COEPD - Traditional Development Capstone Project 1 - Online Agriculture Products Store

ANSWERS

Q1: Identify Business Process Model for Online Agriculture Store

(Goal, Inputs, Resources, Outputs, Activities, Value Created to the End Customer)

Answer:

Goal:

To build an Online Agriculture Products Store (Web/Mobile Application) that bridges the gap between rural farmers and agriculture product companies, enabling seamless procurement of fertilizers, seeds, and pesticides.

Inputs:

- 1. Requirements from Stakeholders (Peter, Kevin, Ben, and farmers in rural areas)
- 2. Product catalogs from companies manufacturing fertilizers, seeds, pesticides
- 3. CSR initiative sponsorship from Mr. Henry
- 4. Technical team resources from APT IT Solutions
- 5. Existing pain points in procurement faced by farmers
- 6. Infrastructure (hardware/software/network) for application development

Resources:

Category	Resources	
Human	BA, PM, Developers, Testers, Admins, SMEs, Stakeholders	
Technological	Java-based framework, Databases, Network setup	
Financial	CSR funding by Mr. Henry's company	
Time	18 months project timeline	
Knowledge-based	Domain expertise in agriculture and software development	

Outputs:

- 1. Fully functional Web and Mobile Application for online agri-product ordering
- 2. Farmer login modules, product search with filtering, and order placement features
- 3. Company-side interfaces for product listing, pricing, and stock availability
- 4. Order tracking, payment gateway, and delivery coordination system
- 5. Reporting and feedback systems for continuous improvement

Activities:

- 1. Requirement Gathering & Analysis
- 2. Business Process Modeling
- 3. System Architecture Design
- 4. UI/UX Development
- 5. Back-end Java Development & API integration
- 6. Testing (Unit, Integration, UAT)
- 7. Deployment & Maintenance

Value Created to the End Customer (Farmers):

• Direct access to genuine agricultural products

- Time and cost savings by eliminating middlemen
- Increased transparency in pricing
- Better availability of seasonal products
- Improved productivity and crop health
- Empowerment of rural economy

Reasoning:

By identifying these aspects, we break down the entire solution lifecycle, showing how technology can be used to solve a real-world problem using structured business analysis techniques.

Q2: Mr. Karthik is doing SWOT analysis before he accepts this project. What aspects should he consider as Strengths, Weaknesses, Opportunities, and Threats?

Answer:

A SWOT Analysis is a strategic planning tool used to evaluate the Strengths, Weaknesses, Opportunities, and Threats involved in a project or business initiative. In the context of the Online Agriculture Products Store, here is a detailed SWOT analysis:

Strengths (Internal Positive Factors):

Strength	Explanation		
Strong CSR backing from	Financial support is secured, ensuring steady budget allocation		
Mr. Henry	throughout the 18-month duration.		
Experienced Technical	APT IT Solutions has a skilled pool of developers, testers, admins, and		
Team	a BA, which accelerates implementation.		
Identified Stakeholders	Real users (Peter, Kevin, Ben) are already involved, ensuring accurate		
	requirement gathering.		
Focused Goal	Clear vision to solve a defined problem – streamlining product access		
	for farmers.		
Java as a proven tech	Reliable, scalable, and well-supported for web and mobile solutions.		
stack			

Weaknesses (Internal Negative Factors):

Weakness	Explanation	
Limited technical literacy	Many end-users may not be familiar with using mobile or web	
among farmers	apps, requiring intuitive design or training.	
No existing data or	Since it's a fresh initiative, all data (products, users, companies)	
integration infrastructure	must be gathered from scratch.	
Dependency on a CSR model	If any outside of the scheme things appear as issues in CSR	
	continuity, project funding and sustainability may be at risk.	
Geographic accessibility	Internet/network coverage might be poor in some remote farming	
issues	areas, affecting app usability.	

Opportunities (External Positive Factors):

Opportunity Explanation	
Untapped rural e-commerce	The agricultural sector is largely underserved digitally, creating
market	scope for innovation and scale.

