11_3 and click the oK button.

3. after the project loads locate the Data sources window (it should be to the left of the
designer window). Click on the add new Data source link.

4. in the Data source Configuration wizard, choose a data source type of Database.

5. in the Choose a Database Model window, select the entity Data Model.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Developing WpF appliCations

217

6. in the Choose Model Contents window, select the generate from database option.

7. in the Choose your Data Connection window, select or create a connection to the pubs
database. save the connection to the application configuration file.

8. in the Choose Your Database objects window, expand the tables node and select the
stores and sales tables. Click the Finish button.

9. notice in the solutions explorer window a Model1.edmx file has been added to the
project. this file contains the relational mapping between the entities and the tables in
the pubs database.

Creating the Data template

1. add a Dockpanel and a listBox control in the XaMl editor window between the default
grid tags.

<Grid>
 <DockPanel>
 <ListBox Name="StoresList" DockPanel.Dock="Left" ItemsSource="{Binding}">

 </ListBox>
 </DockPanel>
</Grid>

2. add a window loaded event attribute to the Window’s opening tag.

<Window x:Class="Activity11_3.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525"
 Loaded="Window_Loaded_1">

3. add a Window_Loaded event handler in the code file that sets the DataContext of the
listBox to the stores entities.

private void Window_Loaded_1(object sender, RoutedEventArgs e)
{
 pubsEntities pEntities = new pubsEntities();
 this.StoresGrid.DataContext = pEntities.stores.ToList<store>();
}

4. add a Datatemplate to display the store name in a textBlock control inside the listBox control.

<ListBox Name="StoresList" DockPanel.Dock="Left"
 ItemsSource="{Binding}">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <TextBlock FontWeight="Bold" Text="{Binding Path='stor_name'}" />
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

www.it-ebooks.info

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://www.it-ebooks.info/

Chapter 11 ■ Developing WpF appliCations

218

5. select Debug ➤ start. Make sure the listBox shows the store names. When you’re done
viewing the listBox, stop the debugger.

6. to implement a master/detail data view, add a Datagrid control to the Dockpanel control
after the listBox control. the Binding of the grid is set to the same as the list box, which
is the store entity, but the binding path is set to the sales entity. this will cause the data
grid to show the sales items of the store selected in the list box.

<DataGrid Name="SalesGrid" DockPanel.Dock="Right"
 ItemsSource="{Binding Path='sales'}" AutoGenerateColumns="False">
 <DataGrid.Columns>
 <DataGridTextColumn Header="Order Number"
 Binding ="{Binding Path ='ord_num'}"/>
 <DataGridTextColumn Header="Order Date"
 Binding="{Binding Path='ord_date'}"/>
 </DataGrid.Columns>
</DataGrid>

7. add the following property to the listBox control in the XaMl code. this will ensure that
the listBox control and Datagrid control will remain in sync.

IsSynchronizedWithCurrentItem="True"

8. launch the application in the debugger. Your window should look similar to Figure 11-20.
Click on different stores in the list box. You should see the data grid update with the
store’s sales data. after testing, stop the debugger and close visual studio.

Figure 11-20. Viewing master/detail data

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Developing WpF appliCations

219

Summary
In this chapter, you looked at implementing the interface tier of an application. You implemented the user interface
through a WPF-based application front end. Along the way, you took a closer look at the classes and namespaces of
the .NET Framework used to implement rich Windows-based user interfaces. You saw how to use XAML syntax to
define the controls and layout of the interface. You also saw how easy it is to bind the controls to the data and present
it to the users. In Chapter 13, you will reexamine these concepts and apply them to developing the new Windows 8
and Windows Store applications.

In the next chapter, you will revisit the UI tier of a .NET application, but instead of implementing the GUI using
WPF, you will implement the GUI as a web-based application. Along the way, you will take a closer look at the
namespaces available for creating web-based GUI applications and the techniques involved in implementing the
classes contained in these namespaces.

www.it-ebooks.info

http://www.it-ebooks.info/

221

Chapter 12

Developing Web Applications

In Chapter 11, you learned how to build a simple Windows-based graphical user interface (GUI) using C# and WPF.
Although WPF gives programmers the ability to build extremely rich user interfaces easily, it is not always practical to
assume users will access your programs through a traditional Windows-based PC. With the proliferation of intranets,
web applications, and mobile devices, applications now need to allow users the ability to access the interface through
a variety of browsers and devices. This chapter shows you how to build a web-based user interface using ASP.NET.
ASP.NET is a web framework and supports two approaches to building web applications: Web Forms and ASP.NET
MVC applications (which are based on the Model-View-Controller pattern). For the purposes of just starting out with
web programming I suggest using Web Forms. Web Forms provide the familiar control and event-based programming
model that you used in Chapter 11 when building windows applications. (For a discussion of the differences between
developing in Web Forms and MVC see the official ASP.NET web site at http://www.asp.net/)

In this chapter, you will be performing the following tasks:

creating Web Pages•	

working with controls•	

responding to page and control events•	

maintaining state•	

implementing data-bound controls•	

Web Pages and Web Forms
ASP.NET Web Pages provide the user interface for your web applications. While you can build a web site with
traditional HTML pages, ASP.NET pages offer many advantages. They support the implementation of both client-side
and server-side application logic. The programming model is based on a familiar object oriented event-driven
paradigm. ASP.NET is built on top of the .NET Framework and receives all the benefits it supplies, such as type safety,
managed code, and a robust class library. ASP.NET Web Pages are designed to work in many of the popular desktop
browsers like Internet Explorer and Chrome. When an ASP.NET Web Page is rendered, the type of browser
requesting the page is detected. The page is then dynamically rendered using the correct HTML to take advantage
of browser-specific features such as layout, formatting, and styles.

A Web Page consists of two parts: the visual interface and the programming logic. The visual interface consists
of a text file containing HTML markup tags, references to include files, processing directives, and client side scripting
blocks. This text file is given the default extension of .aspx and is referred to as a page. Contained within the page is a
Web Form. The Web Form acts as a container for the text and controls that will be displayed in the browser. Figure 12-1
shows the .aspx file for an ASP.NET page containing a Web Form, which contains a TextBox control, a Button control,
and a Label control. When the Web Page is compiled, the code is combined into a new class file. This file is then
compiled into a new class that inherits from System.Web.UI.Page class. It is this class code that executes when the
.aspx page is requested. Figure 12-2 shows the page rendered in a browser (Internet Explorer).

www.it-ebooks.info

http://www.asp.net/
http://www.it-ebooks.info/

Chapter 12 ■ Developing Web appliCations

222

Looking at the page directive at the top of the page reveals the second piece of the programming model, which
is referred to as the code-behind file and is indicated by the .aspx.cs extension. The code-behind file contains a
partial class file. Code is placed in the partial class file to handle any necessary events exposed by the page or controls
contained within the page. The following class code is contained in the code-behind file linked to the .aspx file of
Figure 12-1:

public partial class Page1 : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {

 }
}

Figure 12-1. Code contained in the .aspx file

Figure 12-2. Web page rendered in IE

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Developing Web appliCations

223

When a browser requests the Web page, the page file and the code-behind file combine, along with a partial class
generated for the .aspx file, and compile into a single executable Page class file. It is this Page class that intercepts and
processes incoming requests. After processing the incoming request, the Page class dynamically creates and sends an
HTML response stream back to the browser. Because the Page class is compiled code, execution is much faster than
technologies that rely on interpreting script. The Internet Information Services (IIS) Web server is also able to cache
the execution code in memory to further increase performance.

Web Server Control Fundamentals
The .NET Framework provides a set of Web server controls specifically for hosting within a Web Form. The types of
Web server controls available include common form controls such as a TextBox, Label, and Button, as well as more
complex controls such as a GridView and a Calendar. The Web server controls abstract out the HTML coding from the
developer. When the Page class sends the response stream to the browser, the Web server control is rendered on the
page using the appropriate HTML. The HTML sent to the browser depends on such factors as the browser type and
the control settings that have been made.

The following code is used to place a TextBox Web server control in the Web Form:

<asp:TextBox ID="txtName" runat="server" BorderStyle="Dashed"
 ForeColor="#0000C0"></asp:TextBox>

The control is then rendered in Internet Explorer (IE) 10.0 as the following HTML code:

<input name="txtName" type="text" id="txtName"
style="color:#0000C0;border-style:Dashed;" />

If the TextMode property of the TextBox control is set to MultiLine, the code in the Web Page is altered to reflect
the property setting:

<asp:TextBox ID="txtName" runat="server" BorderStyle="Dashed" ForeColor="#0000C0"
 TextMode="MultiLine"></asp:TextBox>

Although the change in the code for the Web server control was minimal, the HTML code rendered to the
browser changes to a completely different HTML control:

<textarea name="txtName" rows="2" cols="20" id="txtName"
style="color:#0000C0;border-style:Dashed;"></textarea>

Web server controls offer .NET programmers many advantages, including a familiar event-driven object
model, automatic browser detection with dynamic rendering, data binding capabilities, and automatic control state
maintenance, just to name a few.

Understanding Web Page and Web Server Control
Inheritance Hierarchy
At the top of the Web Page interface code contained in the .aspx file is the following page directive:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Page2.aspx.cs"
Inherits="Chapter12Demo1.Page2" %>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Developing Web appliCations

224

This code reveals that the Web Page interface code inherits from the Page2 code-behind class located
in the Page2.aspx.cs file. The code-behind class in turn inherits from the Page class located in the
System.Web.UI namespace:

public partial class Page2 : System.Web.UI.Page

The Page class exposes important functionality needed to program a Web application and interact with the
Web server. For example, it enables access to the Application, Session, Response, Request, and Server objects. The
Application object enables sharing of values among all users of the Web application. The Request object enables
the reading of values sent by the Web Page during a Web request. The Page class also exposes functionality such as
working with Postback events initiated by script embedded in the Web Page, initiating page-level validation, and
registration of hidden fields required by server controls.

If you trace the inheritance chain of the Web Page further, you discover that the Page class inherits functionality
from the TemplateControl class. This class adds support for loading user controls, which are custom controls
commonly created to partition and reuse user interface (UI) functionality in several Web Pages. User controls are
created in .ascx files and are hosted by the Web Pages. Along with managing the user controls inserted into a Web
Page, the TemplateControl class adds transactional support and error handling functionality to the Page class.

The TemplateControl class inherits from the Control class. The Control class exposes much of the functionality
needed by all server controls. This class includes important properties such as the ID and Page properties. The ID
property gets and sets the programmatic identifier of a control, and the Page property gets a reference to the Page
object that contains the control. The Control class exposes methods for rendering the HTML code for the control
and any child controls. There are methods for handling and raising events such as the Load, Unload, and PreRender
events. The Control class also exposes the functionality needed to add data binding support to Web server controls.
Figure 12-3 shows the hierarchy chain of the Page class in the Class View window.

Figure 12-3. Hierarchy chain of the Page class

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Developing Web appliCations

225

Tracing the hierarchy chain of a Web server control—for example, a TextBox control—reveals that they also
gain much of their functionality from the Control class. When you place a TextBox server control on a Web Form,
at runtime it instantiates an object instance of the TextBox class, which is part of the System.Web.UI.WebControls
namespace. This class exposes properties, methods, and events needed by a TextBox. For example, it defines such
properties as the Text, ReadOnly, and Wrap properties. The TextBox class also adds functionality for raising and
handling the TextChanged event.

All Web server control classes inherit common functionality from the WebControl class. The WebControl class
provides properties that control the look of the control when it gets rendered in the browser. For example, the
ForeColor, Backcolor, Height, and Width properties are defined in the WebControl class. It also defines properties
that control the behavior of the control such as the Enabled and TabIndex properties. The WebControl class inherits
from the Control class discussed previously. Figure 12-4 shows the hierarchy chain of a TextBox Web server control in
a class diagram.

Figure 12-4. Hierarchy chain of a TextBox control

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Developing Web appliCations

226

Using the Visual Studio Web Page Designer
The Visual Studio Integrated Development Environment (IDE) includes an excellent Web Page Designer. Using the
designer, you can drag and drop controls onto the Web Page from the Toolbox and set control properties using the
Properties window. Figure 12-5 shows some of the controls available in the Visual Studio designer toolbox.

Figure 12-5. Visual Studio Web Page Designer Toolbox

The Web Page Designer contains three tabs at the bottom of the window—Design, Split, and Source. These tabs
switch the view in the window from a visual representation of the Web Page (Design) to the ASP.NET and HTML
markup (Source). The split view shows both the designer and the source code as a split window. The Source view
shows the tag markup code used to render the page and allows you to insert client-side script into the page.
Figure 12-6 shows a Web Page displayed in the Split view of the designer.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Developing Web appliCations

227

The Web Page Life Cycle
When a Web page is requested, it runs through a series of stages, each with a defined purpose. For example, during
the Initialization stage, any themes are applied to the page and any controls on the page have their UniqueID property
set. In the Load stage, if the page is being posted back (has already rendered once and is sending information back),
control properties are loaded from information stored in hidden controls called the view state and control state
(view state is described in more detail later in the chapter). The Postback event handling stage is where control event
handlers are called. In order to properly debug web pages, it is important that you understand the various stages of the
page life cycle and when they occur. Table 12-1 summarizes the various stages that occur when a page is requested.

Figure 12-6. Visual Studio Web Page Designer in the Split view

Table 12-1. Stages of a Page Request

Stage Description

Page request ASP.NET determines whether the page needs to be parsed and compiled or whether a
cached version of the page can be sent.

Start Page properties such as Request and Response are set. Page sets the
IsPostBack property.

Initialization Controls on the page are available and each control’s UniqueID property is set.
A master page and themes are also applied to the page, if applicable.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Developing Web appliCations

228

As the page runs through its lifecycle, it raises various events that you can respond to by creating an event handler
that runs your code. The web pages support auto event wiring so it looks for methods with standard naming to run
when an event occurs. These methods are in the form of Page_event, so to wire up an event handler for the page load
event you would name the method Page_Load. The Page_Load event occurs at the beginning of a page request after
the controls in the Page have been initialized. This event is often used to read data from and load data into the server
controls. The IsPostBack Page property is interrogated to determine if the page is being viewed for the first time or in
response to a Postback event. The following code uses the page load event to write a message on the page if it is a
post back.

protected void Page_Load(object sender, EventArgs e)
{
 if (IsPostBack)
 {
 Response.Write("This is a post back.");
 }
}

Some other common page events you may create event handlers for are the Page_Init, Page_PreRender, and the
Page_Unload events.

Control Events
Just like their Windows Graphical User Interface (GUI) counterparts, Web controls interact with users based on an
event-driven model. When an event occurs on the client—for example, a button click—the event information is
captured on the client and the information is transmitted to the server via a Hypertext Transfer Protocol (HTTP)
post. On the server, the event information is intercepted by an event delegate object, which in turn informs any event
handler methods that have subscribed to the invocation list. Although this sounds complicated, the .NET Framework
classes abstract and encapsulate most of the process from you.

Because of the overhead of handling events through postbacks requiring a roundtrip from the browser to the
server, only a limited set of events are exposed by Web Forms and server controls. Events that can occur frequently
such as mouse movement and keypress events are not supported through server-side event handlers. These events
are supported through client-side event handlers written in script. One common event you may respond to using a
server-side event handler is the button click event.

Stage Description

Load If the request is a postback, control properties are loaded with information recovered
from view state and control state.

Postback event handling If the request is a postback, control event handlers are called. After that, the Validate
method of all validator controls is called, which sets the IsValid property of individual
validator controls and of the page.

Rendering Before rendering, view state is saved for the page and all controls. During the rendering
stage, the page calls the Render method for each control.

Unload Page objects such as Response and Request are unloaded and cleanup is performed.

Table 12-1. (continued)

r
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Developing Web appliCations

229

protected void Button1_Click(object sender, EventArgs e)
{
 Response.Write ("Hello " + this.TextBox1.Text);
}

In order to wire up the event to the button control, the onClick attribute is added to the button’s markup code.
Controls that are wired up to respond to events must also have an ID unique to the form container set.

<asp:Button ID="Button1" runat="server" Text="OK" OnClick="Button1_Click"/>

By convention, the name of the event handler method for the control is the name of the object issuing the event
followed by an underscore character and the name of the event (which is similar to Page level event handling). The
actual name of the event handler, however, is unimportant.

All event handlers must provide two parameters that will be passed to the method when the event is fired.
The first parameter is the sender, which represents the object that initiated the event. The second parameter, e of
type System.EventArgs, is an object used to pass any information specific to a particular event. For example, the
EditCommand event is raised when the Edit button for an item in a DataList control is clicked. The event argument e is
used to pass information about the item being edited in the DataList control. The following code checks to see if the
item selected in the DataList is enabled:

protected void DataList1_EditCommand(object source, DataListCommandEventArgs e)
{
 if (e.Item.Enabled)
 {
 //Add code here.
 }
}

Understanding Application and Session Events
Along with the Page and control events, the .NET Framework provides the ability to intercept and respond to events
raised when a Web session starts or ends. A Web session starts when a user requests a page from the application and
ends when the session is abandoned or it times out. In addition to the session events, the .NET Framework exposes
several application-level events. The Application_Start event occurs the first time anyone requests a page in the Web
application. Application_BeginRequest occurs when any page or service is requested. There are corresponding events
that fire when ending requests, authenticating users, raising errors, and stopping the application. The session-level
and application-level event handlers are in the Global.asax.cs code-behind file. Figure 12-7 shows the Global.asax.cs
file in the code editor.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Developing Web appliCations

230

When the application begins, the Global.asax compiles into a dynamically generated class that derives from
the HttpApplication base class. This class exposes and defines the methods, properties, and events common to all
application objects within an ASP.NET application. A detailed explanation of the HttpApplication class is beyond the
scope of this book. For more information, see the HttpApplication object in the help files.

Note ■ the global.asax file is optional and must be added to the web application.

Figure 12-7. The Global.asax.cs file open in the code editor

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Developing Web appliCations

231

in this activity you will become familiar with the following:

creating a Web Form–based gUi application•	

working with page and server control events•	

Creating the Web application

to create the Web application, follow these steps:

1. start visual studio. on the File menu, choose new Web site.

2. Choose an asp.net empty Web site. Change the name of the web site at the end of
location path activity12_1. by default, web sites are stored in a folder under the path
Documents\Visual Studio 2012\WebSites. Figure 12-8 shows the new Web site
dialog box for creating a Web site or service.

Figure 12-8. The New Web Site dialog box

3. Click the oK button in the new Web site dialog box.

4. after the Web site is created, you need to add a web form. Under the Website menu,
select “add new item” and add a Web Form named page1.aspx.

5. You are presented with the Web page Designer in source view. switch to Design view by
clicking the tab in the lower left corner of the window.

aCtIVItY 12-1. WOrKING WIth WeB paGeS aND SerVer CONtrOLS

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Developing Web appliCations

232

6. select the <div> tag at the bottom of the Design window (see Figure 12-9).

Figure 12-10. Setting the div height

Figure 12-9. Selecting the div tag

7. in the properties window, select the style property and click on the ellipses to launch the
Modify style dialog window. Under the position category, set the height to 200 pixels (see
Figure 12-10) and click the oK button

8. switch the page Design window to split mode. Drag a label control from the toolbox and
drop it between the div tags in the source pane. Change the text to “hello stranger…”
and the iD to lblMessage.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Developing Web appliCations

233

10. in a similar process to step 9, add the controls in table 12-2 between the div tags.
Don’t worry about the positioning on the form yet.

9. You may get a message asking you to synchronize the design view and the source view.
after synchronizing the views, your designer should look similar to Figure 12-11.

Figure 12-11. Adding a Label control

Table 12-2. Web Control Properties

Control Property Value

Label ID lblName

Text Enter your name:

TextBox ID txtName

Text [Blank]

Button ID btnSubmit

Text Submit

11. to position a control, select the control in the designer and in the format menu, select set
position and check absolute (see Figure 12-12).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Developing Web appliCations

234

12. turn on absolute positioning for the rest of the controls. You should now be able to drag
them around in the visual designer to position them. arrange the controls on the form so
they look similar to Figure 12-13.

Figure 12-12. Turning on absolute positioning

Figure 12-13. Positioning the controls

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Developing Web appliCations

235

Creating Server-Side Control Event Handlers
to create server-side control event handlers, follow these steps:

1. in the Design pane, double click the submit button. this action will open up the
page1.aspx.cs code behind page and create an event handler method for the
button’s click event.

2. in the button’s click event handler, check to see if the page request is the result of a
postback. if it is, change the lblMessage text to say hello using the text contained in the
txtname control:

protected void btnSubmit_Click(object sender, EventArgs e)
{
 if (IsPostBack)
 {
 lblMessage.Text = "Hello " + txtName.Text;
 }
}

3. Using the Debug menu, launch the page in debug mode. the first time you launch

the debugger for a web project, you will see a dialog box asking if you want to enable
debugging in the Web.config file. Click the oK button to enable debugging. When the
page displays in the browser, enter your name and click the submit button. verify that
the page redisplays with your name included in the hello… message. after testing, close
the browser.

Creating Non-postback Server Control events

to create non-postback server control events, follow these steps:

4. Using the page Designer, add a radiobuttonlist control to page1. Change its positioning
to absolute and place it below the textbox.

5. Change the ID property to rblFontColor. Click the items collection in the properties
window to display the listitem Collection editor dialog box. add a black item and a red
item to the list (see Figure 12-14).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Developing Web appliCations

236

6. in the properties window for the rblFontColor, click the events button to display the
event list (see Figure 12-15).

Figure 12-14. Adding list items

Figure 12-15. Selecting control events

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Developing Web appliCations

237

7. Double click on the SelectedIndexChanged event. this will take you to the code behind
page and set up the method to handle the event. add the following code to change the
font color of the lblMessage control in the event handler:

protected void rblFontColor_SelectedIndexChanged(object sender, EventArgs e)
{
 if (rblFontColor.SelectedItem.Value == "Red")
 {
 lblMessage.ForeColor = System.Drawing.Color.Red;
 }
 else
 {
 lblMessage.ForeColor = System.Drawing.Color.Black;
 }
}

8. Using the Debug menu, launch the page in debug mode. When the page displays in the

browser, click the red radio button. notice that the event does not cause a postback to
occur. this event will queue until an autopostback event triggers a post back.

9. enter your name in the txtname control and click the submit button. When the postback
is processed, both the selectedindexChanged event of rblFontColor and the Click event
of the submit button are processed.

10. after testing, close the browser and exit visual studio.

Note ■ this section has explored only server-side event handling. if the browser supports client-side scripting and
Dynamic htMl, you can add Javascript code to .aspx pages to take advantage of the client-side processing capabilities.

Storing and Sharing State in a Web Application
Web applications use a stateless protocol (HTTP) to communicate between the browser and the server. In many
Web applications, however, some sort of state maintenance needs to exist during a user’s session. Traditionally,
maintaining state efficiently has been challenging for Web programmers. To help alleviate the challenge of state
management, the .NET Framework provides several options to manage state on both the client and the server.

Maintaining View State
One type of state management that needs to occur in a Web application is the preservation of control property values
when a form posts back to the client. Because a Web page is re-created and destroyed each time the page is requested,
any changes to control made by the client are lost when the page is posted back. For example, any information
entered into a TextBox control would be lost when posted back. To overcome this type of state loss, the server controls
have a ViewState property, which provides a dictionary object used to retain the value of the control between post
backs. When a page is processed, the current state of the page and the controls are hashed into a string and saved as a

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Developing Web appliCations

238

hidden field on the page. During a post back, the values are retrieved and restored when the controls are initialized for
rendering of the page back to the browser. The following code shows the ViewState hidden control that gets rendered
to the browser:

<input type="hidden " name="__VIEWSTATE"
value="dDw1Njg2NjE2ODY7O2w8XN0MTowOz4+upC3lZ6nNLX/ShtpGHJAmi8mpH4=" />

Using Query Strings
While view state is used to store information between post backs to the same page, you often need to pass information
from one page to another. One popular way to accomplish this is through the use of query strings. A query string is
appended to the page request URL; for example, the following URL passes an ID field to the page where it can be used
to look up values in a database.

http://LocalHost/LookUpAuthorInfo.aspx?AuthorId=30

You can pass more than one query string value by separating the key value pairs with an ampersand.

http://LocalHost/LookUpAuthorInfo.aspx?AuthorId=30&BookTitleId=355

To retrieve the values from the query string, you use the QueryString property of the Request object.

int ID = int.Parse(Request.QueryString["AuthorId"]);

Caution ■ one downside of using query strings is that they are readily visible in the browser and users can easily
change the values. never pass sensitive data using query strings.

Using Cookies
You can use cookies to store small amounts of data in a text file located on the client device. The HttpResponse class’s
Cookie property provides access to the Cookies collection. The Cookies collection contains cookies transmitted by
the client to the server in the Cookies header. This collection contains cookies originally generated on the server and
transmitted to the client in the Set-Cookie header. Because the browser can only send cookie data to the server that
originally created the cookie, and cookie information can be encrypted before being sent to the browser, it is a fairly
secure way of maintaining user data. A common use for cookies is to send a user identity token to the client that can
be retrieved the next time the user visits the site. This token is then used to retrieve client specific information from a
database. The use of cookies is a good way to maintain client state between visits to the site. In the following code, a
Cookie object is created to hold the date and time of the user’s visit. This Cookie object is then added to the Cookies
collection and sent to the browser:

HttpCookie visitDate = new HttpCookie("visitDate");
DateTime now = DateTime.Now;
visitDate.Value = now.ToString();
visitDate.Expires = now.AddHours(1);
Response.Cookies.Add(visitDate);

www.it-ebooks.info

http://localhost/LookUpAuthorInfo.aspx?AuthorId=30
http://localhost/LookUpAuthorInfo.aspx?AuthorId=30&BookTitleId=355
http://www.it-ebooks.info/

Chapter 12 ■ Developing Web appliCations

239

To read a cookie, you use the Request object. The following code reads the cookies value and loads it into a
Textbox control.

if (Request.Cookies["visitDate"] != null)
{
 txtLastVisit.Text = Request.Cookies["visitDate"].Value;
}

Maintaining Session and Application State
Another type of state management often needed in Web applications is session state. Session state is the ability to
maintain information pertinent to a user as they request the various pages within a Web application. Session state is
maintained on the server and is provided by an object instance of the HttpSessionState class. This class provides
access to session state values and session-level settings for the Web application. Session state values are stored in a
key-value dictionary structure only accessible by the current browser session. The following code checks the Session
object to see if a phone number for the current user is stored in a session key-value pair. The Session object exposes
an object instance of the HttpSessionState class:

if (Session["phone"]==null)
{
 txtphone.Visible = true;
}

By default, session state is stored in the memory of the web server. There are times when you want session state to
be more durable and maintain values in cases of server restarts. In these cases, you can store session values in a SQL
Server database or an ASP.NET session state server.

Although session state is scoped on a per-session basis, there are times a Web application needs to share a state
among all sessions in the application. You can achieve this globally scoped state using an object instance of the
HttpApplicationState class. The application state is stored in a key-value dictionary structure similar to the session
state, except that it is available to all sessions and from all forms in the application. The first time a client requests any
URL resource from the Web application, a single instance of an HttpApplicationState class is created. This instance
is exposed through the intrinsic Application object. The following code uses the Application object to store a
connection string attribute for a SqlConnection object:

string pubsConnectionString;
pubsConnectionString = "Integrated Security=SSPI;Initial Catalog=pubs;" +
 "Data Source=localhost";
Application["PubsConnectionString"] = pubsConnectionString;

Note ■ application state can also be stored in cache using the Cache class in the System.Web.Caching namespace.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Developing Web appliCations

240

aCtIVItY 12-2. MaINtaINING State IN a WeB appLICatION

in this activity you will become familiar with the following:

how view state is maintained in a web form•	

how to use cookies to store and retrieve data•	

the difference between session and application state•	

Maintaining View State

to investigate view state, follow these steps:

1. start visual studio. on the File menu, choose new Web site.

2. Choose an asp.net empty Web site. Change the name of the web site at the end of
location path activity12_2.

3. after the Web site is created, add a Web Form named page1.aspx. on the Web form add
a textbox control and a button control using the following mark up.

<form id="form1" runat="server">
<div>
 <asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>
 <asp:Button ID="Button1" runat="server" Text="Button" />
</div>
</form>

4. launch the page using the debugger. after the page loads, right-click on it and
chose view source. You should see the mark up for a hidden control used to store
the view state.

<div class="aspNetHidden">
<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"
value="s8jATaLWaO0KhQ+roBl8XjQi6d2d0KSSbBx8tZAvxtIM8ih2HwPQotse+N13fzpd3g+
w7fbor7Hi2uGUuJ5+H+IomzQJHTf50lldSWwLD3s=" />
</div>

5. stop the debugger and add a click event handler to the button.

<asp:Button ID="Button1" runat="server" Text="Button" OnClick="Button1_Click"/>

6. in the code behind class (page1.aspx.cs) add the method to handle the button click event.

in this event you will save and retrieve a value from the view state that records how
many times the button is clicked.

protected void Button1_Click(object sender, EventArgs e)
{
 int count;
 if (IsPostBack)
 {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Developing Web appliCations

241

 if (ViewState["count"] != null)
 {
 count = (int)ViewState["count"];
 count += 1;
 ViewState["count"] = count;
 }
 else
 {
 count = 1;
 ViewState.Add("count", count);
 }
 }
 Response.Write(ViewState["count"]);
}

7. launch the page using the debugger. Click on the button; you should see a counter at the
top of the page increment with each click. When done testing stop the debugger.

reading and Writing Cookies

to investigate using cookies, follow these steps:

1. add a second Web Form to the project named page2.

2. on page1 add a second button and add the following code to the button’s click event
handler. this code saves the textbox text to a cookie. it then transfers execution to page2.

protected void Button2_Click(object sender, EventArgs e)
{
 HttpCookie visitor = new HttpCookie("visitor");
 visitor.Expires = DateTime.Now.AddDays(1);
 visitor.Value =TextBox1.Text;
 Response.Cookies.Add(visitor);
 Server.Transfer("Page2.aspx");
}

3. in page2’s Page_Load method, retrieve the value of the cookie using the Request object
and write it out to the page using the Response object.

protected void Page_Load(object sender, EventArgs e)
{
 if (Request.Cookies["visitor"] != null)
 {
 Response.Write("Hello " + Request.Cookies["visitor"].Value);
 }
}

4. launch the page1 using the debugger. type your name in the textbox and click on the
second button; you should see page2 displayed with the hello message. When done
testing stop the debugger.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Developing Web appliCations

242

Session and application State

to investigate session and application state, complete the following steps:

1. Using the add new item Dialog, add a global application Class named global.asax.

2. in the global.asax code page add the following code to the Session_Start event handler.

void Session_Start(object sender, EventArgs e)
{
 Session["SessionStartTime"] = DateTime.Now;
}

3. add a third Web Form to the project named page3.

4. in the Form_Load event handler for page3 add the following code to display the session
start time.

protected void Page_Load(object sender, EventArgs e)
{
 Response.Write(Session["SessionStartTime"]);
}

5. in the solution explorer window right-click page3.aspx and select view in browser. You
should see the session start time displayed.

6. after 30 seconds or so refresh the page. the time should not change because you are in
the same session.

7. launch a new instance of the browser and copy the web address for page3 from the first
browser window to the second browser. You should see page3 displayed with a new time
because this is a new session. When done testing close the browsers.

8. in the global.asax code page add the following code to the Application_Start
event handler.

void Application_Start(object sender, EventArgs e)
{
 Application["ApplicationStartTime"] = DateTime.Now;
}

9. in the Form_Load event handler for page3 add the following code to display the
application start time.

protected void Page_Load(object sender, EventArgs e)
{
 Response.Write(Session["SessionStartTime"]);
 Response.Write("
");
 Response.Write(Application["ApplicationStartTime"]);
}

10. in the solution explorer window right-click page3.aspx and select view in browser. You
should see both the session and application start times displayed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Developing Web appliCations

243

11. launch a new instance of the browser and copy the web address for page3 from the first
browser window to the second browser. You should see page3 displayed with a different
session start time but the same application start time because this is a new session but
the same application start time. When done testing close the browsers and exit visual studio.

Data-Bound Web Controls
Just as with traditional Windows based GUIs, programs developed using a Web based GUI often need to interact with
data. Users of business applications need to view, query, and update data held in a backend data store. Fortunately,
the .NET Framework makes this easy by exposing the functionality needed to implement data binding controls in
Web Forms.

Data-bound controls automate the process of presenting data in a web form. ASP.NET provides various controls
to display the data depending on the type of data, how it should be displayed, and whether it can be updated. Some of
these controls are used to present read-only data, for example, the Repeater control displays a list of read-only data.
If you need to update the data in a list, you could use the ListView control. If you need to display many columns and
rows of data in a tabular format, you would use the GridView control. If you need to display a single record at a time,
you could use the DetailsView or the FormView controls.

Data binding automates the process of transferring the data from the data store and a data-bound control. In
order to bind the controls, you add a DataSource control to the web page. DataSource controls do not render UI
markup. Instead, they are responsible for providing the link between the data source and the data-bound control.
There are several types of data source controls available depending on the data source. Table 12-3 lists the types of
DataSources provided by the .NET Framework.

In the following markup, a SqlDataSource control is used to provide data to a Repeater control that repeats a
label control for each name. Notice the use of the data binding expressions Eval and Bind. Eval is used for one-way
binding (read-only) and Bind is used for two way binding (read and update)

Table 12-3. DataSources provided by the .NET Framework

DataSource Use

EntityDataSource Enables you to bind to data that is based on the Entity Data Model.

SqlDataSource Enables you to work with Microsoft SQL Server, OleDb, ODBC, or Oracle databases

ObjectDataSource Enables you to work with a business object or other class

LinqDataSource Enables you to use Language-Integrated Query

XmlDataSource Enables you to work with an XML file.

SiteMapDataSource Used with ASP.NET site navigation.

<asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="<%$ ConnectionStrings:pubsConnectionString %>"
 SelectCommand="SELECT [au_id], [au_lname] FROM [authors]">
</asp:SqlDataSource>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Developing Web appliCations

244

<asp:Repeater ID="Repeater1" runat="server" DataSourceID="SqlDataSource1">
 <ItemTemplate>
 <asp:Label ID="lblName" runat="server" Text='<%# Eval("au_lname") %>'></asp:Label>

 </ItemTemplate>
</asp:Repeater>

DataSource controls are convenient for rapid application development. They allow you to create web pages that
support CRUD (Create Read Update Delete) operations while writing a minimum amount of code.

Model Binding
While DataSource controls work well for simple CRUD operations and simple applications, they are inflexible and
cumbersome to work with as your application logic and data access logic become more complex. They mix the data
retrieval logic with the presentation logic, which violates the n tier development principle of separating data access
logic, business logic, and presentation logic into distinct tiers. In order to overcome these limitations, ASP.NET
includes Web Forms model binding.

Model binding is a more code focused data access logic used to data bind controls. With model binding you
declare the type of data you are binding a control to using the ItemType property. When the ItemType property of
a control is set, the Item and the BindItem expressions are used to bind the control to a data source item. The Item
expression implements one-way binding (read-only) while the BindItem expression is used for two-way binding (read
and update). The following code shows using a repeater control to host a label control and bind its Text property to
the Employee.Name property. Notice the ItemType property of the Repeater control is set to the Employee class.

<asp:Repeater ID="Repeater1" runat="server"
 ItemType="Chapter12Demo1.Employee" SelectMethod="GetEmployee">
 <ItemTemplate>
 <asp:Label ID="Label1" runat="server" Text='<%# Item.Name %>'></asp:Label>

 </ItemTemplate>
</asp:Repeater>

To configure a data control to use model binding to select data, you set the control’s SelectMethod property to
the name of a method in the page’s code. In the case above, the SelectMethod is set to the GetEmployee method which
returns a list of Employee objects. The data control calls the method at the appropriate time in the page life cycle and
automatically binds the returned data.

To implement two-way binding, you include a method to update the data and set it equal to the UpdateMethod
property of the control. The Model Binding will send the updated values to the update method where the values
get updated back to the data source. The following code defines a GridView that uses Model Binding to update
employees. Notice the use of BindItem and the UpdateMethod to implement two-way binding.

<asp:GridView ID="employeesGrid" runat="server" DataKeyNames="ID"
 ItemType="Chapter12Demo1.Employee" AutoGenerateColumns="false" AutoGenerateEditButton="true"
 SelectMethod="GetEmployees" UpdateMethod="UpdateEmployee">
 <Columns>
 <asp:TemplateField>
 <ItemTemplate>
 <asp:Label ID="lblID" runat="server" Text='<%# Item.ID %>'></asp:Label>
 </ItemTemplate>
 </asp:TemplateField>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Developing Web appliCations

245

 <asp:TemplateField>
 <ItemTemplate>
 <asp:Label ID="lblName" runat="server" Text='<%# BindItem.Name %>'></asp:Label>
 </ItemTemplate>
 <EditItemTemplate>
 <asp:TextBox ID="txtName" runat="server" Text='<%# BindItem.Name %>'></asp:TextBox>
 </EditItemTemplate>
 </asp:TemplateField>
 </Columns>
</asp:GridView>

Note ■ For new development that targets asp.net 4.5, Microsoft recommends using Model binding. For applications
targeting previous versions, Datasource controls are the recommended method.

Figure 12-16. The SqlDataSource Task Pane

aCtIVItY 12-3. BINDING a GrIDVIeW CONtrOL

in this activity, you will become familiar with the following:

how to implement one-way binding to a repeater control using a Datasource control•	

how to implement two-way binding to a gridview control using Model binding•	

Displaying Data in an aSp.Net repeater Control

to display data in an asp.net repeater control, follow these steps:

1. start visual studio. on the File menu, choose new ➤ Web site.

2. Choose an asp.net empty Web site. Change the name of the web site at the end of
location path activity12_3.

3. add a new Web Form to the site and name it authorlistpage.

4. open the authorlistpage in split view. Drag a sqlDatasource control located under the
Data node to the form. You should see a sqlDatasource tasks pane as in figure 12-16.

5. Click on the Configure Data source link. this launches a wizard to help configure the
Datasource control.

6. Create a new connection to your sQl server using the .net Framework Data provider for
sQl server (see Figure 12-17).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Developing Web appliCations

246

Figure 12-17. Selecting the SQL Server Data Source

7. in the add Connection dialog, enter your server name and select the pubs database. test
the connection and click the oK button.

8. in the next screen, check yes to save the connection string in the configuration file.

9. in the Configure the select statement screen select the au_id and au_lname columns
from the authors table as in Figure 12-18.

Figure 12-18. Configuring the Select Statement

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Developing Web appliCations

247

10. in the next screen you can test the query. after testing the query click the Finish button.

11. in the page source you should see the mark up added to the page to set up the
sqlDatasource control.

<asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="<%$ ConnectionStrings:pubsConnectionString %>"
 SelectCommand="SELECT [au_id], [au_lname] FROM [authors]">
</asp:SqlDataSource>

12. in the Design view for the authorlistpage drag a repeater control from the Data node in
the toolbox to the form. place it after the sqlDatasource control.

13. in the repeater tasks pop out window select the sQlDatasource1 control.

14. switch to the source window and add the ItemTemplate mark up and the asp:Label
mark up inside the repeater control mark up. notice the Text property of the label is
bound to the au_lname column using the Eval method.

<asp:Repeater ID="Repeater1" runat="server" DataSourceID="SqlDataSource1">
 <ItemTemplate>
 <asp:Label ID="lblName" runat="server" Text='<%# Eval("au_lname") %>'>
 </asp:Label>

 </ItemTemplate>
</asp:Repeater>

15. right click on the autherlistpage.aspx node in the solution explorer window and select
“set as start page”. start the debugger. You should see the page displayed with a list of
author last names.

16. When done testing, stop the debugger.

Displaying Data using an aSp.Net GridView Control

to display and update data using an asp.net gridview control, follow these steps:

1. in the solution explore window, right click the project node and select add ➤ add new
item. add an aDo.net entity Data Model and name it pubs.edmx. You will get a message
about adding it to the app_Code folder. select Yes.

2. in the entity Data Model Wizard select generate from database.

3. in the Chose Your Data Connection, you can either reuse the connection created
previously or create a new connection to the pubs database. be sure the save entity
connection settings in the Web.Config is checked and it is named pubsentities.

4. in the Choose Your Database objects and settings window, select the employee table. leave
the default check boxes checked and name the model pubsModel (see Figure 12-19).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Developing Web appliCations

248

5. after completing the wizard you should see the employee entity in the entity Designer.
Close the entity designer and add a new Web Form to the designer. name the page
employeegridviewpage.aspx.

6. add a gridview control to the form and add the mark up below. notice you are setting the
ItemType to the employee entity and the SelectMethod to GetEmployees.

<asp:GridView ID="grdEmployee" runat="server"
 ItemType="employee" SelectMethod="GetEmployees"
 AutoGenerateColumns="false">
 <Columns>
 <asp:BoundField DataField="emp_id" HeaderText="ID" ReadOnly="true" />
 <asp:BoundField DataField="fname" HeaderText="First Name" />
 <asp:BoundField DataField="lname" HeaderText="Last Name" />
 </Columns>
</asp:GridView>

Figure 12-19. Selecting the Data Objects

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Developing Web appliCations

249

7. in the code behind file for the page (employeegridviewpage.aspx.cs) add the following
code to retrieve the employee data using the employee entity.

public partial class EmployeeGridViewPage : System.Web.UI.Page
{
 pubsEntities dbContext = new pubsEntities();
 protected void Page_Load(object sender, EventArgs e)
 {

 }
 public IQueryable<employee> GetEmployees()
 {
 var Employees = dbContext.employees;
 return Employees;
 }
}

8. right click on the employeesgridviewpage.aspx node in the solution explorer window
and select “set as start page”. start the debugger. You should see the page displayed
with a table of employee information.

9. When done testing, stop the debugger.

Updating Data using an aSp.Net GridView Control

1. Update the gridview control’s mark up to allow updating and set the UpdateMethod
attribute to the UpdateEmployee method. the DataKeyNames attribute is set to the unique
identifier of the employee entity.

<asp:GridView ID="grdEmployee" runat="server"
 ModelType="employee" SelectMethod="GetEmployees" DataKeyNames="emp_id"
 AutoGenerateEditButton="true" UpdateMethod="UpdateEmployee"
 AutoGenerateColumns="false">
 <Columns>
 <asp:BoundField DataField="emp_id" HeaderText="ID" ReadOnly="true" />
 <asp:BoundField DataField="fname" HeaderText="First Name" />
 <asp:BoundField DataField="lname" HeaderText="Last Name" />
 </Columns>
</asp:GridView>

2. in the code behind file for the page (employeegridviewpage.aspx.cs) add the following
code to update the employee data using the employee entity. this code looks up the
old values held in the entity and tries to update the model. if it is successful it saves the
changes back to the database.

public void UpdateEmployee(employee Employee)
{
 var Employee2 = dbContext.employees.Find(Employee.emp_id);
 TryUpdateModel(Employee2);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Developing Web appliCations

250

 if (ModelState.IsValid)
 {
 dbContext.SaveChanges();
 }
}

3. by default Web Forms have UnobtrusiveValidationMode turned on. to implement this
you need to add a scriptManager and some jscript include files. For now you can just
turn it off by adding the following to the Page_Load event handler method.

this.UnobtrusiveValidationMode = System.Web.UI.UnobtrusiveValidationMode.None;

4. start the debugger. You should see the page displayed with a table of employee
information and an edit button. Click on the edit button for a row. this sets the grid in
edit mode.

5. Update the first name and click the Update button. the grid will refresh and show the
new values.

Summary
In this chapter you looked at implementing the interface tier of an application using a Web Form–based front
end. Along the way, you took a closer look at the classes and namespaces of the .NET Framework that are used
to implement Web Forms–based user interfaces. You were also exposed to data binding Web server controls, in
particular, the GridView control. My intent in this chapter was to expose you to some of the techniques used to
develop data centric web applications. To become a skilled web developer, you need to dig deeper into these topics
and other topics such as using Master pages, client side scripting, using style sheets, and web security.

In Chapter 13, you will look at a new type of application introduced with Windows 8 - the Windows Store app.
Windows Store apps are a sort of hybrid between traditional client apps and web apps. The interface is developed
using HTML or XAML and the application logic can be developed in C#, Visual Basic, or JavaScript. They support the
ever-popular touch screen devices and represent a shift in the way users interact with your applications.

www.it-ebooks.info

http://www.it-ebooks.info/

251

Chapter 13

Developing Windows
Store Applications

In the previous chapters, you learned how to build a data-centric application based on a traditional Windows client
(WPF) user interface and a web-based (ASP.NET) user interface. In this chapter, you will learn how to build a user
interface using the new Windows Store app. Windows Store apps are designed to run on Windows 8 devices. Windows
Store apps have a new look and feel designed to dynamically support different display sizes and devices. As tablets
and phones increasingly become the most popular devices for interacting with information, business users are
demanding the ability to use these devices for interacting with their information stores. Fortunately, Microsoft offers
a variety of application programming interfaces (APIs) that can be used to create applications to run on these devices.
They have exposed a managed .NET framework that allows you to use C# for the code behind and a XAML framework
for developing the user interface. Developing these apps is a cross between developing WPF apps and web apps.

After reading this chapter, you will be comfortable performing the following tasks:

using XAML markup to design a user interface•	

working with layout controls•	

working with display controls•	

responding to control events•	

using data-bound controls•	

Building the User Interface
Building the UI of a Windows Store app is very similar to developing WPF applications. If you recall from
Chapter 11, the visual interface of an application contains objects. These objects, like most objects you work with in
object-oriented languages, expose properties, methods, and events. In a Windows Store app, the main object is a page.
A page has properties (for example the Background property), methods (for example the focus method), and events
(for example the DoubleTapped event).

Controls are components with visual interfaces that give users a way to interact with the program. A page is a
container control, which hosts other controls. You can place many different types of controls on pages. Some common
controls used on pages are TextBoxes, TextBlocks, Buttons, ListViews, and GridViews.

Just like WPF, Windows Store user interfaces are built using the declarative markup language XAML. For example,
the following markup defines a button control inside a Grid.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Developing WinDoWs store appliCations

252

<Grid Background="#E5951D1D">
 <Button Content="Button" HorizontalAlignment="Left" Margin="56,124,0,0"
 VerticalAlignment="Top" Background="#FF2457A0"/>

</Grid>

Notice the Grid needs a formal closing tag because it contains the Button control. Since the Button control
does not contain any other controls, you can use a forward slash (/) in front of the end bracket to close it. Notice the
properties of the controls are set by using attribute syntax.

Controls are positioned either absolutely or relatively using grid rows and columns. Notice the code above uses
absolute positioning of the button in the grid which is achieved using the Margin attribute. The code below shows the
button positioned relatively by using grid rows and columns.

<Grid Background="#E5951D1D">
 <Grid.RowDefinitions>
 <RowDefinition Height="140"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width ="140"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>

 <Button Content="Button" HorizontalAlignment="Left"
 Grid.Column="1" Grid.Row="1"
 VerticalAlignment="Top" Background="#FF2457A0"
 Height="78" Width="162"/>
 </Grid>

Figure 13-1 shows the page with the button created by the previous XAML code.

Figure 13-1. A window created with XAML

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Developing WinDoWs store appliCations

253

As seen previously, a Grid control contains columns and rows to control the placement of its child controls. The
height and width of the columns and rows can be set to a fixed value, auto, or *. The auto setting takes up as much
space as needed by the contained control. The * setting takes up as much space as is available. The following code lays
out a simple data entry form used to collect user information. The resulting form is shown in Figure 13-2.

<Grid Background="#E5B1BDB9">

 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="200" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <TextBlock Grid.Row="0" Grid.Column="0" Text="Name:"
 Foreground="Black" VerticalAlignment="Center"
 Margin="10" FontSize="16"/>
 <TextBlock Grid.Row="1" Grid.Column="0" Text="City:"
 Foreground="Black" VerticalAlignment="Center"
 Margin="10" FontSize="16"/>
 <TextBlock Grid.Row="2" Grid.Column="0" Text="State:"
 Foreground="Black" VerticalAlignment="Center"
 Margin="10" FontSize="16" />

 <TextBox Grid.Column="1" Grid.Row="0" Margin="3" />
 <TextBox Grid.Column="1" Grid.Row="1" Margin="3" />
 <TextBox Grid.Column="1" Grid.Row="2" Margin="3" />
 <Button Grid.Column="1" Grid.Row="4" HorizontalAlignment="Right"
 MinWidth="80" MinHeight="50" Margin="0,0,0,8" Content="Submit"
 Foreground="Black"/>
 </Grid>

Figure 13-2. Input form page

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Developing WinDoWs store appliCations

254

Some other layout controls available are the StackPanel, WrapGrid, and Canvas. The following code shows two
buttons in a StackPanel control:

<StackPanel Grid.Column="1" Grid.Row="4" Orientation="Horizontal" HorizontalAlignment="right">
 <Button MinWidth="80" MinHeight="50" Margin="0,0,0,8" Content="Submit"
 Foreground="Black"/>
 <Button MinWidth="80" MinHeight="50" Margin="0,0,0,8" Content="Cancel"
 Foreground="Black"/>
</StackPanel>

Using Style Sheets
An import aspect of developing Windows Store apps is maintaining a consistent look and feel across pages and
applications. The interface needs to scale across large and small displays and handle changes in orientation smoothly.
The creation and styling of these apps can be a time-consuming, tedious process. Fortunately, there are pre-built
styles that you can use across all pages and controls in your application. These styles are contained in a XAML file and
are referenced by the controls using a Static Resource Markup Extension. The following code uses a static resource to
style two button controls.

<Button Content="Submit" Style="{StaticResource TextPrimaryButtonStyle}" />
<Button Content="Cancel" Style="{StaticResource TextSecondaryButtonStyle}"/>

The following markup defining the styles is in the StandardStyles.xaml file located in the Common folder. Notice
you can reference a style within a style definition.

<Style x:Key="TextPrimaryButtonStyle" TargetType="ButtonBase"
 BasedOn="{StaticResource TextButtonStyle}">
 <Setter Property="Foreground"
 Value="{StaticResource ApplicationHeaderForegroundThemeBrush}"/>
</Style>

Handling Control Events
Just like WPF and ASP.NET apps, Windows Store apps interact with users through events. The difference is how the
events are initiated. While WPF and ASP.NET applications are largely driven by mouse and keyboard events, Windows
Store apps are largely driven by touch interactions (keyboard and mouse events are still supported). Some common
interacting actions include tapping, press and hold, sliding, and swiping.

In Visual Studio, you can add an event to a control either by writing XAML code or by selecting it in the control’s
Properties window. Figure 13-3 shows wiring up an event handler in the XAML Editor window; Figure 13-4 shows
wiring up an event handler using the Events tab of the Properties window. Remember when working with controls in
code, you need to give them a unique name using the Name attribute.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Developing WinDoWs store appliCations

255

Figure 13-3. Wiring up an event handler in the XAML editor

Figure 13-4. Wiring up an event handler in the Properties window

Regardless of how you wire up an event handler, the Visual Studio code editor inserts an empty event handler
method in the code behind file. The following code shows the event handler method inserted for the button tap event:

private void btnSubmit_Tapped(object sender, TappedRoutedEventArgs e)
{
}

Just as in WPF, two parameters are passed to the method when the event is fired. The first parameter is the sender,
which represents the object that initiated the event. The second parameter, in this case of type Windows.UI.Xaml.
Input.RoutedEventArgs, is an object used to pass any information specific to the particular event. The following code
shows checking if they tapped with a pen.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Developing WinDoWs store appliCations

256

private void btnSubmit_Tapped(object sender, TappedRoutedEventArgs e)
{
 if (e.PointerDeviceType == PointerDeviceType.Pen)
 {
 //additional code. . .
 }
}

In the following activity, you will investigate working with controls in a simple Windows Store app.

aCtIVItY 13-1. WOrKING WIth CONtrOLS

in this activity, you will become familiar with the following:

creating a Windows store app•	

laying out a page•	

working with Control events•	

Creating the Windows Store app Interface

to create the application interface, follow these steps:

1. start visual studio. select File ➤ new ➤ project.

2. Click on the Windows store node under the visual C# template node. select the Blank
app template. Change the name to activity13_1 and click the oK button.

3. open the Mainpage.xaml in the design window. notice it is using the default dark theme.
to change this to the light theme, open the app.xaml page. add the RequestedTheme
attribute to the Application mark up.

<Application
 x:Class="Activity13_1.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Activity13_1"
 RequestedTheme="Light">

4. Close and reopen the Mainpage.xaml file. You should now see a white background.

5. Update the Grid XaMl to define two columns and 5 rows.

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="300"/>
 <ColumnDefinition Width="Auto"/>
 </Grid.ColumnDefinitions>

www.it-ebooks.info

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://www.it-ebooks.info/

Chapter 13 ■ Developing WinDoWs store appliCations

257

 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>

 </Grid>
</Grid>

6. add the following XaMl after the closing Grid.RowDefinitions tag to put two text
boxes on the page. one accepts a single line of text and one accepts multiple lines of text.