Government support for agri-	Possibility of future integration with government schemes or	
digitalization	subsidies.	
Expand to B2B and B2C models	Can onboard distributors, cooperatives, and wholesalers for	
	bulk orders.	
Cross-platform reach	A responsive design can help reach both smartphone users and	
	basic web users.	
Brand reputation boost	Mr. Henry and APT IT Solutions can build significant goodwill	
	through this impactful initiative.	

Threats (External Negative Factors):

Threat	Explanation		
Resistance to change by	Farmers used to physical markets may hesitate to trust online		
traditional farmers	buying.		
Cybersecurity risks	As the application will handle user data and possibly payment		
	information, data security is critical.		
Competitive imitation	Competitors may launch similar apps with more features or		
	quicker delivery.		
Regulatory constraints	Government regulations around pesticide/fertilizer sales may		
	require compliance handling.		
Logistics & Delivery issues	Ensuring timely delivery in remote areas could become a		
	bottleneck.		

Reasoning:

Conducting a thorough SWOT analysis at the initiation stage helps Mr. Karthik identify the internal capabilities and external conditions that will influence the project. This sets the foundation for mitigating risks and leveraging strengths and opportunities during planning and execution.

Q3: Mr. Karthik is trying to do a feasibility study on doing this project in Technology (Java). Please help him with points (Hardware, Software, Trained Resources, Budget, Time Frame) to consider in the feasibility study.

Answer:

A feasibility study is conducted to determine whether a project is technically, operationally, and financially viable. For Mr. Karthik to assess the feasibility of developing the Online Agriculture Products Store using Java technology, the following areas must be analyzed in depth:

3.1. Hardware Feasibility

Parameter	Explanation
Development	High-performance servers required for development and testing
Servers	phases.
Production Server	Needs to be scalable and reliable to handle traffic from rural users and
Infrastructure	product companies.
Cloud vs. On-	Evaluate cost and convenience of hosting the application on cloud
Premise	(e.g., AWS, Azure) vs. setting up local servers.
Mobile Devices for	Multiple Android and iOS devices are needed to test mobile
Testing	compatibility and responsiveness.

Backup and Storage	Reliable backup servers and cloud storage for codebase, databases,	
Systems	logs, and reports.	

3.2. Software Feasibility

Parameter	Explanation	
Technology	Use of Java (Spring Boot for backend), HTML/CSS/JS/React for frontend,	
Stack	and MySQL/PostgreSQL for database.	
Development	IntelliJ IDEA or Eclipse IDE, Maven/Gradle (build tools), Git (version	
Tools	control), Jenkins (CI/CD pipeline).	
Testing Tools	JUnit for unit testing, Selenium for automation testing, Postman for API	
	testing.	
Deployment	Use of Docker/Kubernetes for containerization and deployment.	
Environment		
OS	Ensure compatibility with Android, iOS (via React Native or Flutter for	
Compatibility	hybrid apps), and various browsers.	

3.3. Trained Resources Feasibility

Role	Resource Available	Skill Requirements
Project	Mr. Vandanam	Project Planning, Gantt charts, Risk
Manager		Management
Business	You (New BA)	Requirement gathering, process
Analyst		modeling, stakeholder communication
Developers	Ms. Juhi (Sr. Java), Mr. Teyson, Ms.	Java, Spring Boot, API integration, UI/UX
	Lucie, Mr. Tucker, Mr. Bravo	development
Testers	Mr. Jason and Ms. Alekya	Manual and Automation Testing
DB Admin	Mr. John	Database design, optimization, indexing
Network	Mr. Mike	Server setup, network security, access
Admin		control

Conclusion: The talent pool at APT IT Solutions is well-equipped with the required Java expertise to execute this project effectively.

3.4. Budget Feasibility

Expense Head	Estimate	Notes
Resource Cost	Medium to High	Cost for developers, testers, BA, PM for 18
		months
Infrastructure	Medium	Cloud hosting, storage, testing devices
Training/Workshops	Low to Medium	Farmer and company training sessions
Contingency	10–15% of total	To cover unexpected costs
	budget	
Licenses (if any)	Minimal	Most Java tools and frameworks are open-
		source

Conclusion: Backed by CSR funding, the budget seems feasible given open-source tools and in-house resources.