<TextBlock Grid.Row="0" Grid.Column="0" Margin="10"
 Style="{StaticResource BasicTextStyle}">
 Single line text input
</TextBlock>
<TextBox Grid.Row="0" Grid.Column="1" Margin="10"
 Width="200" HorizontalAlignment="Left"/>
<TextBlock Grid.Row="1" Grid.Column="0" Margin="10"
 Style="{StaticResource BasicTextStyle}">
 Multi-line input
</TextBlock>
<TextBox Grid.Row="1" Grid.Column="1" Margin="10"
 Width="200" Height ="100" TextWrapping="Wrap"
 AcceptsReturn="True" HorizontalAlignment="Left"/>

7. add a password entry box by inserting the following code.

<TextBlock Grid.Row="2" Grid.Column="0" Margin="10"
 Style="{StaticResource BasicTextStyle}">
 Password entry
</TextBlock>
<PasswordBox Grid.Row="2" Grid.Column="1" Margin="10"
 Width="200" HorizontalAlignment="Left"/>

8. add two more TextBox controls, one for numeric input and one for email address entry.

<TextBlock Grid.Row="3" Grid.Column="0" Margin="10"
 Style="{StaticResource BasicTextStyle}">
 Number input
</TextBlock>
<TextBox Grid.Row="3" Grid.Column="1" Margin="10"
 Width="200" InputScope="Number" HorizontalAlignment="Left"/>
<TextBlock Grid.Row="4" Grid.Column="0" Margin="10"
 Style="{StaticResource BasicTextStyle}" TextWrapping="Wrap">
 Email address
</TextBlock>
<TextBox Grid.Row="4" Grid.Column="1" Margin="10"
 Width="200" InputScope="EmailSmtpAddress" />

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Developing WinDoWs store appliCations

258

9. note that as you add the XaMl, the visual Designer updates the appearance of the
window. the page should look similar to the one shown in Figure 13-5.

Figure 13-5. The data entry page

10. Build the solution. if there are any errors, fix them and rebuild.

11. to test the page, change the debugger target to the simulator in the toolbar
(see Figure 13-6) and start the debugger.

Figure 13-6. Launching the simulator

12. When the simulator launches, change the mode to basic touch (see Figure 13-7). in this
mode, the mouse is used to simulate a finger press.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Developing WinDoWs store appliCations

259

13. When you press in the single line input textBox, the soft key board is displayed. enter
some text and try to hit enter. You should not be able to add additional lines. test the
multi-line input and the password input.

14. press in the number input textBox. notice the keyboard displays the number pad. it knew
to do this because you added the InputScope attribute to the control.

15. pressing in the email address input textBox adds the “@” and “.com” keys to the
keyboard.

16. When finished testing, you can close the simulator by pressing the Ctrl + alt + F4 keys.

Coding Control events

to code the control events, follow these steps:

1. in the XaMl editor window for the Mainpage.xaml file in the Grid.RowDefinitions
section add a new row to the grid. in the new row, place two button controls in a stack
panel using the code below.

<StackPanel Grid.Row="5" Grid.Column="1" Orientation="Horizontal">
 <Button Name ="btnSave" Content ="Save" Margin="10"
 Tapped="btnSave_Tapped"/>

Figure 13-7. Changing the interaction mode

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Developing WinDoWs store appliCations

260

 <Button Name="btnCancel" Content ="Cancel" Margin="10"
 Tapped="btnCancel_Tapped"/>
</StackPanel>

2. after the closing StackPanel tag, add the following markup to display a progress ring on
the page.

<ProgressRing x:Name="SaveProgress" Grid.Row="5" Grid.Column="0"
 IsActive="False" Width="113" Height="80"/>

3. the XaMl defining the buttons above includes an event handler method for the tapped
event. right-click on the btnsave’s Tapped event and select “navigate to event handler”
in the pop-up menu.

4. in the Code editor window of the codebehind file, add the following code to the btnSave_
Tapped event handler method. this code makes the progress ring show on the page.

this.SaveProgress.IsActive = true;

5. in the btnCancel_Tapped method, deactivate the progress ring.

this.SaveProgress.IsActive = false;

6. Build the solution and fix any errors.

7. test the buttons’ tapped events using the simulator.

8. after testing the application, press Ctrl + alt + F4 keys to close the simulator and stop
debugging.

Data Binding Controls
Binding a Windows Store app control to data is done in a way that is very similar to the way it’s handled in WPF
(covered in Chapter 10). When you do the binding with XAML, you use the Binding attribute available with each
control. When you bind a control in code, you set its source with the DataContext property. When you set the
DataContext for a parent element, such as a Grid control, the child elements will use the same DataContext unless
their DataContext is explicitly set.

The .NET Framework encapsulates much of the complexity of synchronizing controls to a data source through
the data binding process. The Mode property determines how the data binding flows and reacts to data changes.
OneTime binding updates the target with data from the source when the binding is created. OneWay binding causes
changes to the source property to automatically update the target property, but changes to the target property are
not propagated back to the source property. This is useful for read-only scenarios and is the default binding. TwoWay
binding causes changes to either the source property or the target property to automatically update the other. This is
useful for full-data updating scenarios.

The following code shows the DataContext of a Grid control set to a CollectionViewSource that contains a list of
authors. The CollectionViewSource allows you to move through the list of authors.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Developing WinDoWs store appliCations

261

cvs = new CollectionViewSource();
cvs.Source = authorList;
this.AuthorList.DataContext = cvs;
cvs.View.MoveCurrentToFirst();

The following XAML code binds a TextBox control and a CheckBox control contained in the Grid control to the
properties of the Authors class using the Path attribute. Using Binding to designate the source data means “look up
the container hierarchy until a DataContext is found.” In this case, the DataContext will be the one specified for
the Grid container.

<TextBox Grid.Column="1" Grid.Row="2" Height="23" HorizontalAlignment="Left"
 Margin="3" Name="txtLastName" Text="{Binding Path=LastName}"
 VerticalAlignment="Center" Width="120" />
<CheckBox Name="chkContract" Content="Under Contract"
 IsChecked="{Binding Path=UnderContract}"
 Grid.Row="4" Grid.ColumnSpan="2" FlowDirection="RightToLeft" />

Figure 13-8 shows a page containing controls bound to the author data.

Figure 13-8. Page displaying author data

To move through the records you just use the CollectionViewSource View methods. The following code shows
how to move to the next record.

cvs.View.MoveCurrentToNext();

While some controls can only bind to one record at a time, other controls, such as the GridView control, bind to
and display the entire collection. The following code sets the ItemSource of a GridView to the list of authors. In this
case, it’s not necessary to use a CollectionViewSource.

this.AuthorDataGrid.ItemsSource = authorList;

The following XAML creates the GridView and binds the controls contained in the view. The resulting page is
shown in Figure 13-9.

<GridView Grid.Row="0" Grid.Column="2" x:Name="AuthorGridView"
 Header="Authors" FontSize="14" FontWeight="Bold"
HorizontalAlignment="Center" >
 <GridView.ItemTemplate>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Developing WinDoWs store appliCations

262

 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding FirstName}"
 Style="{StaticResource ItemTextStyle}" Margin="10"/>
 <TextBlock Text="{Binding LastName}" TextWrapping="NoWrap"
 Style="{StaticResource BodyTextStyle}" Margin="10"/>
 <CheckBox Content="UnderContract" IsChecked="{Binding UnderContract}"
 IsEnabled="False" Margin="10" FontSize="10"/>
 </StackPanel>
 </DataTemplate>
 </GridView.ItemTemplate>
</GridView>

Figure 13-9. Page displaying author data in a GridView

In the following activity, you will build a page with controls bound to a collection of Author objects.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Developing WinDoWs store appliCations

263

aCtIVItY 13-2. WOrKING WIth Data-BOUND CONtrOLS

in this activity, you will become familiar with the following:

binding controls to a collection•	

investigating binding modes•	

Binding Controls to a Collection

to bind controls to a collection, follow these steps:

1. start visual studio. select File ➤ new ➤ project.

2. Choose a Windows store application and select the Blank app template. rename the
project to activity13_2 and click the oK button.

3. right-click on the project node in solution explorer and choose add ➤ Class. name the
class Author.

4. at the top of the class file, add the following using statement:

using System.ComponentModel;

5. in the Author class, implement the INotifyPropertyChanged interface. this is needed
to facilitate binding.

class Author : INotifyPropertyChanged
{

 public event PropertyChangedEventHandler PropertyChanged;

 void RaisePropertyChanged(string propertyName)
 {
 var handler = PropertyChanged;
 if (handler != null)
 {
 handler(this, new PropertyChangedEventArgs(propertyName));
 }
 }
}

6. add the following properties. note that when the values are changed, the
PropertyChanged event is raised.

string _firstName;
public string FirstName
{
 get { return _firstName; }
 set

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Developing WinDoWs store appliCations

264

 {
 if (_firstName != value)
 {
 _firstName = value;
 RaisePropertyChanged("FirstName");
 }
 }
}
string _lastName;
public string LastName
{
 get { return _lastName; }
 set
 {
 if (_lastName != value)
 {
 _lastName = value;
 RaisePropertyChanged("LastName");
 }
 }
}
Boolean _underContract;
public Boolean UnderContract
{
 get { return _underContract; }
 set
 {
 if (_underContract != value)
 {
 _underContract = value;
 RaisePropertyChanged("UnderContract");
 }
 }
}
double _royalty;
public double Royalty
{
 get { return _royalty; }
 set
 {
 if (_royalty != value)
 {
 _royalty = value;
 RaisePropertyChanged("Royalty");
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Developing WinDoWs store appliCations

265

7. add the following constructor to the Author class:

public Author(string firstName, string lastName,
 Boolean underContract, double royalty)
{
 this.FirstName = firstName;
 this.LastName = lastName;
 this.UnderContract = underContract;
 this.Royalty = royalty;
}

8. Build the project and make sure there are no errors. if there are, fix them and rebuild.

9. open the app.xaml page and add the RequestedTheme attribute to the Application
mark up.

<Application
 x:Class="Activity13_2.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Activity13_2"
 RequestedTheme="Light">

10. add the following XaMl markup to the Mainpage.xaml file to create the page header:

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">

 <Grid.RowDefinitions>
 <RowDefinition Height="140"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <TextBlock x:Name="PageTitle"
 Text="Authors" Grid.Column="1" VerticalAlignment="Center"
 Margin="120,20,0,0" IsHitTestVisible="false"
 Style="{StaticResource PageHeaderTextStyle}"/>
 </Grid>
<!-- Add the GridView here -->
</Grid>

11. You can define the DataTemplate under the ResourceDictionary of the Page.Resources
section of the page. add the following XaMl markup to define the DataTemplate for the
author information contained in the GridView (add this above the first Grid tag).

<Page.Resources>
 <ResourceDictionary>
 <DataTemplate x:Key="AuthorTemplate">

www.it-ebooks.info

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://www.it-ebooks.info/

Chapter 13 ■ Developing WinDoWs store appliCations

266

 <Grid Background="LightGray"
 Width="300"
 Height="200">
 <Grid.RowDefinitions>
 <RowDefinition Height="75"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>
 <StackPanel Orientation="Horizontal" Grid.Row="0">
 <TextBlock Text="{Binding LastName}"
 Margin="20,10,0,0"
 FontSize="24"
 FontWeight="SemiBold"/>
 <TextBlock Text="{Binding FirstName}"
 Margin="20,10,0,0"
 FontSize="24"/>
 </StackPanel>
 <StackPanel Orientation="Horizontal" Grid.Row="1">
 <TextBlock Text="Royalty: "
 Margin="20,0,0,0"
 FontSize="18"/>
 <TextBlock Text="{Binding Royalty}"
 Margin="20,0,0,0"
 FontSize="18"/>
 </StackPanel>
 <StackPanel Orientation="Horizontal" Grid.Row="2">
 <TextBlock Text="Under Contract:"
 Margin="20,0,0,0"
 FontSize="18"/>
 <TextBlock Text="{Binding UnderContract}"
 Margin="20,0,0,0"
 FontSize="18"/>
 </StackPanel>
 </Grid>
 </DataTemplate>
 </ResourceDictionary>
</Page.Resources>

12. add the GridView to the page to display the author info. notice the ItemTemplate is set
to the AuthorTemplate you defined in step 11.

<GridView x:Name="AuthorsGridView"
 Grid.Row="1"
 Margin="110,50,0,0"
 SelectionMode="Single"
 IsSwipeEnabled="True"
 IsItemClickEnabled="True"
 ItemsSource="{Binding}"
 ItemTemplate="{StaticResource AuthorTemplate}">
 <GridView.ItemsPanel>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Developing WinDoWs store appliCations

267

 <ItemsPanelTemplate>
 <WrapGrid Orientation="Horizontal" />
 </ItemsPanelTemplate>
 </GridView.ItemsPanel>
</GridView>

13. in the Mainpage.xaml.cs code file, add a class level variable of type list of author.

public sealed partial class MainPage : Page
{
 List<Author> authors;

14. add the following method to load the list.

private void PopulateAuthors()
{
 authors = new List272103_1_En();
 authors.Add(new Author("Clive", "Cussler", true, .15));
 authors.Add(new Author("Steve", "Berry", false, .20));
 authors.Add(new Author("Kate", "Morton", false, .20));
 authors.Add(new Author("Karma", "Wilson", true, .18));
}

15. in the onNavigatedTo event handler method, call the PopulateAuthors method and set
the authors list to the GridView’s ItemSource.

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 PopulateAuthors();
 this.AuthorsGridView.ItemsSource = authors;
}

16. to test the page, start the debugger with the simulator as the target. You should see a
page similar to Figure 13-10.

Figure 13-10. Author information in a GridView

17. after testing the page, press Ctrl +alt + F4 keys to close the simulator and stop
debugging.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Developing WinDoWs store appliCations

268

Investigating Binding Modes

18. add another row to the main Grid on the Mainpage.

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition Height="140"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>

19. Below the GridView closing tag, add XaMl to create a StackPanel with two buttons in it.

<StackPanel Orientation="Horizontal" Grid.Row="2" VerticalAlignment="Top">
 <Button Name="btnUpdate" Click="btnUpdate_Click" Content="Update" />
 <Button Name="btnRefresh" Click="btnRefresh_Click" Content="Refresh" />
</StackPanel>

20. the XaMl defining the btnUpdate button above includes an event handler method for the
Click event. right-click on the Click event and select “navigate to event handler” in the
pop up menu.

21. add the following code to the Click event handler to update the first author’s last name.

private void btnUpdate_Click(object sender, RoutedEventArgs e)
{
 authors[0].LastName = "Webb";
}

22. add the following code to the btnRefresh_Click method. this code clears and rebinds
the GridView.

private void btnRefresh_Click(object sender, RoutedEventArgs e)
{
 this.AuthorsGridView.ItemsSource = null;
 this.AuthorsGridView.ItemsSource = authors;
}

23. test the page in the simulator. When you click the Update button the first author’s name
should update on the page. this is because the binding mode is set to OneWay by default.

24. Change the binding mode of the txtFirstname textBlock to onetime.

<TextBlock Text="{Binding FirstName, Mode=OneTime}"
 Margin="20,10,0,0" FontSize="24"/>

25. test the page in the simulator. When you click the Update button, the first author’s name
should not update on the page. this is because the binding mode is set to OneTime,
which means it only changes when it binds. Click the refresh button to rebind the
DataGrid. You should now see the new value in the GridView.

26. When you are done testing, close the simulator and exit visual studio.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Developing WinDoWs store appliCations

269

Page Navigation
Page navigation in a Windows Store app is similar in concept to page navigation in a web app. The XAML UI
framework provides a built-in Frame control that keeps track of the navigation history. You can use the methods of the
Frame object, such as the GoBack, GoForward, and Navigate, to easily navigate through the navigation history or jump
to a particular page. The Navigation method also provides a parameter that allows you to pass data between pages.

The following code in the App.xaml.cs file is used to navigate to the main page of the app when it starts up. If the
Frame object cannot navigate to the MainPage, it throws an exception.

if (!rootFrame.Navigate(typeof(MainPage), args.Arguments))
{
 throw new Exception("Failed to create initial page");
}

The following code calls the Navigate method to navigate to a details page passing an object representing the
author shown in a GridView item (e.ClickedItem).

private void AuthorsGridView_ItemClick(object sender, ItemClickEventArgs e)
{
 Frame.Navigate(typeof(AuthorDetailPage), e.ClickedItem);
}

The AuthorDetailPage uses the event handler OnNavigateTo to retrieve the author object passed and bind it to
DataContext of the AuthorDetails grid.

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 author = (Author) e.Parameter;
 this.AuthorDetails.DataContext = author;
}

aCtIVItY 13-3. WOrKING WIth Data teMpLateS

in this activity, you will become familiar with the following:

implementing page navigation•	

passing Data between pages•	

passing Data and page Navigation

to implement page navigation, follow these steps:

1. start visual studio. select File ➤ open ➤ project.

2. Choose the activity13_2 project you completed in the last activity.

3. after the project loads, add a new blank page called authorDetail.xaml.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Developing WinDoWs store appliCations

270

4. add the following markup code between the Grid tags in the authorDetailpage’s XaMl
file. this creates the page’s title and adds a back button to the page.

<Grid.RowDefinitions>
 <RowDefinition Height="140"/>
 <RowDefinition Height="Auto"/>
</Grid.RowDefinitions>
<Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <Button Name="btnBack" Style="{StaticResource BackButtonStyle}"
 Click="btnBack_Click"></Button>
 <TextBlock x:Name="PageTitle"
 Text="Author Info" Grid.Column="1" VerticalAlignment="Center"
 Margin="120,20,0,0" IsHitTestVisible="false"
 Style="{StaticResource PageHeaderTextStyle}"/>
</Grid>

5. add this mark up after the textBlock tag and before the ending grid tag shown in step 4.
this creates the display controls to display the author’s details.

<Grid Grid.Row="1" Name="AuthorDetails" DataContext="{Binding Mode=TwoWay}"
 HorizontalAlignment="Left" Margin="20,0,0,0">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <TextBlock Text="First Name:" Grid.Column="0"
 Grid.Row="0" HorizontalAlignment="Left"
 Margin="3" VerticalAlignment="Center" FontSize="18" />
 <TextBox Grid.Column="1" Grid.Row="0" Height="23" HorizontalAlignment="Left"
 Margin="3" Name="txtFirstName" Text="{Binding Path=FirstName}"
 VerticalAlignment="Center" Width="120" FontSize="18" />
 <TextBlock Text="Last Name:" Grid.Column="0" Grid.Row="1"
 HorizontalAlignment="Left" Margin="3" VerticalAlignment="Center"

FontSize="18" />
 <TextBox Grid.Column="1" Grid.Row="1" Height="23" HorizontalAlignment="Left"
 Margin="3" Name="txtLastName" Text="{Binding Path=LastName}"

IsEnabled="False"
 VerticalAlignment="Center" Width="120" FontSize="18" />

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Developing WinDoWs store appliCations

271

 <TextBlock Text="Royalty:" Grid.Column="0" Grid.Row="2"
 HorizontalAlignment="Left" Margin="3" VerticalAlignment="Center"
 FontSize="18" />
 <TextBox Grid.Column="1" Grid.Row="2" Height="23" HorizontalAlignment="Left"
 Margin="3" Name="txtRoyalty" Text="{Binding Path=Royalty}"
 VerticalAlignment="Center" Width="120" FontSize="18" />
 <CheckBox Name="chkContract" Content="Under Contract"
 IsChecked="{Binding Path=UnderContract}"
 Grid.Row="3" Grid.Column="0" FlowDirection="RightToLeft" FontSize="18" />
</Grid>

6. in the authorDetailpage.xaml.cs file, add the btnBack_Click event handler. this sends
the navigation back to the calling page.

 private void btnBack_Click(object sender, RoutedEventArgs e)
{
 Frame.GoBack();
}

7. in the Mainpage.xaml file, find the AuthorsGridView opening tag and add an
ItemClick attribute.

<GridView x:Name="AuthorsGridView"
 Grid.Row="1"
 Margin="110,50,0,0"
 SelectionMode="Single"
 IsSwipeEnabled="True"
 IsItemClickEnabled="True"
 ItemsSource="{Binding Mode=OneTime}"
 ItemTemplate="{StaticResource AuthorTemplate}"
 ItemClick="AuthorsGridView_ItemClick">

8. in the Mainpage.xaml.cs file, add the AuthorsGridView_ItemClick event handler. this
causes the application to navigate to the AuthorDetailPage.

private void AuthorsGridView_ItemClick(object sender, ItemClickEventArgs e)
{
 Frame.Navigate(typeof(AuthorDetailPage));
}

9. test the navigation in the simulator. When the MainPage displays, click on one of the
gray boxes with the authors’ information displayed. the AuthorDetailPage should display.
Click on the back button, which will take you back to the MainPage. after testing, close
the simulator.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Developing WinDoWs store appliCations

272

passing Data between pages

1. in the Mainpage.xaml.cs file, update the AuthorsGridView_ItemClick event handler to
pass the e.ClickedItem which represents an Author object to the AuthorDetailPage.

private void AuthorsGridView_ItemClick(object sender, ItemClickEventArgs e)
{
 Frame.Navigate(typeof(AuthorDetailPage), e.ClickedItem);
}

2. in the authorDetailpage.cs file, add the following code to the OnNavigatedTo event
handler. this code takes the parameter passed to the page and assigns it to the
DataContext of the AuthorDetails grid.

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 Author author = (Author) e.Parameter;
 this.AuthorDetails.DataContext = author;
}

3. test the application in the simulator. When the MainPage displays, click on one of the
gray boxes with the authors information displayed. the AuthorDetailsPage should
display with the author information loaded into the controls on the page. after testing,
close the simulator.

Summary
In this chapter, you took a look at implementing the interface tier of an application using the new Windows Store
App. You saw how to use XAML to create pages and layout controls. You also saw how easy it is to bind the controls to
data and present them to the users. What’s still missing from the story is information on how to retrieve data from a
relational database on a server. In order to provide server-side data to a Windows Store application, you need to utilize
a web service. In Chapter 14, you will look at creating web services using the Windows Communication Framework
(WCF) and the new ASP.NET Web API. You will also look at consuming web services in a client application.

www.it-ebooks.info

http://www.it-ebooks.info/

273

Chapter 14

Developing and Consuming
Web Services

In the previous three chapters, you examined the steps required to create the graphical user interface of an
application. Graphical user interfaces created with WPF, ASP.NET, and Windows Store apps provide the user a way to
interact with your applications and employ the services the application provides. This chapter shows you how to build
another type of interface, one that is implemented using web service protocols and is meant to be consumed by an
application. Such a service provides an application with a programmatic interface with which to access its functions,
without the need for human interaction. You will first look at creating and consuming Windows Communication
Foundation (WCF) web services. WCF services are robust services that support secure messaging over multiple
protocols. WCF services are an excellent choice when you are responsible for both the service provider and the service
consumer, for example providing services for consumption on a corporate intranet. You will also look at creating and
consuming ASP.NET Web API services. The ASP.NET Web API provides a lighter weight protocol used to pass data
between the client and server over HTTP. It is a better choice for passing data across the internet between client and
servers created using different technologies and/or different groups.

After reading this chapter, you will have a clearer understanding of the following:

what web services are and how they came about•	

how WCF processes service requests•	

how to create and consume a WCF service•	

how ASP.NET Web API services process service requests•	

how to create and consume an ASP.NET Web API service•	

What Are Services?
Microsoft first introduced the concept of services with its inclusion of web services support in .NET Framework 1.0.
A web service provides a way for an application to request a service and receive a reply. This is essentially the same
as a client object requesting a service (method) from a server object within the boundaries of your application. The
difference is the location of the client objects and server objects. If they reside in the same application, then they
can issue and receive binary messages and inherently understand each other because they are speaking the same
“language.” As the applications you build grow more complex, it is common to split the application up into distinct
components. When you segment an application into components, each designed to perform a distinct specialized
service, you greatly enhance code maintenance, reusability, and reliability. Additionally, separate servers can host the
various components for increased performance, better maintenance, and security.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Developing anD Consuming Web serviCes

274

Prior to the introduction of web services, the clients and servers of an application relied on distributed
technologies such as Distributed Component Object Model (DCOM) from Microsoft and the Common Object
Request Broker Architecture (CORBA) from the Object Management Group (OMG) to communicate. These early
attempts at service-oriented architecture worked fairly well if the client and server applications utilized the same
technology, but when the client and server utilized disparate technologies, it become very problematic. The power of
web services lies in the fact that they use a set of open messaging and transport protocols. This means that client and
server components utilizing different technologies can communicate in a standard way. For example, a Java-based
application running on an Apache web server can request a service from a .NET-based application running on an IIS
server. In addition, they can be located virtually anywhere in the world that has an Internet connection.

WCF Web Services
With the release of the .NET Framework 3.0, Microsoft introduced a new way to create web services in the form of
Windows Communication Foundation services (WCF). Before WCF, Microsoft had a robust but confusing set of
messaging technologies including ASP.NET Web Services, MSMQ, Enterprise services, and .NET Remoting. Microsoft
decided to roll all these technologies into a single framework for developing service-oriented applications. This made
developing service-oriented applications more consistent and less confusing for developers.

A WCF service is made up of three parts: the service, an end point, and a hosting environment. The service is a
class that contains methods you want to expose to clients of the service. An end point is a definition of how clients can
communicate with the service. It’s worth noting that a service can have more than one endpoint defined. An
endpoint consists of the base address of the service, its binding information, and its contract information (the three are
often referred to as the ABCs of WCF). The hosting environment refers to the application hosting the service. For
your purposes, this will be a web server, but there are other options that exist depending on the type of WCF service
you implement.

Creating a WCF Web Service
Creating and consuming basic WCF services using Visual Studio 2012 is a fairly easy process. If you use the templates
Visual Studio provides, much of the plumbing work is done for you. Figure 14-1 shows the available templates. To
create a WCF web service, you use the WCF Service Application template.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Developing anD Consuming Web serviCes

275

Selecting a template adds two important files to the project: one defines the service contract using an interface
and one is a class file that contains the service implementation code. In Figure 14-2, the IService1.cs file defines the
interface and the Service1.svc.cs contains the class implementation for the service.

Figure 14-1. WCF templates provided by Visual Studio

Figure 14-2. WCF interface and class files

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Developing anD Consuming Web serviCes

276

When you create a service, you need to define the service contract. The contract is defined by an interface
definition. The interface defines the methods exposed by the service, any input parameters expected by the methods,
and any output parameters passed back by the methods. The following code shows the interface code for a tax
service. The interface is marked with the [ServiceContract] attribute and any exposed methods are marked with the
[OperationContract].

[ServiceContract]
public interface ITax
{
 [OperationContract]
 double GetSalesTax(string statecode);
}

Once the interface is defined, the next step is to define the class that implements the interface. The following
code implements the ITax interface and provides the code to implement its exposed methods.

public class Tax : ITax
{
 public double GetSalesTax(string stateCode)
 {
 if (stateCode == "PA")
 {
 return .06;
 }
 else
 {
 return .05;
 }
 }
}

Once the interface and class are defined, compiling and running the application produces the test client shown
in Figure 14-3. You can test the web service by entering a state code and clicking the Invoke button. Clicking on the
XML tab shows the request and response messages sent between the client and server as shown in Figure 14-4.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Developing anD Consuming Web serviCes

277

Figure 14-3. Testing the web service

Figure 14-4. The Request and Response messages

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Developing anD Consuming Web serviCes

278

Consuming a WCF Web Service
To consume a WCF service in a .NET client, you must add a service reference to the project. When you add a service
reference in Visual Studio 2012, you are presented with an Add Reference window (see Figure 14-5). This window
allows you to discover the services available and the operations they expose. You can also change the namespace that
you use to program against the service.

Figure 14-5. Adding a service reference

Once the service reference is added to the project, Visual Studio updates the application configuration file with
the information needed to call the service. This includes the endpoint configuration with the address, binding, and
contract information.

<endpoint address="http://localhost:49185/TaxService.svc" binding="basicHttpBinding"
 bindingConfiguration="BasicHttpBinding_ITaxService" contract="TaxService.
 ITaxService"
 name="BasicHttpBinding_ITaxService" />

www.it-ebooks.info

http://localhost:49185/TaxService.svc
http://www.it-ebooks.info/

Chapter 14 ■ Developing anD Consuming Web serviCes

279

A client proxy is also added to the client application. The client application uses this proxy to interact with the
service. The following code shows a client console application calling the service using the TaxServiceClient proxy
and writing the results out to the console window. Figure 14-6 shows the output in console window.

TaxService.TaxServiceClient webService = new TaxService.TaxServiceClient();
string state1 = "PA";
double salesTax1 = webService.GetSalesTax(state1);
Console.WriteLine("The sales tax for {0} is {1}", state1, salesTax1);
string state2 = "NJ";
double salesTax2 = webService.GetSalesTax(state2);
Console.WriteLine("The sales tax for {0} is {1}", state2, salesTax2);
webService.Close();
Console.ReadLine();

Figure 14-6. Output from calling the TaxService

Using Data Contracts
In the previous example, the WCF web service used only simple types to pass data back and forth between the service
and the client. Simple types such as integer, double, and string do not require any special encoding to pass them
between the client and server. There are times when you want to pass complex types between the client and server.
Complex types are comprised of simple types. For example, you may have a service that takes an address type made
up of street, city, state, and zip code and returns a location type made up of longitude and latitude. To facilitate the
exchange of complex types, the WCF service uses data contracts. You create your data class as usual, then mark it with
the [DataContract] attribute. The properties of the class that you want exposed are marked with the [DataMember]
attribute. The following code exposes the Location class to clients of the service:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Developing anD Consuming Web serviCes

280

[DataContract]
public class Location
{
 double _longitude;
 double _latitude;
 [DataMember]
 public double Latitude
 {
 get { return _latitude; }
 set { _latitude = value; }
 }
 [DataMember]
 public double Longitude
 {
 get { return _longitude; }
 set { _longitude = value; }
 }
}

By marking the classes with the [DataContract] and [DataMember] attributes, an XML Schema Definition (XSD)
file is created describing the complex types. Clients use this file to determine what to supply the service and what to
expect as a return type. The following markup shows the portion of the XSD file created for the Location type returned
by the service.

<xs:complexType name="Location">
 <xs:sequence>
 <xs:element minOccurs="0" name="Latitude" type="xs:double" />
 <xs:element minOccurs="0" name="Longitude" type="xs:double" />
 </xs:sequence>
 </xs:complexType>
<xs:element name="Location" nillable="true" type="tns:Location" />

In the following activity, you will create a WCF service and consume the service in a .NET client application.

aCtIVItY 14-1. CreatING aND CONSUMING a WCF SerVICe

in this activity, you will become familiar with the following:

creating a WCF service•	

consuming a WCF service in a client application•	

Creating a WCF Service

to create the WCF service, follow these steps:

1. start visual studio. select File ➤ new ➤ project.

2. Choose WCF under the visual C# templates folder and select the WCF service application
project type. rename the project to activity14_1 and click the oK button. (see Figure 14-7)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Developing anD Consuming Web serviCes

281

3. Delete the iservice1.cs and the service1.svc files. right-click on the project node in
solution explorer and select add ➤ new item. in the add new item dialog window select
the WCF service. name the service Discountservice.

4. open the iDiscountservice.cs file in the code editor. replace the DoWork operation
contract with a GetDiscount operation contact.

[ServiceContract]
public interface IDiscountService
{
 [OperationContract]
 double GetDiscount(string discountCode);
}

5. open the Discountservice.svc.cs file in the code editor. replace the DoWork method with
the following GetDiscount method.

public class DiscountService : IDiscountService
{
 public double GetDiscount(string discountCode)
 {
 if (discountCode == "XXXX")
 {
 return 20;
 }

Figure 14-7. Creating a WCF Service Application

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Developing anD Consuming Web serviCes

282

 else
 {
 return 10;
 }
 }
}

6. build the project. if there are any errors, fix them, and then rebuild.

7. make sure the Discountservice.svc node is selected in solution explorer and launch
the debugger. You should be presented with the WCF test Client. test the GetDiscount
operation. When done testing, close the WCF test Client.

Creating the .Net Client

8. in the solution explorer, right-click the activity14_1 solution node and select add ➤ new
project. under the Windows templates add a WpF application named officesupply.

9. add the following Xaml to the mainWindow between the grid tags.

<TextBlock Text="Discount Code:" FontSize="20" Margin="10,25,350,250"/>
<TextBox Name="txtDiscountCode" FontSize="20" Margin="160,25,100,250"/>
<Button Name="btnGetDiscount" Content="Get Discount" Width="150"
 FontSize="20" Margin="150,75,213,200" />

10. in the solution explorer, right-click the officesupply project node and select add service
reference. in the add service reference dialog, click the Discover button. You should
see the Discountservice.svc as shown in Figure 14-8. Click the oK button to add the
reference.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Developing anD Consuming Web serviCes

283

Note ■ the port number of your service address may change when you develop it locally.

11. add a Click event handler method to the btngetDiscount.

12. add the following code to the click event handler. it is usually good practice to call web
services asynchronously so the client application remains responsive while waiting for
the response. remember from Chapter 8 you need to use the await key word when
calling an async method and also add the async key word to the method you are calling
it from.

private async void btnGetDiscount_Click(object sender, RoutedEventArgs e)
{
 ServiceReference1.DiscountServiceClient service =
 new ServiceReference1.DiscountServiceClient();
 double discount = await service.GetDiscountAsync(txtDiscountCode.Text);
 MessageBox.Show(discount.ToString());
 }

Figure 14-8. Adding the service reference

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Developing anD Consuming Web serviCes

284

13. in the solution explorer, right-click the activity14_1 solution node and select properties.
Click on the startup project node and select multiple startup projects. make sure the
action of each project is set to start and click oK to continue. (see Figure 14-9)

Figure 14-9. Setting the startup projects

14. start the debugger. When the form shows enter a discount code of “XXXX” and click the
get Discount button. You should see a message box showing 20 (see Figure 14-10). try a
different code; you should see a discount of 10. When finished testing, stop the debugger
and exit visual studio.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Developing anD Consuming Web serviCes

285

RESTful Data Services
Even though WCF is a great technology for building web services, it contains a lot of overhead when passing messages
between clients and servers. This is especially apparent when the client and server are passing data back and forth.
Not only is the data passed, but also all the meta-data describing the data. Often the actual data being transferred
comprises very little of the message being sent. Often all this meta-data is not needed and in fact strongly typing the
data can cause problems when the client and server are built using different programming frameworks with different
type systems. This is where Representational State Transfer- (REST) based services come in handy.

RESTful web services use simple communication over HTTP and deliver the data using plain old XML (POX) or
JavaScript Object Notation (JSON). Data is accessed and changed by using the standard HTTP verbs GET, PUT, POST,
and DELETE. Microsoft developed the ASP.NET WEB API as a RESTful alternative to WCF. It doesn’t replace WCF,
but provides a nice lighter weight alternative to WCF when you do not need to support transport protocols like TCP
and UDP, or support binary encoding. It is very useful for passing data from client to server in a loosely coupled way.
So while WCF is useful for exposing application logic (methods) as a service, ASP.NET Web API services are great for
exposing data.

Creating an ASP.NET Web API Service
When creating an ASP.NET Web API service, you need to create a web application to host the service. Once the web
application is created, you add a Web API Controller Class. The Web API Controller class provides the functionality
necessary to process request messages, interact with the data model, and generate response messages. For example,
when you want to request a list of employees, you would request the following URI.

http://localhost/DemoChapter14/employees

Where localhost is the name of the web server, DemoChapter14 is the name of the web application and
employees is the name of the controller. This URI gets mapped to the get method of the controller that returns an array
of strings containing the employee data. The output can be in the form of POX or JSON depending on the request.

Figure 14-10. Testing the discount web service

www.it-ebooks.info

http://localhost/DemoChapter14/employees
http://www.it-ebooks.info/

Chapter 14 ■ Developing anD Consuming Web serviCes

286

If you want to get a single employee’s data you would use the same URI with the employee key tacked on the
end of it.

http://localhost/DemoChapter14/employees/10

This is mapped to a Get method on the controller that has an input parameter of type integer.

public string Get(int id)
{
 //Retrieve employee data
 }

To map the URI requests to the appropriate method of the Web API Controller class you need to add the following
code to the Application_Start event handler in the Global.asax.cs file. This code adds the mapping information to the
RouteTable.

RouteTable.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "DemoChapter14/{controller}/{id}",
 defaults: new
 {
 id = RouteParameter.Optional
 }
);

In the following activity, you’ll create a Web API Service that supplies book data from the Pubs database.

aCtIVItY 14-2. CreatING a WeB apI SerVICe

in this activity, you will become familiar with the following:

creating a Web api service•	

to create a Web api service, follow these steps:

1. start visual studio. select File ➤ new ➤ project.

2. Choose Web under the visual C# templates folder and select the asp.net empty Web
application project type. rename the project to activity14_2 and click the oK button.
(see Figure 14-11)

www.it-ebooks.info

http://localhost/DemoChapter14/employees/10
http://www.it-ebooks.info/

Chapter 14 ■ Developing anD Consuming Web serviCes

287

3. right-click on the activity14_2.Web project node in the solution explorer window and
select add ➤ new Folder. name the folder model.

4. right-click on the model folder in the solution explorer window and select add ➤ new
item. under the Data node in the add new item window, select an aDo.net entity Data
model. name the model pubs.edmx and click add.

5. in the Choose model Contents screen, select the generate from database option and
click next.

6. in the Choose Your Data Connection screen, choose an existing connection or create a
new connection to the pubs database and choose next.

7. in the Choose Your Database objects screen, expand the tables node; select the titles
table; and then click Finish.

8. right-click on the activity14_2 web project node in the solution explorer window and
select add ➤ new Folder. name the folder Controllers.

9. right-click on the Controllers folder in the solution explorer window and select add ➤ new
item. in the add new item window, click on the web node in the installed templates.
select the Web api Controller Class template, rename it to BooksController, and click
the add button.

10. open the booksController.cs file in the Code editor. add the following using statement to
the top of the file.

using Activity14_2.Model;

Figure 14-11. Adding an empty Web Application project

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Developing anD Consuming Web serviCes

288

11. update the code so that the get method uses linQ to eF (Chapter 10) to retrieve an array
of books and sends it back to the caller.

// GET api/<controller>
public IEnumerable<title> Get()
{
 var context = new pubsEntities();
 var query = from t in context.titles select t;
 var titles = query.ToArray<title>();
 return titles;
}

12. right-click on the activity14_2 web project node in the solution explorer window and
select add ➤ new item. in the add new item window, click on the web node in the
installed templates. select the global application Class template. Keep it named
global.asax.

13. in the global.asax.cs file add the following using statements.

using System.Web.Routing;
using System.Web.Http;

14. in the application_start event handler add the following code to map the uri verbs
(get, put, etc.) to the booksController methods.

RouteTable.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "Activity14_2/{controller}/{id}",
 defaults: new
 {
 id= RouteParameter.Optional
 }
);

15. build the solution. if there are any errors, fix them and rebuild. Figure 14-12 shows the
project files in solution explorer.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Developing anD Consuming Web serviCes

289

16. launch the debugger. in the browser window, type the following uri
(http://LocalHost:port/Activity14_2/books). replace the port with the port number of
your project. You can find the port number by right clicking the project node in solution explorer
and selecting properties. the project url should be listed on the Web tab (see Figure 14-13).

Figure 14-12. Viewing the project files

Figure 14-13. Looking up the port number

www.it-ebooks.info

http://LocalHost:port/Activity14_2/books
http://www.it-ebooks.info/

Chapter 14 ■ Developing anD Consuming Web serviCes

290

17. You should get a message asking if you want to open or save books.json. open the file in
notepad. You should see the book information listed in Json format (see Figure 14-14).

Figure 14-14. Viewing the books.json file in the Notepad

18. When finished testing, stop the debugger and exit visual studio.

Consuming ASP.NET Web API Services
When a client application calls an ASP.NET Web API service, it needs to make a HTTP request and wait for the
response data in the form of a POX or JSON text stream. After receiving the response, the client parses the text file and
loads the data in a local object for processing. Since the meta-data is not passed along with the data, Visual Studio
cannot automatically generate the proxy objects for the client to work with.

The HttpClient class in the System.Net.Http namespace is used to send requests and receive responses from the Web
API Service. The following code demonstrates using the HttpClient class to request a list of books from a web service.
First an HttpClient object is instantiated and the base address is set.

private HttpClient httpClient;
httpClient = new HttpClient();
httpClient.BaseAddress = new Uri("http://localhost:49213/");

Once the base address is set, you set the format of the response you want returned. In this case a JSON response
is expected.

httpClient.DefaultRequestHeaders.Accept.Add
 (new MediaTypeWithQualityHeaderValue("application/json"));

www.it-ebooks.info

http://localhost:49213/
http://www.it-ebooks.info/

Chapter 14 ■ Developing anD Consuming Web serviCes

291

You can then make a request and wait for a response. Since this can take a while, you should call the web service
asynchronously.

var response = await httpClient.GetAsync("Activity14_2/books");

When the response comes back, you can parse the text using the JsonArray class in the Windows.Data.Json
namespace (currently shipping with Windows 8) and load it into a local object/collection to work with.

var bookJSON = await response.Content.ReadAsStringAsync();
var bookArray = JsonArray.Parse(bookJSON);
ObservableCollection<Book> bc = new ObservableCollection<Book>();
foreach (var b in bookArray)
{
 Book bk = new Book();
 bk. title_id=b.GetObject()["title_id"].GetString();
 bk.title = b.GetObject()["title"].GetString();
 bk.type = b.GetObject()["type"].GetString();
 bc.Add(bk);
}

Consumming a Web API service from the various .NET clients (WPF, ASP.NET, and a Windows Store app) is a very
similar process. In the following activity, you will call the web service you created in Activity 14-2 from a Windows
Store app.

aCtIVItY 14-3. CaLLING a WeB apI SerVICe

in this activity, you will become familiar with the following:

calling a Web api service•	

to call a Web api service, follow these steps:

1. start visual studio and open the project from activity14-2. add a new Windows store
blank app named bookserviceClient to the solution.

2. add a new class to the bookserviceClient named Book and add the following properties
to the class.

class Book
{
 public string Title_id { get; set; }
 public string Title { get; set; }
 public string Type { get; set; }
 public string Notes { get; set; }
}

3. open the mainpage.xaml file in the designer. add the following Xaml markup between
the Grid tags to define a GridView to display a collection of book data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Developing anD Consuming Web serviCes

292

<GridView Name="BooksView" ItemsSource="{Binding}" Margin="50,50,0,0">
 <GridView.ItemTemplate>
 <DataTemplate>
 <StackPanel Width="300" Height="300" Margin="10"
 Background="#FF161C8F">
 <TextBlock Margin="10,0" Text="{Binding Title_id}" />
 <TextBlock Margin="10,0" Text="{Binding Title}" />
 <TextBlock Margin="10,0" Text="{Binding Type}" />
 <TextBlock Margin="10,0" Text="{Binding Notes}"
 TextWrapping="Wrap"/>
 </StackPanel>
 </DataTemplate>
 </GridView.ItemTemplate>
</GridView>

4. open the mainpage.xaml.cs file in the code editor window. add the following using
statements to the top of the file.

using System.Net.Http;
using System.Net.Http.Headers;
using Windows.Data.Json;
using System.Collections.ObjectModel;

5. add a class level HttpClient variable to the class and update the class constructor with
the following code. replace the port number with the port number being used by your
web service.

private HttpClient httpClient;
public MainPage()
{
 this.InitializeComponent();
 httpClient = new HttpClient();
 httpClient.BaseAddress = new Uri("http://localhost:49213/");
 httpClient.DefaultRequestHeaders.Accept.Add
 (new MediaTypeWithQualityHeaderValue("application/json"));
}

6. add an asynchronous method that calls the web service, parses the result, and binds it to
the GridView.

private async void GetBooks()
{
 var response = await httpClient.GetAsync("Activity14_2/books");
 if (response.IsSuccessStatusCode)
 {
 var bookJSON = await response.Content.ReadAsStringAsync();
 var bookArray = JsonArray.Parse(bookJSON);
 ObservableCollection<Book> bc = new ObservableCollection<Book>();
 foreach (var b in bookArray)

www.it-ebooks.info

http://localhost:49213/
http://www.it-ebooks.info/

Chapter 14 ■ Developing anD Consuming Web serviCes

293

 {
 Book bk = new Book();
 bk.Title_id=b.GetObject()["title_id"].GetString();
 bk.Title = b.GetObject()["title1"].GetString();
 bk.Type = b.GetObject()["type"].GetString();
 bk.Notes = b.GetObject()["notes"].Stringify();
 bc.Add(bk);
 }
 this.BooksView.DataContext = bc;
 }
}

7. in the OnNavigatedTo event handler call the GetBooks method.

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 GetBooks();
}

8. build the solution. if there are any errors, fix them and rebuild.

9. in the solution explorer, right-click the activity14_2 solution node and select properties.
Click on the startup project node and select multiple startup projects. make sure the
action of each project is set to start. (see Figure 14-15).

Figure 14-15. Setting the startup projects

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Developing anD Consuming Web serviCes

294

10. launch the debugger. You should see the book information listed in the gridview.
(see Figure 14-16).

Figure 14-16. Displaying book information

11. When done testing, press the alt + F4 keys to close the app. in visual studio stop the
debugger and exit visual studio.

Summary
In this chapter, you were introduced to the fundamentals of implementing web services. In particular, you saw how to
create web services using the Windows Communication Framework (WCF) and the ASP.NET Web API. You also built
client applications that called these web services.

This was the final chapter in a series aimed at exposing you to the various technologies and .NET Framework
classes used to build .NET applications. These chapters only scratched the surface of these technologies. As you gain
experience developing .NET applications, you will need to look more deeply into each of these technologies.

Thus far in your journey you have studied UML design, object-oriented programming, the C# language, the .NET
Framework, creating graphical user interfaces, and developing Web Services. You are now ready to put the pieces
together and develop a working application. In Chapter 15, you will revisit the UML models you developed for the
case study introduced in Chapter 4. You will transform these models into a functioning application.

www.it-ebooks.info

http://www.it-ebooks.info/

295

Chapter 15

Developing the Office Supply
Ordering Application

In the previous chapters, you looked at three ways to develop the graphical user interface of an application. Graphical
user interfaces provide human users with a way to interact with your applications and use the services they provide.
You also saw how services create programmatic interfaces that other programs can call to use the services of the
application without any user interaction.

In this chapter, you come full circle, back to the office supply ordering application (called OSO for short) that
you designed in Chapter 4. This chapter is one big activity, and a final exam of sorts. You will create a functional
application incorporating the concepts you have learned in the previous chapters. As you work through creating the
application, you should be able to identify these concepts and relate them to the concepts covered previously.
The application will contain a data access layer, a business logic layer, and a user interface layer.

After reading this chapter, you will understand why applications are split into different layers and how to
construct them.

Revisiting Application Design
When you design an application, you can typically proceed in three distinct phases. First, you complete a conceptual
design, then a logical design, and then a physical design.

The conceptual design, as explained in Chapter 4, constitutes the discovery phase of the process. The conceptual
design phase involves a considerable amount of collaboration and communication between the users of the system
and the system designers. The system designers must gain a complete understanding of the business processes that
the proposed system will encompass. Using scenarios and use cases, the designers define the functional requirements
of the system. A common understanding and agreement on system functionality and scope among the developers
and users of the system is the required outcome of this phase.

The second phase of the design process is the logical design. During the logical design phase, you work out the
details about the structure and organization of the system. This phase consists of the development and identification
of the business objects and classes that will compose the system. UML class diagrams identify the system objects
for which you identify and document the attributes and behaviors. You also develop and document the structural
interdependencies of these objects using the class diagrams. Using sequence and collaboration diagrams, you discover
and identify the interactions and behavioral dependencies between the various system objects. The outcome of this
phase, the application object model, is independent of any implementation-specific technology and deployment
architecture.

The third phase of the design process is the physical design. During the physical design phase, you transform
the application object model into an actual system. You evaluate and decide upon specific technologies and
infrastructures, do cost analysis, and determine any constraints. Issues such as programmer experience and
knowledge base, current implementation technologies, and legacy system integration will all influence your decisions

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Developing the offiCe Supply orDering appliCation

296

during the physical design phase. You must also analyze security concerns, network infrastructure, and scalability
requirements.

When designing a distributed application, you normally separate its logical architectural structure from its
physical architectural structure. By separating the architectural structure in this way, you will find it much easier to
maintain and update the application. You can make any physical architectural changes (to increase scalability,
for example) with minimal impact. The logical architectural design typically separates the various parts of an
application into tiers. Users interact with the presentation tier, which presents data to the user and gives the user
ways to initiate business service requests. The business logic tier encapsulates and implements the business logic of
an application. It is responsible for performing calculations, processing data, and controlling application logic and
sequencing. The data tier is responsible for managing access to and storage of information that must be persisted
and shared among various users and business processes. Figure 15-1 shows the different logical tiers of a typical
3-tier application.

UI Layer

Business Logic
Layer

Data Access
Layer

Database

Figure 15-1. Logical tiers of a 3-tiered application

When you create the physical tiers of an application, each logical tier would ideally correspond to a distinct
physical tier on its own dedicated server. In reality, the physical layers of the application are influenced by such factors
as available hardware and network infrastructure. You may have all the logical tiers on one physical server or spread
across a web and database server. What is important is that you create applications that implement clear separation of
duties among the classes.

Figure 15-2 shows the proposed layout of the OSO application. For simplicity’s sake, you will create the business
logic classes and the data access classes in the same assembly. This assembly is referred to as the business logic layer
(BLL), while the user interface layer is contained in its own assembly user interface layer (UI). Both assemblies are
contained on the same server (your computer). The important thing to remember is that because there is a clear
separation of duties between the business logic classes and the data access classes, as the application grows in
features and users, it can easily be refactored into separate assemblies hosted on separate servers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Developing the offiCe Supply orDering appliCation

297

Building the OSO Application’s Data Access Layer
In order to develop the business logic and data access layers of the application, you need to review the OSO class
diagram you created in Chapter 4 (shown in Figure 15-3).

BLL Assembly

UI LayerBusiness Logic
Layer

Data Access
Layer

UI Assembly

Figure 15-2. Physical tiers of the OSO application

«inherits»

Employee Order
OrderItem

DepartmentManager

ProductCatalog

ProductApprovePurchase()

OrderNo:Long
OrderDate:Date
Status:String

ProductNo:String
Quantity:Integer
UnitPrice:Real

ProductNo:String
ProductName:String
Category:String
Description:String
UnitPrice:Real
VendorCode:String

AddItem()
RemoveItem()
SubmitOrder()

ListCategories()
ListProducts()

Employeeid:Integer
LoginName:String
Password:String
Department:String
FirstName:String
LastName:String
Login()

1 0..n
1..n

1..n

1

1..n1

1

Contains
Makes an

Contains

Contains

Figure 15-3. OSO application class diagram

As discussed in Chapter 4, you need to create an Employee class that implements a login method (Login()).
The login method will interact with the database to verify login information. To accomplish this, you will create two
employee classes: one for the business logic layer (Employee) and one for the data access layer (DALEmployee).
The Employee class will pass the request to login from the User Interface (UI) to the DALEmployee class, which in turn
will interact with the database to retrieve the requested information. Figure 15-4 is the database schema for the Office
Supply database. This database is hosted in a SQL Server database.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Developing the offiCe Supply orDering appliCation

298

Note ■ if you did not install the office Supply database, see appendix C for instructions.

First, you’ll begin with the data access layer and then implement the business logic layer.
In Visual Studio, create a Class Library application and name it OfficeSupplyBLL and name the solution

OfficeSupply as in Figure 15-5; this application will contain the classes for the business logic layer and data access
layer of the OSO application.

Figure 15-4. Office Supply database diagram

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Developing the offiCe Supply orDering appliCation

299

Note ■ if you don’t want to code the office Supply ordering application from scratch, you can download it from the
apress web site. See appendix C for details.

Next, you’ll create a static class (DALUtility) that implements retrieving the database connection string from
the App.config file. The other classes will call its GetSQLConnection to retrieve the connection string.

Add an App.config file to the project. In the App.config file, add the xml code below to set the connection
information. Remember you may have to change the data source depending on your server setup.

<configuration>
 <connectionStrings>
 <add name="OSConnection"
 providerName="System.Data.SqlClient"
 connectionString="data source=localhost;initial catalog=OfficeSupply;
 integrated security=True;"/>
 </connectionStrings>
 </configuration>

In the Solution Explorer window, right-click on the References folder and select Add Reference. In the framework
assemblies, select the System.Configuration assembly as shown in Figure 15-6.