3.5. Time Frame Feasibility

Phase	Duration Estimate	Activities
Requirement Gathering &	1–1.5 months	Stakeholder interviews, SRS, process
Analysis		modeling
Design (UI/UX + System)	1 month	Wireframes, architecture
Development (D1–D4)	9–10 months	Backend, frontend, APIs
Testing (T1-T4 + UAT)	3–4 months	Unit, integration, UAT
Deployment & Training	1 month	App launch, farmer orientation

Conclusion: The 18-month duration is adequate, provided proper planning and milestone tracking are followed.

Overall Feasibility Conclusion:

- Technically feasible using Java and open-source tools
- Operationally feasible with trained and available team
- Financially feasible under CSR funding
- Time feasible within the 18-month schedule

This green light allows Mr. Karthik to proceed to the next stage preparing the Gap Analysis for Mr. Henry.

Q4. Mr. Karthik must submit a Gap Analysis to Mr. Henry to convince him to initiate this project. What points (compare AS-IS existing process with TO-BE future process) should be showcased in the GAP Analysis?

Answer:

A Gap Analysis identifies the differences between the current state (AS-IS) and the desired future state (TO-BE) of the business. In this case, the purpose of the Gap Analysis is to highlight the challenges rural farmers currently face in procuring agricultural products and demonstrate how the Online Agriculture Products Store will bridge these gaps.

4.1. GAP ANALYSIS TABLE - Online Agriculture Product Store

Aspect	AS-IS Process (Current	TO-BE Process	Gaps Identified
	State)	(Proposed Future	
		State)	
Procurement	Farmers rely on local	Farmers can directly	No direct access to
Method	markets or middlemen	purchase products	manufacturers;
	to buy seeds, fertilizers,	from manufacturers	presence of
	and pesticides.	via online platform.	intermediaries
			increases cost and
			delays.
Availability of	Limited or inconsistent	24x7 access to a wide	Lack of consistent
Products	availability in remote	range of agriculture	availability and product
	areas. Farmers often	products through the	variety locally.
	have to travel long	website/mobile app.	
	distances.		

	5	_	
Pricing	Prices vary by seller; no	Farmers can compare	Lack of price clarity and
Transparency	price standardization or	prices from multiple	negotiation power for
	comparison available.	companies and choose	farmers.
		the best offer.	
Information	No clear product	Detailed product	Information
Access	descriptions, usage	catalog, usage guides,	asymmetry; farmers
	instructions, or reviews.	customer reviews	lack product
		provided online.	awareness.
Order &	Manual purchase,	Online ordering,	Time-consuming and
Delivery	travel, or reliance on	doorstep delivery, and	inefficient manual
Process	middlemen.	order tracking.	process.
Communication	No direct interaction;	Direct digital	No reliable platform for
Between	communication	communication	two-way
Farmers and	happens via	between farmers and	communication.
Suppliers	middlemen.	product companies.	
Customer	Difficult to reach	In-app customer	Lack of proper
Support	support or complaint	support, chatbot, and	grievance redressal
	resolution mechanisms.	escalation matrix	system.
		available.	
Payment	Mostly cash-based; no	Integration with UPI,	No digital payment
Mechanism	digital payment	net banking, wallets,	flexibility; cash-only
	infrastructure.	and COD options.	transactions are risky.
Record Keeping	Manual invoices or	Digital invoices, order	Lack of transaction
	none; no transaction	history, and wallet	history or proof of
	history.	integration for refunds	purchase.
		or offers.	
Reach and	Companies cannot	Companies can list and	Limited market reach
Market	directly reach	sell products	for product companies.
Expansion for	small/remote farmers.	nationwide without	
Companies		intermediaries.	

4.2. Summary of Gaps Identified

Category	Gap Identified	
Operational Gap	Delays and inefficiencies in product procurement and delivery.	
Technical Gap	Lack of digital infrastructure for e-commerce in remote areas.	
Communication	Absence of real-time interaction between farmers and companies.	
Gap		
Information Gap	No access to product knowledge or comparative pricing.	
Support Gap	Lack of grievance redressal, support, and guidance.	