Figure 15-5. Creating the OfficeSupplyBLL class library

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Developing the offiCe Supply orDering appliCation

300

Add a class to the project and name it DALUtility. Add the following code to the class file:

using System;
using System.Configuration;

namespace OfficeSupplyBLL
{
 public static class DALUtility
 {
 public static string GetSQLConnection(string name)
 {
 // Assume failure.
 string returnValue = null;

 // Look for the name in the connectionStrings section.
 ConnectionStringSettings settings
 = ConfigurationManager.ConnectionStrings[name];

 // If found, return the connection string.
 if (settings != null)
 {
 returnValue = settings.ConnectionString;
 }
 return returnValue;
 }
 }
}

Figure 15-6. Adding a reference to the application

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Developing the offiCe Supply orDering appliCation

301

The next class to add is the DALEmployee class. This class contains a Login method that checks the user name and
password supplied to the values in the database. It uses a SQLCommand object to execute a SQL statement against the
database. If a match is found, it returns the employee’s userId. If no match is found, it returns -1. Since a single value
is returned by the SQL statement, you can use the ExecuteScalar method of the SQLCommand object.

Add a class named DALEmployee to the application and insert the following code into the class file:

using System;
using System.Data.SqlClient;

namespace OfficeSupplyBLL
{
 class DALEmployee
 {
 public int LogIn(string userName, string password)
 {
 string connString = DALUtility.GetSQLConnection("OSConnection");
 using(SqlConnection conn = new SqlConnection(connString))

 {
 using (SqlCommand cmd = new SqlCommand())
 {
 cmd.Connection = conn;
 cmd.CommandText = "Select EmployeeID from Employee where "
 + " UserName = @UserName and Password = @Password ";
 cmd.Parameters.AddWithValue("@UserName", userName);
 cmd.Parameters.AddWithValue("@Password", password);
 int userId;
 conn.Open();
 userId = (int)cmd.ExecuteScalar();
 if (userId > 0)
 {
 return userId;
 }
 else
 {
 return -1;
 }
 }
 }

 }
 }
}

The next class to construct is the DALProductCatalog class, the purpose of which is to encapsulate the
functionality the application needs to retrieve and list the available products in the database. You also want to be able
to view the products based on the category to which they belong. The information you need is in two database tables:
the catalog table and the products table. These two tables are related through the CatID field.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Developing the offiCe Supply orDering appliCation

302

When a client requests the product catalog information, a dataset is created and returned to the client. This
service is provided in the DALProductCatalog class’s GetProductInfo method. Add a class named DALProductCatalog
to the project and insert the code shown in here:

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.SqlClient;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace OfficeSupplyBLL
{
 public class DALProductCatalog
 {
 public DataSet GetProductInfo()
 {
 DataSet _dsProducts;
 string connString = DALUtility.GetSQLConnection("OSConnection");
 using (SqlConnection _conn = new SqlConnection(connString))
 {
 _dsProducts = new DataSet("Products");
 //Get category info
 String strSQL = "Select CategoryId, Name, Description from Category";
 using(SqlCommand cmdSelCategory = new SqlCommand(strSQL, _conn))
 {
 using(SqlDataAdapter daCatagory = new SqlDataAdapter(cmdSelCategory))
 {
 daCatagory.Fill(_dsProducts, "Category");
 }
 }

 //Get product info
 String strSQL2 = "Select ProductID, CategoryID, Name," +
 "Description, UnitCost from Product";
 using(SqlCommand cmdSelProduct = new SqlCommand(strSQL2, _conn))
 {
 using (SqlDataAdapter daProduct = new SqlDataAdapter(cmdSelProduct))
 {
 daProduct.Fill(_dsProducts, "Product");
 }
 }
 }
 //Set up the table relation
 DataRelation drCat_Prod = new DataRelation("drCat_Prod",
 _dsProducts.Tables["Category"].Columns["CategoryID"],
 _dsProducts.Tables["Product"].Columns["CategoryID"], false);
 _dsProducts.Relations.Add(drCat_Prod);
 return _dsProducts;
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Developing the offiCe Supply orDering appliCation

303

When a client is ready to submit an order, it will call the PlaceOrder method of the Order class, which you will
define shortly in the business logic classes. The client will pass the employee ID into the method and receive an order
number as a return value. The PlaceOrder method of the Order class will pass the order information in the form of an
XML string to the DALOrder class for processing. The DALOrder class contains the PlaceOrder method that receives an
XML order string from the Order class and passes it into a stored procedure in the SQL Server database. The stored
procedure updates the database and passes back the order number. This order number is then returned to the Order
class, which in turn passes it back to the client.

Add a class named DALOrder to the project and insert the following code into the class file:

using System;
using System.Data;
using System.Data.SqlClient;

namespace OfficeSupplyBLL
{
 class DALOrder
 {
 public int PlaceOrder(string xmlOrder)
 {
 string connString = DALUtility.GetSQLConnection("OSConnection");
 using (SqlConnection cn = new SqlConnection(connString))
 {
 using (SqlCommand cmd = cn.CreateCommand())
 {
 cmd.CommandType = CommandType.StoredProcedure;
 cmd.CommandText = "up_PlaceOrder";
 SqlParameter inParameter = new SqlParameter();
 inParameter.ParameterName = "@xmlOrder";
 inParameter.Value = xmlOrder;
 inParameter.DbType = DbType.String;
 inParameter.Direction = ParameterDirection.Input;
 cmd.Parameters.Add(inParameter);
 SqlParameter ReturnParameter = new SqlParameter();
 ReturnParameter.ParameterName = "@OrderID";
 ReturnParameter.Direction = ParameterDirection.ReturnValue;
 cmd.Parameters.Add(ReturnParameter);
 int intOrderNo;
 cn.Open();
 cmd.ExecuteNonQuery();
 cn.Close();
 intOrderNo = (int)cmd.Parameters["@OrderID"].Value;
 return intOrderNo;
 }
 }
 }
 }
}

Now that you have constructed the data access layer classes, you are ready to construct the business logic layer
set of classes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Developing the offiCe Supply orDering appliCation

304

Building the OSO Application’s Business Logic Layer
Add a class named Employee to the project. This class will encapsulate employee information used by the UI and pass
a login request to the data access layer. Add the following code to the Employee.cs file:

using System;

namespace OfficeSupplyBLL
{
 public class Employee
 {
 int _employeeID;

 public int EmployeeID
 {
 get { return _employeeID; }
 set { _employeeID = value; }
 }

 string _loginName;

 public string LoginName
 {
 get { return _loginName; }
 set { _loginName = value; }
 }
 string _password;

 public string Password
 {
 get { return _password; }
 set { _password = value; }
 }

 Boolean _loggedIn = false;

 public Boolean LoggedIn
 {
 get { return _loggedIn; }
 }

 public Boolean LogIn()
 {
 DALEmployee dbEmp = new DALEmployee();
 int empId;
 empId = dbEmp.LogIn(this.LoginName, this.Password);
 if (empId > 0)
 {
 this.EmployeeID = empId;
 this._loggedIn = true;
 return true;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Developing the offiCe Supply orDering appliCation

305

 else
 {
 this._loggedIn = false;
 return false;
 }

 }
 }
}

The ProductCatalog class provides the Product dataset to the UI. It retrieves the dataset from the
DALProductCatalog class. You could perform any business logic on the DataSet before passing it to the UI. Add a new
ProductCatalog class file to the project and add the following code to implement the ProductCatalog class.

using System;
using System.Collections.Generic;
using System.Data;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace OfficeSupplyBLL
{
 public class ProductCatalog
 {
 public DataSet GetProductInfo()
 {
 //perform any business logic befor passing to client.
 // None needed at this time.
 DALProductCatalog prodCatalog = new DALProductCatalog();
 return prodCatalog.GetProductInfo();
 }
 }
}

When a user adds items to an order, the order item information is encapsulated in an OrderItem class. This
class implements the INotifyPropertyChanged interface. This interface is necessary to notify the UI that a property
changed so that it can update any controls bound to the class. It also overrides the ToString method to provide an
XML string containing the item information. This string will get passed to the DAL when an order is placed.

Add the OrderItem class to the project and insert the following code to implement it.

using System;
using System.ComponentModel;

namespace OfficeSupplyBLL
{
 public class OrderItem : INotifyPropertyChanged
 {

 #region INotifyPropertyChanged Members
 public event PropertyChangedEventHandler PropertyChanged;
 protected void Notify(string propName)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Developing the offiCe Supply orDering appliCation

306

 {
 if (this.PropertyChanged != null)
 {
 PropertyChanged(this, new PropertyChangedEventArgs(propName));
 }
 }
 #endregion

 string _ProdID;
 int _Quantity;
 double _UnitPrice;
 double _SubTotal;
 public string ProdID
 {
 get { return _ProdID; }
 set { _ProdID = value; }
 }
 public int Quantity
 {
 get { return _Quantity; }
 set
 {
 _Quantity = value;
 Notify("Quantity");
 }
 }
 public double UnitPrice
 {
 get { return _UnitPrice; }
 set { _UnitPrice = value; }
 }
 public double SubTotal
 {
 get { return _SubTotal; }
 }
 public OrderItem(String productID, double unitPrice, int quantity)
 {
 _ProdID = productID;
 _UnitPrice = unitPrice;
 _Quantity = quantity;
 _SubTotal = _UnitPrice * _Quantity;
 }
 public override string ToString()
 {
 string xml = "<OrderItem";
 xml += " ProductID='" + _ProdID + "'";
 xml += " Quantity='" + _Quantity + "'";
 xml += " />";
 return xml;
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Developing the offiCe Supply orDering appliCation

307

The final class of the business logic layer is the Order class. This class is responsible for maintaining a collection
of order items. It has methods for adding and deleting items as well as passing the items to the DALOrder class when
an order is placed.

After adding an Order class to the project, use the following code to implement the class:

using System;
using System.Collections.ObjectModel;

namespace OfficeSupplyBLL
{
 public class Order
 {

 ObservableCollection<OrderItem> _orderItemList = new
 ObservableCollection<OrderItem>();

 public ObservableCollection<OrderItem> OrderItemList
 {
 get { return _orderItemList; }
 }
 public void AddItem(OrderItem orderItem)
 {
 foreach (var item in _orderItemList)
 {
 if (item.ProdID == orderItem.ProdID)
 {
 item.Quantity += orderItem.Quantity;

 return;
 }
 }
 _orderItemList.Add(orderItem);
 }
 public void RemoveItem(string productID)
 {
 foreach (var item in _orderItemList)
 {
 if (item.ProdID == productID)
 {
 _orderItemList.Remove(item);
 return;
 }
 }
 }
 public double GetOrderTotal()
 {
 if (_orderItemList.Count == 0)
 {
 return 0.00;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Developing the offiCe Supply orDering appliCation

308

 else
 {
 double total = 0;
 foreach (var item in _orderItemList)
 {
 total += item.SubTotal;
 }
 return total;
 }
 }
 public int PlaceOrder(int employeeID)
 {
 string xmlOrder;
 xmlOrder = "<Order EmployeeID='" + employeeID.ToString() + "'>";
 foreach (var item in _orderItemList)
 {
 xmlOrder += item.ToString();
 }
 xmlOrder += "</Order>";
 DALOrder dbOrder = new DALOrder();
 return dbOrder.PlaceOrder(xmlOrder);
 }
 }
}

Now that you have constructed the data access and business logic layers of the OSO application, you are ready
to construct the user interface (UI). Because you created the application in distinct tiers, you have the option of using
a Windows-based WPF UI, an ASP.NET web-based UI or a Windows Store app. You could also create more than one
UI depending on the device users use to interact with the application. In the next section, you will construct a WPF
application users will use to place office supply orders from their desktop computers.

Creating the OSO Application UI
In order to create the ordering system’s WPF interface, you’ll need to add a WPF project to the solution containing the
OfficeSupplyBLL project.

In Visual Studio, add a WPF project to the solution and name it OfficeSupplyWPF. After the project is loaded add
a reference to the OfficeSupplyBLL project as shown in Figure 15-7.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Developing the offiCe Supply orDering appliCation

309

In the App.config file, add the xml code below just before the configuration end tag. Remember you may have to
change the data source depending on your server setup.

 <connectionStrings>
 <add name="OSConnection"
 providerName="System.Data.SqlClient"
 connectionString="data source=localhost;initial catalog=OfficeSupply;
 integrated security=True;"/>
 </connectionStrings>

The first goal of the user interface is to present information about the products that can be ordered. The product
information is presented in a DataGrid control. The user will view products in a particular category by selecting the
category in a ComboBox control. Once products are listed, users can add products to an order. When a product is
added to an order, it’s displayed in a ListView below the DataGrid. Figure 15-8 shows the OSO order form with the
items added to an order.

Figure 15-7. Adding a reference to the OfficeSupplyBLL project

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Developing the offiCe Supply orDering appliCation

310

Add the following XAML code to the MainWindow.xaml file to create the OSO order form. Notice the use of data
binding for the various controls. For example, the item source of the data grid is set to the data relation between the
Category and Product tables (ItemsSource="{Binding drCat_Prod}"). This allows the data grid to show the products
in the category selected in the dropdown list.

<Window x:Class="OfficeSupplyWPF.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Office Supply Ordering" Height="484" Width="550" Loaded="Window_Loaded">
 <Grid>
 <StackPanel Name="LayoutRoot" DataContext="{Binding}"
 Orientation="Vertical" HorizontalAlignment="Left" Height="auto" Width="auto">
 <StackPanel Orientation="Horizontal" HorizontalAlignment="Left">
 <Label Content="Categories:" Margin="10,0,0,0"/>
 <ComboBox ItemsSource="{Binding}" Name="categoriesComboBox"
 IsSynchronizedWithCurrentItem="True"
 DisplayMemberPath="Name" Height="23" Margin="12" Width="200" >
 <ComboBox.ItemsPanel>
 <ItemsPanelTemplate>
 <VirtualizingStackPanel />
 </ItemsPanelTemplate>

Figure 15-8. Form for adding items to an order

www.it-ebooks.info

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://www.it-ebooks.info/

Chapter 15 ■ Developing the offiCe Supply orDering appliCation

311

 </ComboBox.ItemsPanel>
 </ComboBox>
 <Button Content="Login" Height="30" Name="loginButton"
 Width="75" Margin="20,5,0,0" Click="loginButton_Click" />
 <Button Content="Exit" Height="30" Name="exitButton"
 Width="75" Margin="20,5,0,0" Click="exitButton_Click" />
 </StackPanel>
 <DataGrid AutoGenerateColumns="False" Height="165"
 ItemsSource="{Binding drCat_Prod}"
 Name="ProductsDataGrid" RowDetailsVisibilityMode="VisibleWhenSelected"
 Width="490" HorizontalAlignment="Left" Margin="20,0,20,10"
 SelectionMode="Single">
 <DataGrid.Columns>
 <DataGridTextColumn
 x:Name="productIDColumn" Binding="{Binding Path=ProductID}"
 Header="Product ID" Width="40*" />
 <DataGridTextColumn
 x:Name="nameColumn" Binding="{Binding Path=Name}"
 Header="Name" Width="40*" />
 <DataGridTextColumn
 x:Name="descriptColumn" Binding="{Binding Path=Description}"
 Header="Description" Width="80*" />
 <DataGridTextColumn
 x:Name="unitCostColumn" Binding="{Binding Path=UnitCost}"
 Header="Unit Cost" Width="30*" />
 </DataGrid.Columns>
 </DataGrid>

 <StackPanel Orientation="Vertical">
 <ListView Name="orderListView" MinHeight="150" Width="490"
 ItemsSource="{Binding}" SelectionMode="Single">
 <ListView.View>
 <GridView>
 <GridViewColumn Width="140" Header="Product Id"
 DisplayMemberBinding="{Binding ProdID}" />
 <GridViewColumn Width="140" Header="Unit Price"
 DisplayMemberBinding="{Binding UnitPrice}" />
 <GridViewColumn Width="140" Header="Quantity"
 DisplayMemberBinding="{Binding Quantity}" />
 </GridView>
 </ListView.View>
 </ListView>

 </StackPanel>
 <StackPanel Orientation="Horizontal" HorizontalAlignment="Center">
 <Button Name="addButton" MinHeight="25" MinWidth="80"
 Content="Add Item" Click="addButton_Click" />
 <Button Name="removeButton" MinHeight="25" MinWidth="80"
 Content="Remove Item" Click="removeButton_Click"/>
 <Button Name="placeOrderButton" MinHeight="25" MinWidth="80"
 Content="Place Order" Click="placeOrderButton_Click"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Developing the offiCe Supply orDering appliCation

312

 </StackPanel>
 </StackPanel>
 <StatusBar VerticalAlignment="Bottom" HorizontalAlignment="Stretch">
 <TextBlock Name="statusTextBlock">You must log in to place an order.</TextBlock>
 </StatusBar>
 </Grid>
</Window>

To add an order item, the user first selects a row in the DataGrid and then selects the Add Item button. The Add
Item button displays a dialog box the user uses to enter a quantity and add the item. Figure 15-9 shows the Order
Item dialog.

Figure 15-9. The Order Item dialog

Add a new Window to the project named OrderItemDialog.xaml. Add the following XAML code to create the
OrderItemDialog form:

<Window x:Class="OfficeSupplyWPF.OrderItemDialog"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 WindowStartupLocation="CenterOwner"
 Title="Order Item" Height="169" Width="300">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Label Grid.Column="0" Grid.Row="0" Margin="2">Product Id:</Label>
 <TextBox Name="productIdTextBox" Grid.Column="1"
 Grid.Row="0" Margin="2" Grid.ColumnSpan="2" IsEnabled="False"/>

www.it-ebooks.info

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://www.it-ebooks.info/

Chapter 15 ■ Developing the offiCe Supply orDering appliCation

313

 <Label Grid.Column="0" Grid.Row="1" Margin="2">Unit Price:</Label>
 <TextBox Name="unitPriceTextBox" Grid.Column="1"
 Grid.Row="1" Margin="2" Grid.ColumnSpan="2" IsEnabled="False"/>
 <Label Grid.Column="0" Grid.Row="2" Margin="2" >Quantity:</Label>
 <TextBox Name="quantityTextBox" Grid.Column="1"
 Grid.Row="2" Margin="2" MinWidth="80" Text="1"/>
 <StackPanel Grid.Column="0" Grid.ColumnSpan="3"
 Grid.Row="3" Orientation="Horizontal"
 HorizontalAlignment="Center">
 <Button Name="okButton" Click="okButton_Click" IsDefault="True"
 MinWidth="80" Margin="5">OK</Button>
 <Button Name="cancelButton" Click="cancelButton_Click" IsCancel="True"
 MinWidth="80" Margin="5">Cancel</Button>
 </StackPanel>
 </Grid>
</Window>

Before users can submit an order, they must log in. When they click on the Login button, they are presented with
a Login Dialog window, shown in Figure 15-10.

Figure 15-10. The Login dialog

Add a new window to the project named LoginDialog.xaml. Add the following XAML code to create the
LoginDialog form.

<Window x:Class="OfficeSupplyWPF.LoginDialog"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Login" Height="131" Width="300"
 WindowStartupLocation="CenterOwner"
 FocusManager.FocusedElement="{Binding ElementName=nameTextBox}">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />

www.it-ebooks.info

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://www.it-ebooks.info/

Chapter 15 ■ Developing the offiCe Supply orDering appliCation

314

 <RowDefinition Height="Auto" />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Label Grid.Column="0" Grid.Row="0" Margin="2">Name:</Label>
 <TextBox Name="nameTextBox" Grid.Column="1" Grid.Row="0" Margin="2"/>
 <Label Grid.Column="0" Grid.Row="1" Margin="2">Password:</Label>
 <PasswordBox Name="passwordTextBox" Grid.Column="1" Grid.Row="1" Margin="2"/>

 <StackPanel Grid.Column="0" Grid.ColumnSpan="2" Grid.Row="2"
 Orientation="Horizontal" HorizontalAlignment="Center">
 <Button Name="okButton" Click="okButton_Click" IsDefault="True"
 MinWidth="80" Margin="5">OK</Button>
 <Button Name="cancelButton" Click="cancelButton_Click" IsCancel="True"
 MinWidth="80" Margin="5">Cancel</Button>
 </StackPanel>
 </Grid>
</Window>

Now that you have created the windows that make up the UI, you are ready to add the implementation to the
windows’ codebehind files.

Add the following code to the MainWindow.xaml.cs codebehind file. A discussion of the code follows.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;
using System.Data;
using OSOBLL;
using System.Collections.ObjectModel;

namespace OfficeSupplyWPF
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {

 DataSet _dsProdCat;
 Employee _employee;
 Order _order;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Developing the offiCe Supply orDering appliCation

315

 public MainWindow()
 {
 InitializeComponent();

 }

 private void Window_Loaded(object sender, RoutedEventArgs e)
 {
 ProductCatalog prodCat = new ProductCatalog();
 _dsProdCat = prodCat.GetProductInfo();
 this.DataContext = _dsProdCat.Tables["Category"];
 _order = new Order();
 _employee = new Employee();
 this.orderListView.ItemsSource = _order.OrderItemList;
 }

 private void loginButton_Click(object sender, RoutedEventArgs e)
 {

 LoginDialog dlg = new LoginDialog();
 dlg.Owner = this;
 dlg.ShowDialog();
 // Process data entered by user if dialog box is accepted
 if (dlg.DialogResult == true)
 {
 _employee.LoginName = dlg.nameTextBox.Text;
 _employee.Password = dlg.passwordTextBox.Password;
 if (_employee.LogIn() == true)
 {
 this.statusTextBlock.Text = "You are logged in as employee number " +
 _employee.EmployeeID.ToString();
 }
 else
 {
 MessageBox.Show("You could not be verified. Please try again.");
 }
 }
 }

 private void exitButton_Click(object sender, RoutedEventArgs e)
 {
 this.Close();
 }

 private void addButton_Click(object sender, RoutedEventArgs e)
 {

 OrderItemDialog orderItemDialog = new OrderItemDialog();

 DataRowView selectedRow;
 selectedRow = (DataRowView)this.ProductsDataGrid.SelectedItems[0];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Developing the offiCe Supply orDering appliCation

316

 orderItemDialog.productIdTextBox.Text = selectedRow.Row.ItemArray[0].ToString();
 orderItemDialog.unitPriceTextBox.Text = selectedRow.Row.ItemArray[4].ToString();
 orderItemDialog.Owner = this;
 orderItemDialog.ShowDialog();
 if (orderItemDialog.DialogResult == true)
 {
 string productId = orderItemDialog.productIdTextBox.Text;
 double unitPrice = double.Parse(orderItemDialog.unitPriceTextBox.Text);
 int quantity = int.Parse(orderItemDialog.quantityTextBox.Text);
 _order.AddItem(new OrderItem(productId,unitPrice,quantity));
 }
 }

 private void removeButton_Click(object sender, RoutedEventArgs e)
 {
 if (this.orderListView.SelectedItem != null)
 {
 var selectedOrderItem = this.orderListView.SelectedItem as OrderItem;
 _order.RemoveItem(selectedOrderItem.ProdID);
 }
 }

 private void placeOrderButton_Click(object sender, RoutedEventArgs e)
 {
 if (_employee.LoggedIn == true)
 {
 //place order
 int orderId;
 orderId = _order.PlaceOrder(_employee.EmployeeID);
 MessageBox.Show("Your order has been placed. Your order id is " +
 orderId.ToString());
 }
 else
 {
 MessageBox.Show("You must be logged in to place an order.");
 }
 }
 }
}

A look at the preceding code reveals that when the window loads, the Window_Loaded event retrieves the ProdCat
DataSet and sets it equal to the DataContext of the window so that the ComboBox and GridView controls can
bind to it. An Order object is created and the ListView control is bound to its OrderItem collection.

private void Window_Loaded(object sender, RoutedEventArgs e)
{
 ProductCatalog prodCat = new ProductCatalog();
 _dsProdCat = prodCat.GetProductInfo();
 this.DataContext = _dsProdCat.Tables["Category"];
 _order = new Order();
 _employee = new Employee();
 this.orderListView.ItemsSource = _order.OrderItemList;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Developing the offiCe Supply orDering appliCation

317

The loginButton_Click event launches an instance of the LoginDialog window and checks the Dialog result.
If it comes back as true, the _employee object’s values are set to the values entered in the dialog and the Login method
of the Employee class is called. If the Login method returns true, the user is notified that they are logged in.

 private void loginButton_Click(object sender, RoutedEventArgs e)
 {

 LoginDialog dlg = new LoginDialog();
 dlg.Owner = this;
 dlg.ShowDialog();
 // Process data entered by user if dialog box is accepted
 if (dlg.DialogResult == true)
 {
 _employee.LoginName = dlg.nameTextBox.Text;
 _employee.Password = dlg.passwordTextBox.Password;
 if (_employee.LogIn() == true)
 {
 this.statusTextBlock.Text = "You are logged in as employee number " +
 _employee.EmployeeID.ToString();
 }
 else
 {
 MessageBox.Show("You could not be verified. Please try again.");
 }
 }
 }

The addButton_Click event launches an instance of the OrderItemDialog window and fills the textboxes with
information from the selected row of the ProductsDataGrid. If the DialogResult returns true, the information entered
in the dialog is used to create an OrderItem object and add it to the Order’s OrderItem collection.

private void addButton_Click(object sender, RoutedEventArgs e)
{

 OrderItemDialog orderItemDialog = new OrderItemDialog();

 DataRowView selectedRow;
 selectedRow = (DataRowView)this.ProductsDataGrid.SelectedItems[0];
 orderItemDialog.productIdTextBox.Text = selectedRow.Row.ItemArray[0].ToString();
 orderItemDialog.unitPriceTextBox.Text = selectedRow.Row.ItemArray[4].ToString();
 orderItemDialog.Owner = this;
 orderItemDialog.ShowDialog();
 if (orderItemDialog.DialogResult == true)
 {
 string productId = orderItemDialog.productIdTextBox.Text;
 double unitPrice = double.Parse(orderItemDialog.unitPriceTextBox.Text);
 int quantity = int.Parse(orderItemDialog.quantityTextBox.Text);
 _order.AddItem(new OrderItem(productId,unitPrice,quantity));
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Developing the offiCe Supply orDering appliCation

318

The removeButton_Click event checks to see if an item is selected in the orderListView and removes it from
the order.

private void removeButton_Click(object sender, RoutedEventArgs e)
{
 if (this.orderListView.SelectedItem != null)
 {
 var selectedOrderItem = this.orderListView.SelectedItem as OrderItem;
 _order.RemoveItem(selectedOrderItem.ProdID);
 }
}

The placeOrderButton_Click event checks to see if the user is logged in and places the order if they are.

private void placeOrderButton_Click(object sender, RoutedEventArgs e)
{
 if (_employee.LoggedIn == true)
 {
 //place order
 int orderId;
 orderId = _order.PlaceOrder(_employee.EmployeeID);
 MessageBox.Show("Your order has been placed. Your order id is " + orderId.ToString());
 }
 else
 {
 MessageBox.Show("You must be logged in to place an order.");
 }
}

Now that the MainWindow’s codebehind is implemented, you are ready to add the codebehind for the
dialog widows.

Add the following code to the OrderItemDialog.xaml.cs codebehind file. If the user clicks the OK button,
the DialogResult is set to true. If the user clicks cancel, the DialogResult is set to false.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Shapes;

namespace OfficeSupplyWPF
{
 /// <summary>
 /// Interaction logic for OrderItemDialog.xaml
 /// </summary>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Developing the offiCe Supply orDering appliCation

319

 public partial class OrderItemDialog : Window
 {
 public OrderItemDialog()
 {
 InitializeComponent();
 }

 private void okButton_Click(object sender, RoutedEventArgs e)
 {
 this.DialogResult = true;
 }

 private void cancelButton_Click(object sender, RoutedEventArgs e)
 {
 this.DialogResult = false;
 }
 }
}

Add the following code to the LoginDialog.xaml.cs codebehind file. It is similar to OrderItemDialog code.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Shapes;

namespace OfficeSupplyWPF
{
 /// <summary>
 /// Interaction logic for LoginDialog.xaml
 /// </summary>
 public partial class LoginDialog : Window
 {
 public LoginDialog()
 {
 InitializeComponent();
 }

 private void okButton_Click(object sender, RoutedEventArgs e)
 {
 this.DialogResult = true;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Developing the offiCe Supply orDering appliCation

320

 private void cancelButton_Click(object sender, RoutedEventArgs e)
 {
 this.DialogResult = false;
 }
 }
}

Now that you have added the implementation code to the UI, you are ready to test the application.
Take some time to play with the application. Add some items to the order and test removing some items from
the order. Try placing an order (a valid login is JSmith for the user and js for the password). As you play with the
application, think of some things you could do to improve it. One area that needs improvement is trapping for errors
that may occur. For example, if you click the Add Item button without selecting an item in the grid, the program will
crash. One way to deal with this is to disable the button unless a grid row is selected.

You may also want to expand the application. For example, you could implement a Windows Store App interface.
Another interesting project is developing a web service that accepts the orders placed by the application.

Note ■ although this is a functional application, it’s for demonstration purposes only and is not production ready.

Summary
In this chapter, you revisited the office supply ordering (OSO) application designed in Chapter 4. You created a
functional application incorporating the concepts you learned in the previous chapters. The application contains
a data access layer, a business logic layer, and a user interface layer. You learned why applications are split into
different layers and how to construct a working application comprised of the various layers. Although you didn’t
create a web-based user interface application layer, because you created the application in distinct tiers, you could
easily replace the Windows-based WPF UI with a web-based UI or a Windows Store app. You also created the data
access layer using ADO.NET. Another option is to use the Entity Framework (EF). You could also create a web service
to send the orders to the suppliers.

www.it-ebooks.info

http://www.it-ebooks.info/

321

Chapter 16

Wrapping Up

If you’ve made it this far, take a moment and pat yourself on the back. You’ve come a long way since the day you first
cracked open the cover of this book; you’ve gained valuable skills and learned concepts you can use to successfully
program using the .NET Framework, C#, and the Visual Studio IDE. These include, but are not limited to,
the following:

the importance of the application design cycle•	

the Unified Modeling Language (UML) and how it can help facilitate the analysis and design •	
of object-oriented programs

the common language runtime (CLR)•	

the structure of the .NET Framework•	

how to create and use class structures and hierarchies•	

how to implement inheritance, polymorphism, and interfaces•	

object interaction and collaboration•	

event-driven programming•	

structured error handling•	

how to work with data structures and data sources using ADO.NET•	

using the Entity Framework to create object relational mappings to a SQL Server database•	

how to use the features of the Visual Studio IDE to increase productivity and facilitate •	
debugging

how to implement a Windows-based graphical user interface using the Windows Presentation •	
Framework

how to implement a web-based graphical user interface using ASP.NET and Web Forms•	

how to create a Windows Store app•	

how to create and consume services using Windows Communication Foundation and the •	
ASP.NET Web API

Congratulations! You can now call yourself a C# programmer (albeit a neophyte). However, don’t get too high on
yourself. If your goal is to become a professional C# programmer, your journey has just begun. The next stage of your
development is to gain experience. In other words, design and code, and then design and code some more. If you are
designing and coding C# at work, this will be easy. (Although it will be stressful if you are expected to be an expert
after that three-day course they sent you to!)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Wrapping Up

322

If you are learning on your own, you will have to find the time and projects on which to work. This is easier than
you might think. Commit to an hour a day and come up with an idea for a program. For example, you could design
a program that converts recipes into Extensible Markup Language (XML) data. The XML data could then generate a
shopping list. Heck, if you really want to go all out, incorporate an inventory tracking system that tracks ingredients
you have in stock. However you go about gaining experience, remember the important adage: use it or lose it!

The following sections highlight some other important things to consider as you develop your programming
skills.

Improve Your Object-Oriented Design Skills
Object-oriented analysis and design are two of the hardest tasks you will perform as a programmer. These are not
skills that come easily for most programmers. They are, however, two of the most important skills you should strive
to master. They are what separate what I call a programmer from a coder. If you talk to most CIOs and programming
managers, finding coders is easy; it is the programmer they are after.

Remember that there is no one “correct” method, rather several that are equally valid.

Investigate the .NET Framework Namespaces
The .NET Framework contains a vast number of classes, interfaces, and other types aimed at optimizing and
expediting your development efforts. The various namespaces that make up the .NET Framework Class Library are
organized by functionality. It’s important you take the time to become familiar with the capabilities provided by these
namespaces.

Start out with the namespaces that incorporate functionality you will use most often, such as the root namespace
System and the System.IO, which contains the .NET Framework classes for reading and writing to streams and files.

After you become familiar with the more common namespaces, explore some of the more obscure ones.
For example, System.Security.Cryptography provides cryptographic services such as data encoding, hashing, and
message authentication. You will be amazed at the extent of the support provided by the framework. You can find a
wealth of information on the members of the various namespaces in Visual Studio’s integrated documentation.

Become Familiar with ADO.NET and the Entity Framework
Data is fundamental to programming. You store, retrieve, and manipulate data in every program you write. The
data structure a program works with during execution is nondurable data—it is held in RAM. When the application
terminates, this data is lost and has to be re-created the next time the application runs. Durable data is data that is
maintained in a permanent data structure such as a file system or a database. Most programs need to retrieve data
from and persist data to some sort of durable data storage. This is where ADO.NET steps in. ADO.NET refers to the
namespaces that contain the functionality for working with durable data. (It also contains functionality for organizing
and working with nondurable data in a familiar relational database or XML-type structure.) Although I have
introduced you to ADO.NET and the Entity Framework, this is such an important topic that it deserves a book devoted
solely to these data access technologies. (Don’t worry—there are many!) This is definitely an area to which you need
to devote further study. To learn more about these technologies, visit the Data Developer Center site at
http://msdn.microsoft.com/en-us/data.

Learn More about Creating Great User Interfaces (UI)
Although you were introduced to WPF, ASP.NET, and Windows Store Apps, I only scratched the surface of these
powerful technologies. WPF, ASP.NET, and Windows Store apps are packed full of features for developing engaging,
interactive user experiences on the web, desktop, and mobile devices. For more information on programming

www.it-ebooks.info

http://msdn.microsoft.com/en-us/data
http://www.it-ebooks.info/

Chapter 16 ■ Wrapping Up

323

WPF, visit the Windows Client development center at http://windowsclient.net. For more information about
programming in ASP.NET, visit the developer center at http://www.asp.net. If you are interested in Windows Store
App development, visit the developer center at http://msdn.microsoft.com/en-US/windows/apps/br229512.
These sites are full of learning materials and demo applications showcasing the power of these technologies.

Move toward Component-Based Development
After you have mastered object-oriented development and the encapsulation of your programming logic in a class
system, you are ready to move toward component-based development. Components are assemblies that further
encapsulate the functionality of your programming logic. Although the OSO application’s business logic tier is
logically isolated from the data access tier, physically they reside in the same assembly. You can increase code
maintenance and reuse by compiling each into its own assembly. You should start moving to a Lego approach of
application development. This is where your application is composed of a set of independent pieces (assemblies)
that can be snapped together and work in conjunction to perform the necessary services. For more
information on this and other best practices, go to the Microsoft’s patterns and practices web site at
http://pnp.azurewebsites.net/en-us/.

Find Help
An enormous amount of information is available on the .NET Framework and the C# programming language.
The help system provided with Visual Studio is an excellent resource for programmers. Get in the habit of using this
resource religiously.

Another extremely important resource is http://msdn.microsoft.com. This web site, provided by Microsoft for
developers, contains a wealth of information including white papers, tutorials, and webcast seminars; quite honestly,
it’s one of the most informative sites in the industry. If you are developing your programming skills using Microsoft
technologies, visiting this site should be as much of a routine as reading the daily paper. There are also a number
of independent web sites dedicated to the various .NET programming languages. One good site is C# Corner
(http://www.c-sharpcorner.com/), which contains tons of articles on all aspects of programming in C#. You can use
your favorite search engine to discover other good sites on the Web dedicated to C# programming.

Join a User Group
Microsoft provides a great deal of support for the development of local .NET user groups. User groups consist of
members with an interest in .NET programming. These groups provide a great avenue for learning, mentoring,
and networking. There is a list of .NET user groups available at http://msdn.microsoft.com. The International
 .NET Association (INETA) also provides support for .NET user groups; you can find a listing of INETA affiliated user
groups at http://www.ineta.org.

If you can’t find a .NET user group in your area, heck, why not start one?

Please Provide Feedback
Although every effort has been made to provide you with an error-free text, it is inevitable that some mistakes
will make it through the editing process. I am committed to providing updated errata at the Apress Web site
(http://www.apress.com), but I can’t do this without your help. If you have come across any mistakes while reading
this text, please report them to me through the Apress site.

www.it-ebooks.info

http://windowsclient.net/
http://www.asp.net/
http://msdn.microsoft.com/en-US/windows/apps/br229512
http://pnp.azurewebsites.net/en-us/
http://msdn.microsoft.com/
http://www.c-sharpcorner.com/
http://msdn.microsoft.com/
http://www.ineta.org/
http://www.apress.com/
http://www.it-ebooks.info/

Chapter 16 ■ Wrapping Up

324

Thank You, and Good Luck!
I sincerely hope you found working your way through this text to be an enjoyable and worthwhile experience. I want
to thank you for allowing me to be your guide on this journey. Just as your skills as a developer increased as a result
of reading this book, my skills as a developer have increased immensely as a result of writing it. My experience of
teaching and training for the past two decades has been that you really don’t fully comprehend a subject until you can
teach it to someone else. So, again, thank you and good luck!

www.it-ebooks.info

http://www.it-ebooks.info/

325

APPENDIX A

Fundamental Programming Concepts

The following information is for readers who are new to programming and need a primer on some fundamental
programming concepts. If you have programmed in another language, chances are the concepts presented in this
appendix are not new to you. You should, however, review the material briefly to become familiar with the C# syntax.

Working with Variables and Data Types
Variables in programming languages store values that can change while the program executes. For example, if you
wanted to count the number of times a user tries to log in to an application, you could use a variable to track the
number of attempts. A variable is a memory location where a value is stored. Using the variable, your program can
read or alter the value stored in memory. Before you use a variable in your program, however, you must declare it.
When you declare a variable, the compiler also needs to know what kind of data will be stored at the memory location.
For example, will it be numbers or letters? If the variable will store numbers, how large can a number be? Will the
variable store decimals or only whole numbers? You answer these questions by assigning a data type to the variable.
A login counter, for example, only needs to hold positive whole numbers. The following code demonstrates how you
declare a variable named counter in C# with an integer data type:

int counter;

Specifying the data type is referred to as strong typing. Strong typing results in more efficient memory
management, faster execution, and compiler type checking, all of which reduces runtime errors. Runtime errors are
errors that can occur while a program is running and are not caught by the compiler when you build the application.
For example, incorrect rounding can occur as a result of using the wrong data types in a calculation.

Once you declare the variable, you need to assign it an initial value, either in a separate statement or within the
declaration statement itself. For instance, the following code:

int counter = 1;

is equivalent to this:

int counter;
counter = 1;

Understanding Elementary Data Types
C# supports elementary data types such as numeric, character, and date types.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A ■ FuNDAmENtAl ProgrAmmINg CoNCEPts

326

Integral Data Types
Integral data types represent whole numbers only. Table A-1 summarizes the integral data types used in C#.

Obviously, memory size is important when choosing a data type for a variable. A less obvious consideration is
how easily the compiler works with the data type. The compiler performs arithmetic operations with integers more
efficiently than the other types. Often, it’s better to use integers as counter variables even though a byte or short type
could easily manage the maximum value reached.

Non-Integral Data Types
If a variable will store numbers that include decimal parts, then you must use a non-integral data type. C# supports
the non-integral data types listed in Table A-2.

The decimal data type holds a larger number of significant digits than either the single or the double data types
and it is not subject to rounding errors. Decimal data types are usually reserved for financial or scientific calculations
that require a higher degree of precision.

Character Data Types
Character data types are for variables that hold characters used in human languages. For example, a character data
type holds letters such as “a” or numbers used for display and printing such as “2 apples.” The character data types
in C# are based on Unicode, which defines a character set that can represent the characters found in every language
from English to Arabic and Mandarin Chinese. C# supports two character data types: char and string. The char data
type holds single (16-bit) Unicode character values such as a or B. The string data type holds a sequence of Unicode
characters. It can range from zero up to about two billion characters.

Table A-1. Integral Data Types

Data Type Storage Size Value Range

Byte 8-bit 0 through 255

Short 16-bit –32,768 through 32,767

Integer 32-bit –2,147,483,648 through 2,147,483,647

Long 64-bit –9,223,372,036,854,775,808 through 9,223,372,036,854,775,807

Table A-2. Non-Integral Data Types

Data Type Storage Size Value Range

Single 32-bit –3.4028235E+38 through –1.401298E–45 for negative values; 1.401298E–45
through 3.4028235E+38 for positive values

Double 64-bit 1.79769313486231570E+308 through –4.94065645841246544E–324 for negative
values; 4.94065645841246544E–324 through 1.79769313486231570E+308 for
positive values

Decimal 128-bit 0 through +/–79,228,162,514,264,337,593,543,950,335 with no decimal point;
0 through +/–7.9228162514264337593543950335 with 28 places to the right of
the decimal

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A ■ FuNDAmENtAl ProgrAmmINg CoNCEPts

327

Boolean Data Type
The Boolean data type holds a 16-bit value that is interpreted as true or false. It’s used for variables that can be one of
only two values, such as yes or no, or on or off.

Date Data Type
Dates are held as 64-bit integers where each increment represents a period of elapsed time from the start of the
Gregorian calendar (1/1/0001 at 12:00 a.m.).

Object Data Type
An object data type is a 32-bit address that points to the memory location of another data type. It is commonly used to
declare variables when the actual data type they refer to can’t be determined until runtime. Although the object data
type can be a catch-all to refer to the other data types, it is the most inefficient data type when it comes to performance
and should be avoided unless absolutely necessary.

Nullable Types
By default, value types such as the Boolean, integer, and double data types can’t be assigned a null value. This can
become problematic when retrieving data from data structures such as a database that does allow nulls. When
declaring a value type variable that may be assigned a null, you make it a nullable type by placing a question mark
symbol (?) after the type name, like so:

double salary = null; // Not allowed.
double? salary = null; // allowed.

Introducing Composite Data Types
Combining elementary data types creates composite data types. Structures, arrays, and classes are examples of
composite data types.

Structures
A structure data type is useful when you want to organize and work with information that does not need the overhead
of class methods and constructors. It’s well suited for representing lightweight objects such as the coordinates of a
point or rectangle. A single variable of type structure can store such information. You declare a structure with the
struct keyword. For example, the following code creates a structure named Point to store the coordinates of a point
in a two-dimensional surface:

public struct Point
{
 public int _x, _y;

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A ■ FuNDAmENtAl ProgrAmmINg CoNCEPts

328

 public Point(int x, int y)
 {
 _x = x;
 _y = y;
 }
}

Once you define the structure, you can declare a variable of the structure type and create a new instance of the
type, like so:

Point p1 = new Point(10,20);

Arrays
Arrays are often used to organize and work with groups of the same data type; for example, you may need to work with
a group of names, so you declare an array data type by placing square brackets ([]) immediately following the variable
name, like so:

string[] name;

The new operator is used to create the array and initialize its elements to their default values. Because the
elements of the array are referenced by a zero-based index, the following array holds five elements:

string[] name = new string[4];

To initialize the elements of an array when the array is declared, you use curly brackets ({}) to list the values.
Since the size of the array can be inferred, you do not have to state it.

string[] name = {"Bob","Bill","Jane","Judy"};

C# supports multidimensional arrays. When you declare the array, you separate the size of the dimensions by
commas. The following declaration creates a two-dimensional array of integers with five rows and four columns:

string[,] name = new string[4,3];

To initialize the elements of a two-dimensional array when the array is declared, you use curly brackets inside
curly brackets to list the array elements.

int[,] intArray = {{1,2}, {3,4}, {5,6}, {7,8}};

You access elements of the array using its name followed by the index of the element in brackets. Index
numbering starts at 0 for the first element. For example, name[2] references the third element of the names array
declared previously and has a value of Jane.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A ■ FuNDAmENtAl ProgrAmmINg CoNCEPts

329

Classes
Classes are used extensively in object-oriented programming languages. Most of this book is devoted to their creation
and use. At this point, it suffices to say that classes define a complex data type for an object. They contain information
about how an object should behave, including its name, methods, properties, and events. The .NET Framework
contains many predefined classes with which you can work. You can also create your own class type definitions.
A variable defined as a class type contains an address pointer to the memory location of the object. The following
code declares an object instance of the StringBuilder class defined in the .NET Framework:

StringBuilder sb = new StringBuilder();

Looking at Literals, Constants, and Enumerations
Although the values of variables change during program execution, literals and constants contain items of data that
do not change.

Literals
Literals are fixed values implicitly assigned a data type and are often used to initialize variables. The following code
uses a literal to add the value of 2 to an integer value:

Count = Count + 2;

By inspecting the literal, the compiler assigns a data type to the literal. Numeric literals without decimal values
are assigned the integer data type; those with a decimal value are assigned as double data type. The keywords true
and false are assigned the Boolean data type. If the literal is contained in quotes, it is assigned as a string data type. In
the following line of code, the two string literals are combined and assigned to a string variable:

FullName = "Bob" + "Smith";

It’s possible to override the default data type assignment of the literal by appending a type character to the literal.
For example, a value of 12.25 will be assigned the double data type but a value of 12.25f will cause the compiler to
assign it a single data type.

Constants
Many times you have to use the same constant value repeatedly in your code. For example, a series of geometric
calculations may need to use the value of pi. Instead of repeating the literal 3.14 in your code, you can make your
code more readable and maintainable by using a declared constant. You declare a constant using the const keyword
followed by the data type and the constant name:

const Single pi = 3.14159265358979323846;

The constant is assigned a value when it is declared and this value can’t be altered or reassigned.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A ■ FuNDAmENtAl ProgrAmmINg CoNCEPts

330

Enumerations
You often need to assign the value of a variable to one of several related predefined constants. In these instances, you
can create an enumeration type to group the values. Enumerations associate a set of integer constants to names that
can be used in code. For example, the following code creates an enum type of Manager used to define three related
manager constants with names of DeptManager, GeneralManager, and AssistantManager with values of 0, 1, and 2,
respectively:

 enum Manager
 {
 DeptManager,
 GeneralManager,
 AssistantManager,
 }

A variable of the enum type can be declared and set to one of the enum constants.

Manager managerLevel = Manager.DeptManager;

Note ■ the .NEt Framework provides a variety of intrinsic constants and enumerations designed to make your coding
more intuitive and readable. For example, the StringAlignment enumeration specifies the alignment of a text string
relative to its layout rectangle.

Exploring Variable Scope
Two important aspects of a variable are its scope and lifetime. The scope of a variable refers to how the variable can be
accessed from other code. The lifetime of a variable is the period of time when the variable is valid and available for
use. A variable’s scope and lifetime are determined by where it is declared and the access modifier used to declare it.

Block-Level Scope
A code block is a set of grouped code statements. Examples of code blocks include code organized in if-else,
do-loop, or for-next statements. Block-level scope is the narrowest scope a variable can have. A variable declared
within a block of code is available only within the block in which it is declared. In the following code, the variable
blockCount can only be accessed from inside the if block. Any attempt to access the variable outside the block will
generate a compiler error.

if (icount > 10)
{
 int blockCount;
 blockCount = icount;
}

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A ■ FuNDAmENtAl ProgrAmmINg CoNCEPts

331

Procedure Scope
Procedures are blocks of code that can be called and executed from other code. There are two types of procedures
supported in C#: method and property. Variables declared outside of a code block but within a procedure have
procedure-level scope. Variables with procedure scope can be accessed by code within the same procedure. In the
following code, the counter iCount is declared with procedure scope and can be referenced from anywhere within the
procedure block of the Counter method:

void Counter()
{
 int iCount = 0;
 do
 {
 iCount = iCount + 2;
 }
 while (iCount < 10);
}

The lifetime of a procedure scope variable is limited to the duration of the execution of the procedure.

Module Scope
Variables with module scope are available to any code within the class or structure. To have module scope, the
variable is declared in the general declaration section (outside of any procedure blocks) of the class or structure.
To limit the accessibility to the module where it is declared, you use the private access modifier keyword. In the
following code, the iCount variable can be accessed by both procedures defined in the class:

public class Class1
{
 private int _iCount;
 public void IncrementCount()
 {
 int iCount = 0;
 do
 {
 iCount = iCount + 2;
 }
 while (iCount < 10);
 }
 public void ReadCount()
 {
 Console.WriteLine(_iCount.ToString());
 }
}

The lifetime of the variable declared with module scope is the same as the lifetime of the object instance of the
class or structure in which it is declared.

Note■ For a further discussion of scope see Chapter 6.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A ■ FuNDAmENtAl ProgrAmmINg CoNCEPts

332

Understanding Data Type Conversion
During program execution, there are many times when a value must be converted from one data type to another.
The process of converting between data types is referred to as casting or conversion.

Implicit Conversion
The C# compiler will perform some data type conversions for you automatically. For numeric types, an implicit
conversion can be made when the value to be stored can fit into the variable without being truncated or rounded off.
For example, in the following code, an integer data type is implicitly converted to a long data type:

int i1 = 373737373;
long l1 = i1;
l1 *= l1;

Explicit Conversion
Explicit conversion is referred to as casting. To perform a cast, you specify the type that you are casting to in
parentheses in front of the value or variable to be converted. The following code uses a cast to explicitly convert the
double type n1 to an integer type:

double n1 = 3.73737373;
int i1 = (int)n1;

Widening and Narrowing Conversions
Widening conversions occur when the data type being converted to can accommodate all the possible values
contained in the original data type. For example, an integer data type can be converted to a double data type without
any data loss or overflow. Data loss occurs when the number gets truncated. For example, 2.54 gets truncated to
2 if it is converted to an integer data type. Overflow occurs when a number is too large to fit in the new data type.
For example, if the number 50000 is converted to a short data type, the maximum capacity of the short data type is
exceeded, causing the overflow error. Narrowing conversions, on the other hand, occur when the data type being
converted to can’t accommodate all the values that can be contained in the original data type. For example, when the
value of a double data type is converted to a short data type, any decimal values contained in the original value will be
lost. In addition, if the original value is more than the limit of the short data type, a runtime exception will occur. You
should be particularly careful to trap for these situations when implementing narrowing conversions in your code.

Working with Operators
An operator is a code symbol that tells the compiler to perform an operation on a value. The operation can be
arithmetic, comparative, or logical.

Arithmetic Operators
Arithmetic operators perform mathematical manipulation to numeric types. Table A-3 lists the commonly used
arithmetic operators available in C#.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A ■ FuNDAmENtAl ProgrAmmINg CoNCEPts

333

The following code increments the value of an integer data type by the number one:

Count = Count + 1;

C# also supports shorthand assignment operators that combine the assignment with the operation. The following
code is equivalent to the previous code:

Count += 1;

If you are going to increment by one, you can also use the shorthand assignment ++. The following code is
equivalent to the previous code:

Count ++;

Comparison Operators
A comparison operator compares two values and returns a Boolean value of true or false. Table A-4 lists the
common comparison operators used in C#.