4.3. Value of TO-BE State to Stakeholders

Stakeholder	Value Delivered by TO-BE Process		
Farmers	Convenience, lower costs, informed decision-making, better		
	access		
Manufacturers	Direct-to-customer sales, brand exposure, nationwide reach		
(Companies)			
Mr. Henry (Sponsor)	Positive social impact, improved livelihood of farmers		

APT IT Solutions	Successful delivery of a CSR-driven, impactful project
Government/CSR	Contribution to rural upliftment and digital India mission
Committee	

4.4. Justification to Initiate the Project

- The gap between the current challenges and the digital solution is significant.
- Implementing the TO-BE state will empower rural farmers, eliminate middlemen exploitation, and establish a transparent, scalable, and sustainable system.
- The TO-BE model aligns with Mr. Henry's CSR goals, and the solution is technically and financially feasible as established earlier.

Conclusion:

The Gap Analysis clearly showcases the inefficiencies and pain points in the AS-IS process and the strategic value the TO-BE solution will bring to all stakeholders. This supports Mr. Karthik's proposal to initiate the project without delay.

Q5. List down different risk factors that may be involved (BA Risks And process/Project Risks)

Answer:

A. Business Analyst (BA) Risks

These risks are specifically related to the activities, deliverables, and role of the Business Analyst, whose primary responsibility is to ensure that business requirements are accurately captured, understood, and communicated.

BA Risk	Description	Potential Impact	Mitigation Strategy		
Incomplete	BA may miss out on	Misalignment	Conduct multiple		
Requirement	capturing all stakeholder	between business	stakeholder sessions,		
Gathering	requirements due to time	needs and system	use questionnaires,		
	constraints, poor	features; rework	and document reviews.		
	interviews, or unclear	during development.	Apply Requirement		
	inputs.		Traceability Matrix		
			(RTM).		
Ambiguous or	If requirements are vague	Functional	Use clear, measurable		
Misinterpreted	or subject to	mismatches,	language. Conduct		
Requirements	interpretation,	increase in defects,	walkthroughs and get		
	developers/testers may	dissatisfaction	formal sign-offs.		
	implement/test	among users.			
	incorrectly.				
Stakeholder	Key stakeholders may not	Delays in	Schedule in advance,		
Unavailability	be available for	requirement	identify backups,		
	discussions, validations, or	finalization or	escalate through PM		
	sign-offs.		when critical.		
		assumptions made.			
Scope Creep	Continuous addition of	Increased cost, time	Use formal <i>Change</i>		
	new requirements outside	delays, confusion in	Request (CR)		
		testing and delivery.			

	initial scope due to		mechanism. Define and	
	stakeholder requests.		freeze scope early.	
Lack of Domain	BA may not be familiar	Poor requirement	Research domain,	
Knowledge	with the agriculture	quality, gaps in	consult SMEs, attend	
	marketplace or user	understanding user	walkthroughs and	
	persona (farmer, supplier,	pain points.	training sessions.	
	etc.).			
Improper	If BA fails to convey	Implementation may	Use detailed user	
Communication	requirements effectively	deviate from	stories, visual models	
Between BA and	to developers/testers.	business	(use cases,	
Technical Teams		expectations.	wireframes), and	
			regular BA-Dev syncs.	
Missing Non-	BAs may focus only on	System may not	Create a dedicated	
Functional	functional aspects,	meet expectations	Non-Functional	
Requirements	missing performance,	under real load or	Requirements (NFR)	
	security, and usability	fail audits.	section and validate	
	requirements.		with architects.	
Ineffective UAT	BA might not engage	UAT may get delayed	Prepare UAT scripts	
Planning and	users early or prepare	or fail due to test	early, align	
Coordination	well for UAT phase.	case mismatches or	stakeholders, and	
		environment issues.	simulate business flows	
			in test environment.	

B. Project/Process Risks

These risks impact the overall success of the project, including schedule, cost, quality, resource availability, and infrastructure.

Project Risk	Description	Potential Impact	Mitigation Strategy		
Unrealistic	The 18-month fixed	Slippage in delivery,	Conduct detailed effort		
Timelines	CSR timeline may be	burnout among team	estimation, use buffer		
	underestimated	members, quality	time, revisit planning in		
	considering full V-	compromise.	each phase.		
	model execution.				
Resource	Key resources like	Project phase delay,	Cross-train backups,		
Unavailability	developers, testers,	knowledge gaps.	plan resource		
	DB/NW admins may		allocations early,		
	not be available at		document processes		
	critical stages.		for handover.		
High Dependency	End-users like farmers	Delayed Go-live, rework	Maintain stakeholder		
on External	or company reps may	post-deployment.	calendar, send		
Stakeholders	delay feedback, UAT,		reminders, have		
	or sign-offs.		secondary contacts.		
Scope Expansion	Business needs may	Rework in	Strong change control		
During	evolve during the build	design/code/testing;	process, re-validate		
Development	phase, leading to late-	budget overruns.	impact via BA and PM		
	stage changes.		before approval.		

		•			
Technological	Technical feasibility of	Feature incompletion or	Conduct POC (Proof of		
Challenges	integrating database,	delivery delay.	Concept) early in		
	network, or third-		design, involve		
	party APIs may fail.		architects in		
			RA/Design.		
Testing	Delayed or inefficient	Defects go undetected,	Include testers from		
Bottlenecks	test execution due to	delayed UAT, poor	early stages, automate		
	poor planning or	quality at deployment.	where possible, plan		
	limited testers.		testing in parallel.		
Communication	Teams working in silos	Misunderstandings,	Daily stand-ups, shared		
Gaps Across	(BA, Dev, QA) may lose	inconsistent deliverables.	documentation, and		
Teams	alignment.		version control in tools		
			like JIRA/Confluence.		
Poor Risk and	Known risks not being	Escalations at late stages,	Maintain a live Risk		
Issue	tracked or addressed	project failure.	Register, weekly PM		
Management	proactively.		risk reviews, and		
			escalation matrix.		
Infrastructure	Delay in setting up	Phase delays, improper	Include infra setup in		
Readiness Delays	dev/test/UAT	testing, deployment	early design, assign		
	environments by	bottlenecks.	milestones, verify		
	DB/NW Admin.		readiness before T1		
			starts.		
Quality	To meet deadlines,	System bugs, user	Follow QA gates,		
Compromise Due	some phases may be	dissatisfaction,	perform phased		
to Fast-Tracking	fast-tracked or	reputation damage.	reviews, track test		
	skipped.		coverage metrics.		

Conclusion: Why Identifying Risks Early Matters

- Helps minimize rework, especially in the V-Model where each development activity maps to a test phase.
- Ensures that BA efforts lead to accurate business solutions, not just technical delivery.
- Protects the project from failure due to scope, budget, or timeline issues.
- Aligns all resources toward a predictable and quality-driven outcome.

Q6. Perform stakeholder analysis (RACI Matrix) to find out the key stakeholders who can take Decisions and Who are the influencers

Answer:

The RACI Matrix (Responsible, Accountable, Consulted, Informed) is a tool used to clarify roles and responsibilities of stakeholders in a project, especially regarding decision-making and influence. In this Online Agriculture Product Store project (V-Model based), stakeholders include committee members, project team members, business users, and technical staff. Let's map them across the phases.

RACI Definitions Refresher

RACI Role	Meaning
R – Responsible	Person(s) who actually performs the work.
A -	Person who makes the final decision and has ultimate ownership.
Accountable	
C – Consulted	Person(s) whose opinions are sought; typically subject matter experts.
I – Informed	Person(s) who are kept up to date on progress, often only need status updates.