Table A-3. Arithmetic Operators

Operator Description

= Assignment

* Multiplication

/ Division

+ Addition

- Subtraction

Table A-4. Comparison Operators

Operator Description

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to

!= Not equal to

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A ■ FuNDAmENtAl ProgrAmmINg CoNCEPts

334

You use comparison operators in condition statements to decide when to execute a block of code. The following
if block checks to see if the number of invalid login attempts is greater than three before displaying a message:

if (_loginAttempts > 3)
{
 Messagebox.Show("Invalid login.");
}

Logical Operators
Logical operators combine the results of conditional operators. The three most commonly used logical operators
are the AND, OR, and NOT operators. The AND operator (&&) combines two expressions and returns true if both
expressions are true. The OR operator (||) combines two expressions and returns true if either one is true. The NOT
operator (!) switches the result of the comparison: a value of true returns false and a value of false returns true.
The following code checks to see whether the logged-in user is a department manager or assistant manager before
running a method:

if (currentUserLevel == Manager.AssistantManager ||
 currentUserLevel == Manager.DeptManager)
{
 ReadLog();
}

Ternary Operator
The ternary operator evaluates a Boolean expression and returns one of two values depending on the result of the
expression. The following shows the syntax of the ternary operator:

condition ? first_expression : second_expression;

If the condition evaluates to true, the result of the first expression is returned. If the condition evaluates to false,
the result of the second expression is returned. The following code checks to see if the value of x is zero. If it is,
it returns 0; if not, it divides y by x and returns the result.

return x == 0.0 ? 0 : y/x;

Introducing Decision Structures
Decision structures allow conditional execution of code blocks depending on the evaluation of a condition statement.
The if statement evaluates a Boolean expression and executes the code block if the result is true. The switch
statement checks the same expression for several different values and conditionally executes a code block depending
on the results.

w
www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A ■ FuNDAmENtAl ProgrAmmINg CoNCEPts

335

If Statements
To execute a code block if a condition is true, use the following structure:

if (condition1)
{
 //code
}

To execute a code block if a condition is true and an alternate code block if it is false, add an else block.

if (condition1)
{
 //code
}
else
{
 //code
}

To test additional conditions if the first evaluates to false, add an else-if block:

if (condition1)
{
 //code
}
else if (condition2)
{
 //code
}
else
{
 //code
}

An if statement can have multiple else-if blocks. If a condition evaluates to true, the corresponding code
statements are executed, after which execution jumps to the end of the statements. If a condition evaluates to false,
the next else-if condition is checked. The else block is optional, but if included, it must be the last. The else block
has no condition check and executes only if all other condition checks have evaluated to false. The following code
demonstrates using the if statement to evaluate a series of conditions. It checks a performance rating to determine
what bonus to use and includes a check to see if the employee is a manager to determine the minimum bonus.

if (performance ==1)
{
 bonus = salary * 0.1;
}
else if (performance == 2)
{
 bonus = salary * 0.08;
}

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A ■ FuNDAmENtAl ProgrAmmINg CoNCEPts

336

else if (employeeLevel == Manager.DeptManager)
{
 bonus = salary * 0.05;
}
else
{
 bonus = salary * 0.03;
}

Switch Statements
Although the switch statement is similar to the if-else statement, it’s used to test a single expression for a series of
values. The structure of the switch statement is as follows:

switch (expression)
{
case 1:
 Console.WriteLine("Case 1");
 break;
case 2:
 Console.WriteLine("Case 2");
 break;
default:
 Console.WriteLine("Default case");
 break;
}

A switch statement can have multiple case blocks. If the test expression value matches the case expression, the
code statements in the case block execute. After the case block executes, you need a break statement to bypass the
rest of the case statements. If the test expression doesn’t match the case expression, execution jumps to the next case
block. The default block doesn’t have an expression. It executes if no other case blocks are executed. The default
block is optional, but if used, it must be last. The following example uses a switch to evaluate a performance rating to
set the appropriate bonus rate:

switch(performance)
{
 case 1:
 bonus = salary * 0.1;
 break;
 case 2:
 bonus = salary * 0.08;
 break;
 case 3:
 bonus = salary * 0.03;
 break;
 default:
 bonus = salary * 0.01;
 break;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A ■ FuNDAmENtAl ProgrAmmINg CoNCEPts

337

Using Loop Structures
Looping structures repeat a block of code until a condition is met. C# supports the following looping structures.

While Statement
The while statement repeats the execution of code while a Boolean expression remains true. The expression gets
evaluated at the beginning of the loop. The following code executes until a valid login variable evaluates to true:

while (validLogin == false)
{
 //code statements...
}

Do-While Statement
The do-while loop is similar to the while loop except the expression is evaluated at the end of the loop. The following
code will loop until the maximum login attempts are met:

do
{
 //code statements...
}
while (iCount < maxLoginAttempts);

For Statement
A for statement loops through a code block a specific number of times based on the value stored in a counter. For
statements are a better choice when you know the number of times a loop needs to execute at design time. In the
parentheses that follow a for statement, you initialize a counter, define the evaluation expression, and define the
counter increment amount.

for (int i = 0; i < 10; i++)
{
 //Code statements...
}

For Each Statement
The for-each statement loops through code for each item in a collection. A collection is a group of ordered items;
for example, the controls placed on a Windows Form are organized into a Controls collection. To use the for-each
statement, you first declare a variable of the type of items contained in the collection. This variable is set to the current
item in the collection. The following for-each statement loops through the employees in an employee list collection:

foreach (Employee e in employeeList)
{
 //Code statements
}

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A ■ FuNDAmENtAl ProgrAmmINg CoNCEPts

338

If you need to conditionally exit a looping code block, you can use the break statement. The following code
shows breaking out of the for-each loop:

foreach (Employee e in employeeList)
{
 //Code statements
 if (e.Name == "Bob")
 {
 break;
 }
}

Introducing Methods
Methods are blocks of code that can be called and executed from other code. Breaking an application up into discrete
logical blocks of code greatly enhances code maintenance and reuse. C# supports methods that return values and
methods that do not. When you declare a method, you specify an access modifier, a return type, and a name for the
method. The following code declares a method with no return type (designated by the keyword void) used to record
logins to the event log:

public void RecordLogin(string userName)
{
 EventLog appLog = new EventLog();
 appLog.Source = "OSO App";
 appLog.WriteEntry(userName + " has logged in.");
}

You can declare methods with a parameter list that defines arguments that must be passed to the method when
it is called. The following code defines a method that encapsulates the assignment of a bonus rate. The calling code
passes an integer type value to the method and receives a double type value back.

public double GetBonusRate(int performanceRating)
{
 double bonusRate;
 switch (performanceRating)
 {
 case 1:
 bonusRate = 0.1;
 break;
 case 2:
 bonusRate = 0.08;
 break;
 case 3:
 bonusRate = 0.03;
 break;
 default:
 bonusRate = 0.01;
 break;
 }
 return bonusRate;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A ■ FuNDAmENtAl ProgrAmmINg CoNCEPts

339

The following code demonstrates how the method is called:

double salary;
int performance = 0;
double bonus = 0;
// Get salary and performance data from data base...
bonus = GetBonusRate(performance) * salary;

If the access modifier of the method is private, it is only accessible from code within the same class. If the method
needs to be accessed by code in other classes, then the public access modifier is used.

The information in this appendix was designed to get you up to speed on some fundamental programming
concepts. You should now be more familiar with C# syntax, and ready to expand and build on these concepts by
working through the rest of this book.

www.it-ebooks.info

http://www.it-ebooks.info/

341

APPENDIX B

Exception Handling in C#

The topics discussed here extend the discussion of exception handling found in Chapter 8, so this discussion
assumes that you have first thoroughly reviewed Chapter 8. The purpose of this appendix is to review Microsoft’s
recommendations for exception management and present a few of the exception classes provided by the .NET
Framework.

Managing Exceptions
Exceptions are generated when the implicit assumptions made by your programming logic are violated. For example,
when a program attempts to connect to a database, it assumes that the database server is up and running on the
network. If the server can’t be located, an exception is generated. It’s important that your application gracefully
handles any exceptions that may occur. If an exception is not handled, your application will terminate.

You should incorporate a systematic exception handling process in your methods. To facilitate this process,
the .NET Framework makes use of structured exception handling through the try, catch, and finally code blocks.
The first step is to detect any exceptions that may be thrown as your code executes. To detect any exceptions thrown,
place the code within the try block. When an exception is thrown in the try block, execution transfers to the catch
block. You can use more than one catch block to filter for specific types of exceptions that may be thrown.
The finally block performs any cleanup code that you wish to execute. The code in the finally block executes
regardless of whether an exception is thrown. The following code demonstrates reading a list of names from a file using
the appropriate exception handling structure:

public ArrayList GetNames(string file)
{

 try
 {
 using(StreamReader stream = new StreamReader())
 {
 ArrayList names = new ArrayList();

 while (stream.Peek() > -1)
 {
 names.Add(stream.ReadLine());
 }
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX B ■ EXcEPtIoN HANDlINg IN c#

342

 catch (FileNotFoundException e)
 {
 //Could not find file
 }
 catch (FileLoadException e)
 {
 //Could not open file
 }
 catch (Exception e)
 {
 //Some kind of error occurred. Report error.
 }
 finally
 {
 stream.Close();
 }
 return names;
}

After an exception is caught, the next step in the process is to determine how to respond to it. You basically
have two options: either recover from the exception or pass the exception to the calling procedure. The following
code demonstrates how to recover from a DivideByZeroException by setting the result to zero:

...
try
{
 Z = x / y;
}
catch (DivideByZeroException e)
{
 Z = 0;
}
...

An exception is passed to the calling procedure using the throw statement. The following code demonstrates
throwing an exception to the calling procedure where it can be caught and handled:

catch (FileNotFoundException e)
{
 throw e;
}

As exceptions are thrown up the calling chain, the relevance of the original exception can become less obvious.
To maintain relevance, you can wrap the exception in a new exception containing additional information that adds
relevancy to the exception. The following code shows how to wrap a caught exception in a new one and then pass it
up the calling chain:

catch (FileLoadException e)
{
 throw new Exception("GetNames function could not open file", e);
}

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX B ■ EXcEPtIoN HANDlINg IN c#

343

You preserve the original exception by using the InnerException property of the Exception class.

catch (FileLoadException e)
{
 throw new Exception("Could not open file. " + e.InnerException, e);
}

Implementing this exception management policy consistently throughout the various methods in your
application will greatly enhance your ability to build highly maintainable, flexible, and successful applications.

Using the .NET Framework Exception Classes
The Common Language Runtime (CLR) has a set of built-in exception classes. The CLR will throw an object instance
of the appropriate exception type if an error occurs while executing code instructions. All .NET Framework exception
classes derive from the SystemException class, which in turn derives from the Exception class. These base classes
provide functionality needed by all exception classes.

Each namespace in the framework contains a set of exception classes that derive from the SystemException
class. These exception classes handle common exceptions that may occur while implementing the functionality
contained in the namespace. To implement robust exception handling, it’s important for you to be familiar with the
exception classes provided by the various namespaces. For example, Table B-1 summarizes the exception classes in
the System.IO namespace.

Table B-1. Exception Classes in the System.IO Namespace

Exception Description

IOException The base class for exceptions thrown while accessing information using streams,
files, and directories.

DirectoryNotFoundException Thrown when part of a file or directory can’t be found.

EndOfStreamException Thrown when reading is attempted past the end of a stream.

FileLoadException Thrown when a file is found but can’t be loaded.

FileNotFoundException Thrown when an attempt to access a file that does not exist on disk fails.

PathTooLongException Thrown when a path or filename is longer than the system-defined maximum length.

Every exception class in the .NET Framework contains the properties listed in Table B-2. These properties help
identify where the exception occurred and its cause.

Table B-2. Exception Class Properties

Property Description

Message Gets a message that describes the current exception.

Source Gets or sets the name of the application or the object that causes the error.

StackTrace Gets a string representation of the frames on the call stack at the time the current exception
was thrown.

InnerException Gets the exception instance that caused the current exception.

HelpLink Gets or sets a link to the help file associated with this exception.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX B ■ EXcEPtIoN HANDlINg IN c#

344

In addition, the ToString method of the exception classes provides summary information about the current
exception. It combines the name of the class that threw the current exception, the message, the result of calling the
ToString method of the inner exception, and the stack trace information of the current exception.

You will find that the exception classes in the .NET Framework provide you with the capabilities to handle most
exceptions that may occur in your applications. In cases where you may need to implement custom error handling,
you can create your own exception classes. These classes need to inherit from System.ApplicationException,
which in turn inherits from System.Exception. The topic of creating custom exception classes is an advanced one and
thus beyond the scope of this text; for more information, consult the .NET Framework documentation at
http://msdn.microsoft.com/en-us/library/.

The Importance of Using
As you write applications, there are many times when you have to access unmanaged resources from the C# managed
types. For instance you may have to read or write to a text file or open a connection to a database. It is important that
you release these resources as soon as you are finished using them. If you wait around for the garbage collector to
clean up the resources, they can be inaccessible for long periods of time, blocking other programs from gaining access
to the resources. One scenario in which this can occur is connecting to a database. There are a limited number of
connections that can be made. If these connections are not managed correctly, then performance will suffer greatly.

In order to safely dispose of any unmanaged resources, classes that access these resources must implement the
IDispose interface and a Dispose method. Users of the class are guaranteed that calling the Dispose method will
properly clean up the rescources. For example, when you are done with a database connection, you should call its
Dispose method in a finally block as shown in the following code.

SqlConnection pubConnection = new SqlConnection();
string connString;
try
{
 connString = "Data Source=drcsrv01;Initial Catalog=pubs;Integrated Security=True";
 pubConnection.ConnectionString = connString;
 pubConnection.Open();
 //work with data
}
catch (SqlException ex)
{
 throw ex;
}
finally
{
 pubConnection.Dispose();
}

This pattern is so important for writing reliable code that Microsoft has implemented a convenient syntax that
ensures the correct use of IDisposable objects. When you use the using statement, you ensure that the Dispose
method is properly called when the object goes out of scope or if an exception occurs while you are calling methods
of the object. The following code is equivalent to the code shown previously for creating and working with
a SqlConnection.

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/
http://www.it-ebooks.info/

APPENDIX B ■ EXcEPtIoN HANDlINg IN c#

345

string connString = "Data Source=drcsrv01;Initial Catalog=pubs;Integrated Security=True";
using(SqlConnection pubConnection = new SqlConnection())
{
 pubConnection.ConnectionString = connString;
 pubConnection.Open();
 //work with data
}

You should get in the habit of employing the using pattern for any class that implements the IDispose interfaces.
The following code uses this pattern to open and read from a file using the StreamReader class.

string path = @"c:\temp\MyTest.txt";
using (StreamReader sr = File.OpenText(path))
{
 string s = "";
 while ((s = sr.ReadLine()) != null)
 {
 // work with text
 }
}

This discussion has provided you with a supplement to Chapter 8, covering methods for effectively handling
exceptions and using the .NET Framework exception classes. Please see Chapter 8 for the basic discussion of this topic.

www.it-ebooks.info

http://www.it-ebooks.info/

347

APPENDIX C

Installing the Required Software

I have included many learning activities throughout this book. In order to get the most out of the topics I discuss, you
should complete these activities. This is where the theory becomes concrete. It is my hope that you will take these
activities seriously and work through them thoroughly, and even repeatedly.

The UML modeling activities in Part 1 are meant for someone using UMLet. I chose this program because it is a
good diagramming tool to learn on. It enables you to create UML diagrams without adding a lot of advanced features.
UMLet is a free open source tool and can be downloaded from http://www.umlet.com. But you don’t need a tool to
complete these activities; a paper and pencil will work just fine.

The activities in Part 2 require Visual Studio 2012 with C# installed. You can use either the free version,
Visual Studio 2012 Express, or a trial version of Visual Studio 2012 Professional. These versions are available at
http://msdn.microsoft.com/en-us/vstudio/. I encourage you to install the help files and make abundant use of
them while you’re completing the activities.

The activities in Part 3 require Microsoft SQL Server 2008 R2 or SQL Server 2012. You can use either the free version
SQL Server Express or a trial version of SQL Server available at http://msdn.microsoft.com/en-us/sqlserver/. When
you install SQL Server, be sure you add yourself as an administrator.

Installing the Sample Databases
The scripts to install the sample database used in this book are available for download at
http://www.apress.com/9781430249351 (scroll down and click on the Source Code tab). In order to install
the scripts, follow these steps:

1. Open a command prompt window.

2. From the command prompt, use the cd command to navigate to the folder containing the
sample database scripts.

cd c:\SampleDatabases

3. Run SQLCmd.exe specifying instOSODB.sql as the input file.

4. To install the database on a default instance, use

SQLCmd.exe -E -i instOSODB.sql

5. To install the database on a named instance, use

SQLCmd.exe -E -S ComputerName\InstanceName -i instOSODB.sql

6. Repeat the procedure for the instpubs.sql and instnwnd.sql files.

www.it-ebooks.info

http://www.umlet.com/
http://msdn.microsoft.com/en-us/vstudio/
http://msdn.microsoft.com/en-us/sqlserver/
http://www.apress.com/9781430249351
http://www.it-ebooks.info/

APPENDIX C ■ INstAllINg thE REquIRED softwARE

348

Note ■ You can also use sql server Management studio to create the databases.

Verifying the Database Installs
To verify the database installs:

1. Start Visual Studio. If you don’t see the Server Explorer window shown in Figure C-1, open
it by choosing Server Explore on the View menu.

Figure C-1. The Server Explorer window

2. In the Server Explorer window, right-click the Data Connections node and select Add
Connection. In the Add Connections dialog box shown in Figure C-2, fill in the name of
your server, select the Northwind database, and click OK.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C ■ INstAllINg thE REquIRED softwARE

349

3. Expand the Northwind database node and the Tables node in the Database Explorer
window, as shown in Figure C-3.

Figure C-2. The Add Connections dialog box

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C ■ INstAllINg thE REquIRED softwARE

350

Note ■ If you are using sqlExpress you need to use the server name and the instance name (localhost\sqlExpress)
to connect.

4. Right-click the Suppliers table node and select Show Table Data. The Suppliers table data
should display as shown in Figure C-4.

Figure C-3. Expanding the Tables node

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C ■ INstAllINg thE REquIRED softwARE

351

5. Repeat these steps to test the pubs and the OfficeSupply databases. After testing,
exit Visual Studio.

Figure C-4. Viewing the table data

www.it-ebooks.info

http://www.it-ebooks.info/

353

Index

n A
Abstraction, 3
ADO.NET, 161, 322

interoperability, 162
scalability, 162

Aggregation, 5
AND operator (&&), 334
Arithmetic operators, 332–333
Arrays, 328

n B
Block-level scope, 330
Boolean data types, 327
Byte data type, 326

n C
Casting, 332
Character data types, 326
C#, history of, 5
Classes, 329

class methods, 85
constructors and overloading

methods, 89–90
class method, 94
creation steps, 92
employee class constructors, testing, 93
update method, testing, 95

definition, 84
employee class, 86

definition, 87
testing, 88

encapsulation, 85
instance variables, 84
and objects, 83

human resource application, 83
properties and methods, 83

Class hierarchies, 97
base class method

from derived class, 106
hiding, 107

derived class methodfrom base class, 105
inheritance and polymorphism (see Inheritance;

Polymorphism)
interfaces, 111
overloading methods, 106

Account class, 107
base modifier, 110
using base qualifier, 109
Withdraw methods, testing, 108

overriding methods
abstract base class, 104
Deposit method, 104
override keyword, 104
virtual keyword, 104

Class structure, 7
Collections, 337

arrays and array lists, 144
Array Lists, 152
command line arguments, 149
console output, 150
creation, 149
DOS command, 144
foreach loop, 146
index values, 145
multidimensional arrays, 151
numeric types, 145
one-dimensional array, 147
static methods, 145
two-dimensional array, 145, 147

generic collections, 153
extend, 156
IComparer interface, 154
implementation, 155
unsorted and sorted by date, 157
weakly typed, 153

www.it-ebooks.info

http://www.it-ebooks.info/

■ Index

354

.NET Framework, 143
class interfaces, 144
collection classes, 144
System.Collections namespace, 143

stacks and queues, 157
GetLastMove method, 157
implementation, 158
peek method, 157
pop method, 157
RecordMove method, 157

Common Language Runtime (CLR), 343
Comparison operators, 333–334
Component-based development, 323
Composite data type

arrays, 328
classes, 329
structures, 327–328

Computer-Aided Software Engineering
(CASE) tool, 13

Conceptual schema definition language
(CSDL), 182

Constants, 329
Conversion of data type. See Data type conversion

n D
Data access layer

ADO.NET, 161
Command object, 164

CommandText method, 164
ExecuteReader method, 164
ExecuteScalar method, 164
using stored procedure, 165

Connection object, 162
data providers, 162
DataTables and DataSets, 172

DataRelation object, 175
editing and updating data, 178
establish relationships, 179
Fill method, 174
Load method, 173
from SQL Server database, 176
System.Data namespace, 172
Update Command, 175

Entity Framework (EF), 181
CSDL, 182
disadvantages, 181
Entity Data Model, 186
Entity Data Model Wizard, 181
LINQ to EF, 185, 189
mapping schema, 181
model designer, 183
MSL, 183
navigation properties, 185
ObjectContext class, 184

SaveChanges method, 186
SSDL, 182

retrieve data
DataAdapter, 167
DataReader object, 166
execute stored procedure,

Command object, 171
from SQL server database, 168–169
using DataReader object, 170

Data binding
DataGrid to DataTable, 209
loading DataGrid, 211
OneWay binding, 207
TwoWay binding, 207
updating data, 213
using DataContext, 207
Window Layout, 210

Data type(s), 325
Boolean, 327
character, 326
composite, 327

arrays, 328
classes, 329
structures, 327–328

date, 327
integral

byte, 326
integer, 326
long, 326
short, 326

non-integral
decimal, 326
double, 326
single, 326

nullable, 327
object, 327

Data type conversion, 332
explicit, 332
implicit, 332
narrowing, 332
widening, 332

Date data type, 327
Decimal data type, 326
Decision structures, 334

if statement, 335–336
switch statement, 336

Dialog boxes, WPF, 204
custom dialog box, 206
MessageBox

complex MessageBox, 206
Show method, 205

DirectoryNotFoundException, 343
Distributed Component Object Model (DCOM)

technology, 63
Double data type, 326
do-while statement, 337

Collections (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

 ■ Index

355

n E
else-if blocks, 335
Encapsulation, 4
EndOfStreamException, 343
Entity Framework, 322
Enumerations, 330
Exception classes, .NET framework

DirectoryNotFoundException, 343
EndOfStreamException, 343
FileLoadException, 343
FileNotFoundException, 343
IOException, 343
PathTooLongException, 343
properties, 343

Exception handling in C#
finally block, 341
InnerException property, 343
.NET framework exception classes, 343

DirectoryNotFoundException, 343
EndOfStreamException, 343
FileLoadException, 343
FileNotFoundException, 343
IOException, 343
PathTooLongException, 343
properties, 343

recovery from DivideByZeroException, 342
throw statement, 342
try-catch block, 341
unmanaged resource access, 344–345

Explicit type conversion, 332
Extensible Application Markup Language (XAML)

Button control, 194
Grid.Row and Grid.Column attribute, 194
property element, 194

n F
FileLoadException, 343
FileNotFoundException, 343
for-each statement, 337
for statement, 337

n G
Global Assembly Cache (GAC), 64

n H
Help system, 323

n I, J, K
if statement, 335–336
Impicit type conversion, 332

Inheritance, 5, 97
abstract class, 99
access modifiers, 99
Account base class, 97
derived class, 98
purpose of, 97
sealed/final class, 99
using base class and derived class

abstract class, accessibility of, 103
creation, 100
GetBalance method, protect, 102
testing, 101
Withdraw method, testing, 103

InnerException property, 343
Integer data type, 326. See also Data types, integral
IOException, 343

n L
Layout control, WPF

Canvas control, 196
DockPanel, 196
fixed positioning, 195
Grid control, 195
StackPanel, 196
WrapPanel, 196

Literals, 329
Logical operators, 334
Long data type, 326
Loop structures, 337

do-while statement, 337
for–each statement, 337
for statement, 337
while statement, 337

n M
Mapping specification language (MSL), 183
Methods, 338–339
Model Binding

ASP.NET GridView control (displaying data)
data objects, 247–248
EmployeeGridViewPage.aspx.cs, 249
SelectMethod, 248
steps, 247

ASP.NET GridView control (updating data)
EmployeeGridViewPage.aspx.cs, 249
Page_Load event handler method, 250
UpdateMethod attribute, 249

ASP.NET Repeater control (displaying data)
AutherListPage.aspx, 247
Eval method, 247
select statement, 246
SqlDataSource control, 247
SqlDataSource Tasks pane, 245

www.it-ebooks.info

http://www.it-ebooks.info/

 ■ Index

356

SQL server data source, 245–246
steps, 245

Module scope, 331
Multidimensional arrays, 328

n N
Narrowing type conversion, 332
.NET Framework, 59, 322

assemblies and manifests, 64
compile and executing managed code, 65
components, 61

application services, 63
base class library, 62
CLR, 61
data classes, 62
web applications, 63
windows applications, 62
Windows Store app, 63

goals
application deployment, 60
extensibility, 60
industry standards and practices, 59
memory management, 61
security models, 61
unified programming models, 60

system namespaces and assemblies, 64
New operator, 328
Non-integral data types. See Data types,

non-integral
NOT operator (!), 334
Nullable data type, 327

n O
Object(s), 3
Object collaboration, 119. See aslo Object

communication
Object communication

asynchronous messaging, 136
async method, 137
call method asynchronously, 140
call method synchronously, 138
TAP, 137

delegation, 121
event-driven programs, 121
event handler methods, 123
event messages

add and raise, 124
handle multiple events, 126
receive events, 125

events, 122
messaging, 119
method signatures, 120

passing parameters, 120
static properties and methods, 131

creation, 133
filter exceptions, 136
Logger Form and Control Properties, 133
structured exception handler, 135
System.String class, Compare

method, 132
TaxRate property, 132
UserLog, 132

structured exception handling
benefits of, 128
finally block, 129
nesting exception handling, 131
throwing exceptions, 130
try-catch block, 128

subscription-based messaging, 121
Object data type, 327
Object interaction

activity diagrams
branching condition, 38
decision points and guard conditions, 34
generic diagram, 34
objects and activities, 36
ownership, 35
parallel processing, 35
partitions, 37
using UMLet, 36

GUI design, 39
activity diagrams, 39
application prototyping, 41
interface flow diagram, 41
interface prototyping, 40

message branching, 29
message constraints, 29
message iteration, 28
message types, 27
recursive messages, 28
scenarios, 25
sequence diagrams, 26

Object-oriented analysis and design, 322
Object-oriented programming (OOP)

benefits, 3
characteristics

abstraction, 3
aggregation, 5
encapsulation, 4
inheritance, 4
objects, 3
polymorphism, 4

definition, 1
history of, 2
software design, 7
UML, 8
uses, 2

Model Binding (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

 ■ Index

357

Office-supply ordering (OSO) application, 43
business logic layer

Employee.cs file, 304–305
Order class, 307
OrderItem class, 305–306
ProductCatalog class, 305

class model
activity diagram, 52
behavior model, 52
class associations, 51
class attributes, 49
class identification, 48
preliminary class diagram, 49
sequence diagram, 53
User Interface model design, 55

data access layer
class diagram, 297
DALEmployee class, 301
DALOrder, 303
DALProductCatalog class, 302
DALUtility, 300
database diagram, 297–298
OfficeSupplyBLL class

library, 298–299
PlaceOrder method, 303
reference, 299
static class, 299

design pitfalls, 58
design process

conceptual design, 295
logical design, 295
logical tiers, 296
physical design, 295
physical tiers, 296–297
3-tiered application, 296