Stakeholders Identified

Stakeholder Name	Role
Mr. Henry, Mr. Pandu, Mr. Dooku	Committee Members / Business Owners
Mr. Karthik	Technical Head / V-Model Advisor
Mr. Vandanam	Project Manager (PM)
Business Analyst (You)	BA
Ms. Juhi	Senior Developer
Mr. Teyson, Ms. Lucie, Mr. Tucker, Mr. Bravo	Java Developers
Mr. Jason, Ms. Alekya	Testers
Mr. John	DB Admin
Mr. Mike	Network Admin
Farmers / Companies	End Users / Domain Stakeholders

RACI Matrix (By Major Phases)

Committee - Henry/Pandu/Dooku

Tech head – Karthick

Phase	Activity	Committee	Tech Head	PM (Vandanam)	BA (You)	Sr. Dev	Dev s	Testers
						(Juhi)		
RG	Requirement	А	С	R	R	I	I	1
	Gathering							
RA	Requirement	Α	С	R	R	С	I	1
	Analysis							
Design	System Design	С	Α	R	С	R	I	1
D1	High-Level	I	С	R	С	R	I	1
	Design							
T1	HLD Testing	I	1	R	R	I	I	R
D2	Detailed	I	С	R	С	R	R	1
	Design							
T2	Detailed	I	1	R	R	ı	I	R
	Design Testing							
D3	Development	I	1	R	1	R	R	1
T3	Unit Testing	1	1	R	С	С	R	R
D4	Integration/Sy	1	1	R	С	С	С	R
	stem Testing							

T4	System Testing	1	1	R	R	С	I	R
UAT	User	С	1	R	R	1	1	R
	Acceptance							
	Testing							

Key Stakeholders Who Can Take Decisions

These are the Accountable (A) stakeholders in each phase – they own final decisions:

- Committee (Mr. Henry, Pandu, Dooku) Owns final business requirement decisions and project acceptance (RG, RA).
- Mr. Karthik Technical decision-maker (Design phase).
- Farmers/Companies (End Users) Approve during UAT (User Acceptance Testing).
- PM (Mr. Vandanam) Accountable for delivery in every phase except where business or technical authority takes over. Holds project accountability end-to-end.

Stakeholders Who Are Influencers

These are typically Consulted (C) stakeholders – their input is critical and influential:

- Business Analyst (You) Major influencer across requirement, analysis, and testing. Bridges business and tech.
- Mr. Karthik (Tech Head) Influences design, architecture, and tech feasibility.
- Senior Developer (Ms. Juhi) Strong technical influencer for design, development, and standards.
- Committee Members While Accountable for business-side, they influence overall project direction, funding, and priorities.
- End Users (Farmers/Companies) Their feedback drives UAT success and solution usability.

Summary of RACI Insights

Category	Stakeholders	
Decision Makers	PM (Vandanam), Committee (Henry, Pandu, Dooku), Tech Head	
(Accountable)	(Karthik), End Users	
Influencers (Consulted)	BA, Sr. Developer, Tech Head, Committee, End Users	
Doers (Responsible)	BA, Developers, Testers, Admins	
Observers (Informed)	Junior Devs, NW Admin (in most phases), Committee (during Dev),	
	End Users (until UAT)	

Q7. Help Mr Karthik to prepare a business case document

Answer:

BCD will be on this format and contengt as follows:

Business Case Document

Project Name:

Online Agriculture Products Store

Prepared By:

Mr. Karthik – Delivery Head, APT IT SOLUTIONS

Date:12/05/2025

1. Executive Summary

This business case presents the rationale for developing an Online Agriculture Products Store, a web and mobile application that bridges the gap between rural farmers and agricultural product manufacturers. Initiated by Mr. Henry, a successful businessman, and philanthropist, the goal is to resolve a pressing issue: the difficulty farmers face in procuring essential agricultural supplies like fertilizers, seeds, and pesticides. The proposed solution aims to empower farmers in remote areas by enabling direct access to manufacturers, reducing dependency on local distributors, and ensuring timely and cost-effective procurement.

The project is funded under a Corporate Social Responsibility (CSR) initiative by Mr. Henry's company, SOONY, and entrusted to APT IT SOLUTIONS, with a total budget of INR 2 Crores and an implementation timeline of 18 months. The application will improve supply chain efficiency, support the agricultural economy, and contribute to digital empowerment in rural India.

2. Business Need

India's agricultural sector still faces fundamental supply chain issues in rural areas. Farmers often encounter:

- Difficulty in accessing quality agricultural inputs.
- High prices and lack of transparency due to middlemen.
- Limited access to real-time product information and vendor options.