SRS creation, 44
UI

addButton_Click event, 317
App.config file, 309
ListView control, 316
loginButton_Click, 317
LoginDialog form, 313–314
MainWindow.xaml.cs, 314–315
order form, 309, 310
order item dialog, 312
OrderItemDialog code, 319
OrderItemDialog form, 312–313
OrderItemDialog.xaml.cs, 318
placeOrderButton_Click event, 318
reference (OfficeSupplyBLL project), 308
XAML code, 310–311

use case development
actors, 45
includes and extends relationship, 47
Login use case, 47

Purchase request use case, 47
with UMLet, 46

OLEDB, 62
OOP solution

class model
attributes, 49
behavior model, 52
class associations, 51
classes identification, 48

design pitfalls, 58
system requirements, 43
use cases, 45
User Interface model design, 55

Operators
arithmetic, 332–333
comparison, 333–334
logical, 334
ternary, 334

OR operator (||), 334

n P, Q
Paid time off (PTO), 119
PathTooLongException, 343
Polymorphism, 4, 97, 111

using inheritance, 113
using interface, 115

Procedure scope, 331
Process Movie Rental use case

scenarios, 25
sequence diagram, 27

Programming
constants, 329
data type(s), 325

Boolean, 327
byte, 326
character, 326
composite, 327–329
date, 327
decimal, 326
double, 326
integer, 326
long, 326
nullable, 327
object, 327
short, 326
single, 326

data type conversion, 332
explicit, 332
implicit, 332
narrowing, 332
widening, 332

decision structures, 334
If statement, 335–336
switch statement, 336

www.it-ebooks.info

http://www.it-ebooks.info/

 ■ Index

358

enumerations, 330
literals, 329
loop structures, 337

do–while statement, 337
for-each statement, 337
for statement, 337
while statement, 337

methods, 338–339
operators, 332

arithmetic, 332–333
comparison, 333–334
logical, 334
ternary, 334

strong typing, 325
variables, 325
variable scope, 330

block-level scope, 330
module scope, 331
procedure scope, 331

n R
RESTful web services

ASP.NET Web API service, 285
clients and servers, 285
consume (ASP.NET Web API service), 290
POX, 285
Web API service, 291

asynchronous method, 292
book information, 294
books.json file, 290
Get method, 288
Global.asax.cs file, 288
HttpClient variable, 292
MainPage.xaml file, 291
OnNavigatedTo event handler, 293
port number, 289
project window, 286
startup projects, 293
steps, 286, 291
view (project files), 288–289

n S
Scenarios, 25
Scope of variable. See Variable scope
Short data type, 326
Shorthand assignment operators, 333
Simula, 2
Single data type, 326
SQLCmd.exe, 347
SQL Server database

free versions, 347
Sample database

installation, 347–348
installation verification, 348–349, 351

Store schema definition language (SSDL), 182
Strong typing, 325
Structures, 327–328
switch statement, 334, 336

n T
Task-Based Asynchronous

Pattern (TAP), 137
Ternary operator, 334
Throw statement, 342
ToString method, 344

n U
UMLet, 13, 347
Unified Modeling Language (UML)

activity diagram, 8
advantages, 8
class diagram, 8, 16, 20

association shape, 21
attributes and operations, 16
classes and attributes, 20
class shape, 21
creation of, 21
definition, 16
Flight class, 17
generalization arrow, 22

collaboration diagram, 8
object relationships, 17

association classes, 19
class associations, 17
depicting aggregations, 18
documenting inheritance, 18

sequence diagram, 8
Software Requirement Specification, 8–9, 12
textual and graphical models, 8
UMLet, 347
use case, 8, 16

actor template, 14
CASE tool, 13
Communications Link shape, 15
creation of, 12–13
extension, 11
flight-booking application, 10–11
generic diagram, 10
issues of, 12
preconditions and postconditions, 11
in system boundary, 15
textual description, 11
UMLet, 13

User groups, 323
User Interfaces (UI), 322

Programming (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

 ■ Index

359

n V
Variables, 325
Variable scope

block-level scope, 330
module scope, 331
procedure scope, 331

Visual Studio (VS)
assembly build and execute, 76
debugging features

conditional breakpoints, 79
locate and fix build errors, 81
through code, 77

features, 65
free versions, 347
IDE customization, 66
new project creation, 67
solution explorer and class view, 68
toolbox and properties window, 73

Void keyword, 338

n W, X, Y, Z
Web applications

chapter overview, 221
control events, 228
data-bound web controls

DataSources, 243
model binding, 244–250
SQLDataSource control, 243

life cycle (web page)
page load event, 228
stages, 227

maintaining view state
code behind class, 240
debugger, 240
steps, 240
Textbox control, 240

reading and writing cookies, 241
server controls and web pages

absolute positioning, 233
control events, 236–237
controls, 234
div tag, 232
lblMessage controls, 237
Label control, 233
list items, 235–236
non-postback server control events, 235
properties window, 232
server-side control event handlers, 235
steps, 231
web control properties, 233
web site dialog box, 231

session and application state, 242–243
session events and application, 229
storing and sharing state

cookies, 238
query strings, 238
session and application state, 239
stateless protocol, 237
view state, 238

Visual Studio web page designer
Split view, 226–227
Toolbox, 226

Web Pages and Forms, 221
web server control inheritance hierarchy

hierarchy chain (Page class), 224–225
Page class, 224
page directive, 223
System.Web.UI namespace, 224
TemplateControl class, 224
TextBox control, 225

Web server controls, 223
Web Pages and Web Forms

advantages, 221
.aspx file, 222
code-behind file links, 222
IE, 222
IIS, 223
programming logic, 221
visual interface, 221

while statement, 337
Widening type conversion, 332
Windows Communication Foundation (WCF), 63
Windows Communication Foundation (WCF) web

services. See also RESTful web services
chapter overview, 273
consume

console window, 279
endpoint configuration, 278
service reference, 278
TaxService, 279

creation
contract, 276
exposed methods, 276
interface and class files, 275
request and response messages, 276–277
template, 274
testing, 277

data contracts
types, 279–280
XSD, 280

.NET client creation, 282
async method, 283
service reference, 282–283
startup projects, 284
testing, 284

service-oriented applications, 274
services, 273
WCF service

code replacement, 281
creation, 280

www.it-ebooks.info

http://www.it-ebooks.info/

 ■ Index

360

Windows Presentation Foundation (WPF)
control and data templates, 214

binding a ListBox, 216
template creation, 217

control events, 202
custom dialog box, 206
data binding, 207

OneWay binding, 207
TwoWay binding, 207
using DataContext, 207

data bound controls, 209
dialog boxes, 204
display controls, 196
event handler method, 198

delegation object, 198
parameters, 199

fundamentals, 193
layout controls

Canvas control, 196
DockPanel, 196
fixed positioning, 195
Grid control, 195
StackPanel, 196
WrapPanel, 196

memo viewer interface, 200
MessageBox, 205

complex MessageBox, 206
Show method, 205

Visual Studio Designer, 197
XAML, 194

Button control, 194
Grid.Row and Grid.Column

attribute, 194
property element, 194

Windows store applications
application interface

data entry page, 258
Grid.RowDefinitions, 257
grid XAML, 256
interaction mode, 259
MainPage.xaml, 256
Simulator, 258
Steps, 256
TextBox controls, 257

chapter overview, 251

coding control events
Code Editor window, 260
MainPage.xaml, 259
StackPanel tag, 260
steps, 259

data binding controls
Author class, 265
author data, 261
author information, 267
AuthorTemplate, 266
code file, 267
CollectionViewSource, 260
CollectionViewSource View methods, 261
DataTemplate, 265–266
full-data updating scenarios, 260
GridView, 261–262
INotifyPropertyChanged interface, 263
MainPage.xaml file, 265
modes, 268
OnNavigatedTo, 267
PropertyChanged event, 263–264
steps, 263
WPF, 260

handling control events
event handler method, 255
parameters, 255
properties window, 254–255
WPF and ASP.NET apps, 254
XAML editor, 254–255

page navigation, 269
passing data and page navigation

AuthorDetailPage, 270–272
AuthorsGridView, 271
btnBack_Click event handler, 271
steps, 269
TextBlock, 270

style sheets, 254
user interface

button control, 251
Grid control, 253
grid rows and columns, 252
input form page, 253
StackPanel control, 254
visual interfaces, 251
XAML, 252

www.it-ebooks.info

http://www.it-ebooks.info/

Beginning C#
Object-Oriented

Programming
Second Edition

Dan Clark

www.it-ebooks.info

http://www.it-ebooks.info/

Beginning C# Object-Oriented Programming

Copyright © 2013 by Dan Clark

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
 reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
 electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4935-1

ISBN-13 (electronic): 978-1-4302-4936-8

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
 occurrence of a trademarked name, logo, or image, we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Gwenan Spearing
Technical Reviewer: Todd Meister
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Kevin Shea
Copy Editor: Larissa Shmailo
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
 versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers
at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code.

www.it-ebooks.info

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code
http://www.it-ebooks.info/

This edition is dedicated to my father, whose technical
prowess is an inspiration to me every day!

—Your Loving Son, Dan

www.it-ebooks.info

http://www.it-ebooks.info/

vii

Contents

About the Author �� xvii

About the Technical Reviewer ��� xix

Acknowledgments ��� xxi

Introduction ��� xxiii

Chapter 1: Overview of Object-Oriented Programming ■ ���1

What is OOP? ���1

The History of OOP ��2

Why Use OOP? ���2

The Characteristics of OOP ��3

Objects ��� 3

Abstraction �� 3

Encapsulation �� 4

Polymorphism �� 4

Inheritance ��� 4

Aggregation ��� 5

The History of C# ���5

Summary ���6

Chapter 2: Designing OOP Solutions: Identifying the Class Structure ■ �������������������������������7

Goals of Software Design ��7

Understanding the Unified Modeling Language ��8

Developing a SRS ��9

Introducing Use Cases ���10

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

viii

Understanding Class Diagrams ���16

Modeling Object Relationships ��17

Association �� 17

Inheritance ��� 18

Aggregation ��� 18

Association Classes ��� 19

Summary ���24

Chapter 3: Designing OOP Solutions: Modeling the Object Interaction ■ ����������������������������� 25

Understanding Scenarios ��25

Introducing Sequence Diagrams ���26

Message Types ��27

Recursive Messages ���28

Message Iteration ��28

Message Constraints ���29

Message Branching ���29

Understanding Activity Diagrams ��34

Decision Points and Guard Conditions ��� 34

Parallel Processing �� 35

Activity Ownership ��� 35

Exploring GUI Design ���39

GUI Activity Diagrams �� 39

Interface Prototyping ��� 40

Interface Flow Diagrams ��� 41

Application Prototyping ��� 41

Summary ���42

Chapter 4: Designing OOP Solutions: A Case Study ■ ���43

Developing an OOP Solution ��43

Creating the System Requirement Specification ��� 43

Developing the Use Cases ��� 45

Diagramming the Use Cases ��� 46

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

ix

Developing the Class Model �� 48

Avoiding Some Common OOP Design Pitfalls �� 58

Summary ���58

Chapter 5: Introducing the �NET Framework and Visual Studio ■ ��������������������������������������59

Introducing the �NET Framework ���59

Goals of the �NET Framework �� 59

Components of the �NET Framework ��� 61

Working with the �NET Framework �� 64

Using the Visual Studio Integrated Development Environment ���65

Summary ���81

Chapter 6: Creating Classes ■ ��83

Introducing Objects and Classes ���83

Defining Classes ��84

Creating Class Properties �� 84

Creating Class Methods ��� 85

Using Constructors ��89

Overloading Methods ��90

Summary ���96

Chapter 7: Creating Class Hierarchies ■ ���97

Understanding Inheritance ��97

Creating Base and Derived Classes ��� 97

Creating a Sealed Class ��� 99

Creating an Abstract Class �� 99

Using Access Modifiers in Base Classes ��� 99

Overriding the Methods of a Base Class ���104

Calling a Derived Class Method from a Base Class ��� 105

Calling a Base Class Method from a Derived Class ��� 106

Overloading Methods of a Base Class ���106

Hiding Base Class Methods ���107

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

x

Implementing Interfaces ���111

Understanding Polymorphism ���111

Summary ���117

Chapter 8: Implementing Object Collaboration ■ ��119

Communicating Through Messaging ���119

Defining Method Signatures ��119

Passing Parameters ��120

Understanding Event-Driven Programming ���121

Understanding Delegation ���121

Implementing Events ���122

Responding To Events ���123

Windows Control Event Handling ��123

Handling Exceptions in the �NET Framework ��128

Using the Try-Catch Block ��� 128

Adding a Finally Block ��� 129

Throwing Exceptions ��� 130

Nesting Exception Handling ��� 130

Static Properties and Methods ��131

Using Asynchronous Messaging ��136

Summary ���141

Chapter 9: Working with Collections ■ ���143

Introducing the �NET Framework Collection Types ��143

Working with Arrays and Array Lists ���144

Using Generic Collections ��153

Programming with Stacks and Queues ���157

Summary ���160

Chapter 10: Implementing the Data Access Layer ■ ���161

Introducing ADO�NET ���161

Working with Data Providers ���162

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xi

Establishing a Connection ���162

Executing a Command ��164

Using Stored Procedures ��� 165

Using the DataReader Object to Retrieve Data ��166

Using the DataAdapter to Retrieve Data ��167

Working with DataTables and DataSets ��172

Populating a DataTable from a SQL Server Database �� 173

Populating a DataSet from a SQL Server Database ��� 174

Establishing Relationships between Tables in a DataSet �� 174

Working with the Entity Framework ��181

Querying Entities with LINQ to EF ��184

Updating Entities with the Entity Framework ��186

Summary ���191

Chapter 11: Developing WPF Applications ■ ��193

Windows Fundamentals ��193

Introducing XAML ��194

Using Layout Controls ���195

Adding Display Controls ��196

Using the Visual Studio Designer ��197

Handling Control Events ��198

Creating and Using Dialog Boxes ��204

Presenting a MessageBox to the User ��205

Creating a Custom Dialog Box ���206

Data Binding in Windows-Based GUIs ���207

Binding Controls Using a DataContext ���207

Creating and Using Control and Data Templates ���214

Summary ���219

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xii

Chapter 12: Developing Web Applications ■ ���221

Web Pages and Web Forms ���221

Web Server Control Fundamentals ��223

Understanding Web Page and Web Server Control Inheritance Hierarchy ��������������������������������223

Using the Visual Studio Web Page Designer ��226

The Web Page Life Cycle ���227

Control Events ���228

Understanding Application and Session Events ��229

Creating Server-Side Control Event Handlers �� 235

Storing and Sharing State in a Web Application ��237

Maintaining View State �� 237

Using Query Strings ��� 238

Using Cookies �� 238

Maintaining Session and Application State ��� 239

Data-Bound Web Controls ���243

Model Binding �� 244

Summary ���250

Chapter 13: Developing Windows Store Applications ■ ���251

Building the User Interface ��251

Using Style Sheets ��254

Handling Control Events ��254

Data Binding Controls ��260

Page Navigation ��269

Summary ���272

Chapter 14: Developing and Consuming Web Services ■ ���273

What Are Services? ���273

WCF Web Services���274

Creating a WCF Web Service ��� 274

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xiii

Consuming a WCF Web Service ��� 278

Using Data Contracts ��� 279

RESTful Data Services ���285

Creating an ASP�NET Web API Service ��� 285

Consuming ASP�NET Web API Services �� 290

Summary ���294

Chapter 15: Developing the Office Supply Ordering Application ■ �����������������������������������295

Revisiting Application Design ��295

Building the OSO Application’s Data Access Layer ��297

Building the OSO Application’s Business Logic Layer ���304

Creating the OSO Application UI ��308

Summary ���320

Chapter 16: Wrapping Up ■ ���321

Improve Your Object-Oriented Design Skills ��322

Investigate the �NET Framework Namespaces ��322

Become Familiar with ADO�NET and the Entity Framework ��322

Learn More about Creating Great User Interfaces (UI)���322

Move toward Component-Based Development ���323

Find Help ���323

Join a User Group ��323

Please Provide Feedback ��323

Thank You, and Good Luck! ���324

Appendix A: Fundamental Programming Concepts ■ ���325

Working with Variables and Data Types ��325

Understanding Elementary Data Types��325

Integral Data Types �� 326

Non-Integral Data Types �� 326

Character Data Types ��� 326

Boolean Data Type ��� 327

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xiv

Date Data Type ��� 327

Object Data Type �� 327

Nullable Types �� 327

Introducing Composite Data Types ��327

Structures �� 327

Arrays �� 328

Classes �� 329

Looking at Literals, Constants, and Enumerations ��329

Literals ��� 329

Constants ��� 329

Enumerations��� 330

Exploring Variable Scope ���330

Block-Level Scope ��� 330

Procedure Scope ��� 331

Module Scope �� 331

Understanding Data Type Conversion ��332

Implicit Conversion �� 332

Explicit Conversion �� 332

Widening and Narrowing Conversions ��� 332

Working with Operators ���332

Arithmetic Operators ��� 332

Comparison Operators ��� 333

Logical Operators �� 334

Ternary Operator �� 334

Introducing Decision Structures ��334

If Statements ��� 335

Switch Statements �� 336

Using Loop Structures ���337

While Statement �� 337

Do-While Statement �� 337

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xv

For Statement �� 337

For Each Statement ��� 337

Introducing Methods ���338

Appendix B: Exception Handling in C# ■ ���341

Managing Exceptions ��341

Using the �NET Framework Exception Classes ��343

The Importance of Using ���344

Appendix C: Installing the Required Software ■ ���347

Installing the Sample Databases ���347

Verifying the Database Installs ���348

Index ���353

www.it-ebooks.info

http://www.it-ebooks.info/

xvii

About the Author

Dan Clark is a senior IT consultant specializing in .NET and SQL Server technology.
He is particularly interested in C# programming and SQL Server Business
Intelligence development. For over a decade, he has been developing applications
and training others to develop applications using Microsoft technologies. Dan has
published several books and numerous articles on .NET programming. He is a
regular speaker at various developer conferences and user group meetings, and he
conducts workshops in object-oriented programming and database development.
He finds particular satisfaction in turning new developers on to the thrill of
developing and designing object-oriented applications. In a previous life, he was
a physics teacher and still loves the wonders and awe inspired by the study of the
Universe and why things behave the way they do. You can reach Dan at
clark.drc@gmail.com.

www.it-ebooks.info

http://clark.drc@gmail.com
http://www.it-ebooks.info/

xix

About the Technical Reviewer

Todd Meister has been working in the IT industry for over fifteen years. He has been
the technical editor of over 75 titles on topics ranging from SQL Server to the .NET
Framework. He is the senior IT architect at Ball State University in Muncie, Indiana.
He lives in central Indiana with his wife, Kimberly, and their five entertaining
children.

www.it-ebooks.info

http://www.it-ebooks.info/

xxi

Acknowledgments

Thanks to the team at Apress for once again making the writing of this book as painless as possible while still keeping
me on task. A special shout out goes to Gwenan and Kevin for their perseverance and considerable help with this
project. And last but not least, to my technical reviewer Todd, thank you for your attention to detail and excellent
suggestions while reviewing this book.

—Dan Clark

www.it-ebooks.info

http://www.it-ebooks.info/

	Beginning C# Object-Oriented Programming
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Overview of Object-Oriented Programming
	What is OOP?
	The History of OOP
	Why Use OOP?
	The Characteristics of OOP
	Objects
	Abstraction
	Encapsulation
	Polymorphism
	Inheritance
	Aggregation

	The History of C#
	Summary

	Chapter 2: Designing OOP Solutions: Identifying the Class Structure
	Goals of Software Design
	Understanding the Unified Modeling Language
	Developing a SRS
	Introducing Use Cases
	Understanding Class Diagrams
	Modeling Object Relationships
	Association
	Inheritance
	Aggregation
	Association Classes

	Summary

	Chapter 3: Designing OOP Solutions: Modeling the Object Interaction
	Understanding Scenarios
	Introducing Sequence Diagrams
	Message Types
	Recursive Messages
	Message Iteration
	Message Constraints
	Message Branching
	Understanding Activity Diagrams
	Decision Points and Guard Conditions
	Parallel Processing
	Activity Ownership

	Exploring GUI Design
	GUI Activity Diagrams
	Interface Prototyping
	Interface Flow Diagrams
	Application Prototyping

	Summary

	Chapter 4: Designing OOP Solutions: A Case Study
	Developing an OOP Solution
	Creating the System Requirement Specification
	Developing the Use Cases
	Diagramming the Use Cases
	Developing the Class Model
	Identifying the Classes
	Adding Attributes to the Classes
	Identifying Class Associations
	Modeling the Class Behaviors
	Developing the User Interface Model Design

	Avoiding Some Common OOP Design Pitfalls

	Summary

	Chapter 5: Introducing the .NET Framework and Visual Studio
	Introducing the .NET Framework
	Goals of the .NET Framework
	Support of Industry Standards
	Extensibility
	Unified Programming Models
	Easier Deployment
	Improved Memory Management
	Improved Security Model

	Components of the .NET Framework
	Common Language Runtime
	Framework Base Class Library
	Data Classes
	Windows Applications
	Web Applications
	Windows Store Applications
	Application Services

	Working with the .NET Framework
	Understanding Assemblies and Manifests
	Referencing Assemblies and Namespaces
	Compiling and Executing Managed Code

	Using the Visual Studio Integrated Development Environment
	Summary

	Chapter 6: Creating Classes
	Introducing Objects and Classes
	Defining Classes
	Creating Class Properties
	Creating Class Methods

	Using Constructors
	Overloading Methods
	Summary

	Chapter 7: Creating Class Hierarchies
	Understanding Inheritance
	Creating Base and Derived Classes
	Creating a Sealed Class
	Creating an Abstract Class
	Using Access Modifiers in Base Classes

	Overriding the Methods of a Base Class
	Calling a Derived Class Method from a Base Class
	Calling a Base Class Method from a Derived Class

	Overloading Methods of a Base Class
	Hiding Base Class Methods
	Implementing Interfaces
	Understanding Polymorphism
	Summary

	Chapter 8: Implementing Object Collaboration
	Communicating Through Messaging
	Defining Method Signatures
	Passing Parameters
	Understanding Event-Driven Programming
	Understanding Delegation
	Implementing Events
	Responding To Events
	Windows Control Event Handling
	Handling Exceptions in the .NET Framework
	Using the Try-Catch Block
	Adding a Finally Block
	Throwing Exceptions
	Nesting Exception Handling

	Static Properties and Methods
	Using Asynchronous Messaging
	Summary

	Chapter 9: Working with Collections
	Introducing the .NET Framework Collection Types
	Working with Arrays and Array Lists
	Using Generic Collections
	Programming with Stacks and Queues
	Summary

	Chapter 10: Implementing the Data Access Layer
	Introducing ADO.NET
	Working with Data Providers
	Establishing a Connection
	Executing a Command
	Using Stored Procedures

	Using the DataReader Object to Retrieve Data
	Using the DataAdapter to Retrieve Data
	Working with DataTables and DataSets
	Populating a DataTable from a SQL Server Database
	Populating a DataSet from a SQL Server Database
	Establishing Relationships between Tables in a DataSet
	Editing Data in the DataSet

	Working with the Entity Framework
	Querying Entities with LINQ to EF
	Updating Entities with the Entity Framework
	Summary

	Chapter 11: Developing WPF Applications
	Windows Fundamentals
	Introducing XAML
	Using Layout Controls
	Adding Display Controls
	Using the Visual Studio Designer
	Handling Control Events
	Creating and Using Dialog Boxes
	Presenting a MessageBox to the User
	Creating a Custom Dialog Box
	Data Binding in Windows-Based GUIs
	Binding Controls Using a DataContext
	Creating and Using Control and Data Templates
	Summary

	Chapter 12: Developing Web Applications
	Web Pages and Web Forms
	Web Server Control Fundamentals
	Understanding Web Page and Web Server Control Inheritance Hierarchy
	Using the Visual Studio Web Page Designer
	The Web Page Life Cycle
	Control Events
	Understanding Application and Session Events
	Creating Server-Side Control Event Handlers

	Storing and Sharing State in a Web Application
	Maintaining View State
	Using Query Strings
	Using Cookies
	Maintaining Session and Application State

	Data-Bound Web Controls
	Model Binding

	Summary

	Chapter 13: Developing Windows Store Applications
	Building the User Interface
	Using Style Sheets
	Handling Control Events
	Data Binding Controls
	Page Navigation
	Summary

	Chapter 14: Developing and Consuming Web Services
	What Are Services?
	WCF Web Services
	Creating a WCF Web Service
	Consuming a WCF Web Service
	Using Data Contracts

	RESTful Data Services
	Creating an ASP.NET Web API Service
	Consuming ASP.NET Web API Services

	Summary

	Chapter 15: Developing the Office Supply Ordering Application
	Revisiting Application Design
	Building the OSO Application’s Data Access Layer
	Building the OSO Application’s Business Logic Layer
	Creating the OSO Application UI
	Summary

	Chapter 16: Wrapping Up
	Improve Your Object-Oriented Design Skills
	Investigate the .NET Framework Namespaces
	Become Familiar with ADO.NET and the Entity Framework
	Learn More about Creating Great User Interfaces (UI)
	Move toward Component-Based Development
	Find Help
	Join a User Group
	Please Provide Feedback
	Thank You, and Good Luck!

	Appendix A: Fundamental Programming Concepts
	Working with Variables and Data Types
	Understanding Elementary Data Types
	Integral Data Types
	Non-Integral Data Types
	Character Data Types
	Boolean Data Type
	Date Data Type
	Object Data Type
	Nullable Types

	Introducing Composite Data Types
	Structures
	Arrays
	Classes

	Looking at Literals, Constants, and Enumerations
	Literals
	Constants
	Enumerations

	Exploring Variable Scope
	Block-Level Scope
	Procedure Scope
	Module Scope

	Understanding Data Type Conversion
	Implicit Conversion
	Explicit Conversion
	Widening and Narrowing Conversions

	Working with Operators
	Arithmetic Operators
	Comparison Operators
	Logical Operators
	Ternary Operator

	Introducing Decision Structures
	If Statements
	Switch Statements

	Using Loop Structures
	While Statement
	Do-While Statement
	For Statement
	For Each Statement

	Introducing Methods

	Appendix B: Exception Handling in C#
	Managing Exceptions
	Using the .NET Framework Exception Classes
	The Importance of Using

	Appendix C: Installing the Required Software
	Installing the Sample Databases
	Verifying the Database Installs

	Index