Peter, Kevin, and Ben, local farmers and friends of Mr. Henry, highlighted these challenges during a casual conversation. Recognizing the widespread nature of these problems, Mr. Henry envisioned an accessible digital platform for farmers to:

- Browse products,
- Compare prices,
- Interact with vendors, and
- Place orders for timely doorstep delivery.

3. Objectives

Objective	Description
Farmer	Enable farmers to procure quality fertilizers, seeds, and pesticides through
Empowerment	a digital platform.
Accessibility	Ensure the platform is accessible via web and mobile, even in remote areas
	with basic connectivity.
Direct	Create a bridge between manufacturers and farmers, eliminating
Communication	intermediaries.
Cost Reduction	Reduce procurement cost and time, improving farming productivity and
	profitability.
CSR Initiative	Fulfill the CSR goal of rural development and technological empowerment.

4. Project Scope

In Scope

- Development of Web & Mobile Applications.
- User Interfaces for Farmers and Manufacturers.
- Product Listing, Search, Filtering, Ordering, and Delivery Tracking.
- Admin module for user and content management.
- Secure Payment Integration.
- Basic Data Analytics for sales and usage trends.
- Hosting, DB, and Network Setup.

Out of Scope

- Physical logistics and delivery.
- Credit/loan integrations (future enhancement).
- Multi-language support (considered as Phase 2).

5. Stakeholder Analysis

Stakeholder	Role	Contribution
Mr. Henry	Sponsor	Visionary & Funding
Mr. Pandu	Financial Head (SOONY)	Budget allocation & approval
Mr. Dooku	Project Coordinator	Governance & CSR Compliance
	(SOONY)	
Peter, Kevin, Ben	End-Users/Farmers	Domain knowledge & feedback
Mr. Karthik	Delivery Head (APT IT)	Delivery ownership
Mr. Vandanam	Project Manager	Project execution & coordination
Ms. Juhi	Senior Java Developer	Technical Design & Development
Dev Team	Development	Coding & Feature Implementation
Mr. Mike	Network Admin	Infrastructure setup
Mr. John	DB Admin	Data modeling & DB support
Mr. Jason & Ms.	Testers	Functional and integration testing
Alekya		
Business Analyst	BA	Requirement gathering, documentation,
(You)		validation

6. Solution Options

Option	Description	Pros	Cons
1. Manual	Continue using physical	No additional cost	Inefficient, time-
Distribution	procurement and vendor		consuming
Model	visits		
2. Build Online	Develop an integrated	Efficient, scalable,	Initial development cost
Platform	platform connecting	transparent, data-	
(Proposed)	farmers and	driven	
	manufacturers		
3. Use Existing	List products on platforms	Quick start	Lacks farmer-centric
Marketplaces	like Amazon, Flipkart		design, dependency on
			external rules, not
			localized

Chosen Option: Option 2 – Build a Custom Online Platform (Web + Mobile)

7. Cost-Benefit Analysis

Estimated Budget: ₹2 Crores

Cost Component	Amount (₹)
Development (Web & App)	1.2 Crores
Infrastructure (Server, DB, Hosting)	20 Lakhs
Testing & QA	10 Lakhs
Project Management & BA	15 Lakhs
Contingency	10 Lakhs
Support & Maintenance (6 months post-deployment)	25 Lakhs

Total	2 Crores
-------	----------

Expected Benefits:

- Reach 10,000+ farmers in first year.
- Reduce procurement costs by ~20%.
- Improve delivery turnaround time by 30%.
- Strengthen manufacturer visibility and rural penetration.
- Support sustainable agriculture and rural digitization.

8. Risk Analysis

Risk	Probability	Impact	Mitigation
Poor Internet Connectivity	High	Medium	Offline caching, lightweight UI
Resistance to digital adoption	Medium	Medium	User education & support
Data security	Medium	High	SSL, data encryption, secure DB
Budget Overruns	Low	High	Strict project governance
Vendor Delay	Medium	High	Milestone-based monitoring

9. Project Timeline (18 Months)

Phase	Duration	Activities
Requirements Gathering	1 Month	Stakeholder interviews, BRD, use cases
Design	2 Months	Wireframes, UI/UX design, architecture
Development	9 Months	Backend, Frontend, APIs, Integration
Testing	3 Months	Unit, Integration, UAT
Deployment	1 Month	Production setup, go-live
Support & Maintenance	2 Months	Bug fixes, feature fine-tuning

10. Success Metrics

- Platform Go-Live within 18 months.
- Registration of at least 1,000 farmers in first quarter post-launch.
- Average order placement time ≤ 5 minutes.
- 95%+ uptime of application.
- 90%+ user satisfaction rate via post-purchase feedback.

11. Assumptions

- Farmers have access to basic smartphones.
- Manufacturers are open to digital listing and inventory updates.
- Government and local panchayat bodies support farmer onboarding.

12. Conclusion

This business case justifies the creation of an Online Agriculture Products Store under Mr. Henry's CSR initiative. It is a transformative digital solution that will positively impact rural agriculture and empower farmers through technology. By facilitating direct access to quality products, reducing overheads, and improving efficiency, this platform stands as a model for rural development through digital inclusion.

Q8. Project Development Approach:

The Committee of Mr. Henry, Mr Pandu, and Mr Dooku and Mr Karthik are having a discussion on Project development approach Mr. Karthik explained to Mr. Henry about SDLC and four methodologies like Sequential, Iterative, Evolutionary, and Agile. Please share your thoughts and clarity on these methodologies.

Answer:

Software Development Life Cycle (SDLC) is a systematic process used to develop software, ensuring high quality, performance, and cost-efficiency. Within SDLC, several development methodologies define how a project should progress through its phases — from requirement gathering to deployment and maintenance.

Mr. Karthik explained the following four key methodologies to Mr. Henry:

8.1. Sequential Methodology (Waterfall Model)

Definition:

A linear and step-by-step approach where each phase must be completed before the next begins.

Requirements \rightarrow Analysis \rightarrow Design \rightarrow Development \rightarrow Testing \rightarrow Deployment \rightarrow Maintenance **Characteristics:**

- Rigid structure.
- No going back once a phase is completed.
- Well-suited for projects with fixed requirements and low uncertainty.

Use Case:

Useful when the requirements are clear, stable, and unlikely to change (e.g., Banking software, Industrial automation).

Pros:

- Easy to manage and understand.
- Clearly defined stages and deliverables.
- Suitable for documentation-heavy projects.

Cons:

- Poor flexibility for changes.
- Late discovery of issues during testing.
- Not suitable for complex, evolving needs.

8.2. Iterative Methodology

Definition:

Development is done in small iterations or cycles. Each cycle builds a part of the system, and feedback is incorporated in the next cycle.

Flow:

 $Plan \rightarrow Design \rightarrow Build \rightarrow Test \rightarrow Evaluate \rightarrow Repeat$

Characteristics:

- Product is developed piece by piece.
- Encourages feedback and continuous improvement.
- Each version evolves with improvements.

Use Case:

Ideal for projects where requirements are evolving or not fully known upfront (e.g., mobile apps, customer portals).

Pros:

- Flexibility to change requirements.
- Partial implementation available early.
- Risk is reduced early.

Cons:

- Might require more time and resources.
- Requires good planning for iteration cycles.

8.3. Evolutionary Methodology

Definition:

A combination of iterative and incremental methods where the software evolves with each release, becoming more complete and functional over time.

Flow:

Initial Version \rightarrow Enhanced Version 1 \rightarrow Enhanced Version 2 \rightarrow Final Version

Characteristics:

- Begins with a basic version of software.
- Functionalities are added step by step.
- Highly adaptable to user feedback.

Use Case:

Ideal for innovative or research-based projects (e.g., AI solutions, start-up products).

Pros:

- End users get early access to usable features.
- Responds well to user feedback.
- Allows early error detection.

Cons:

- May lack clear deadlines or scope.
- Can lead to project scope creep if not managed well.

8.4. Agile Methodology

Definition:

An incremental and iterative approach focusing on collaboration, customer feedback, and flexibility.

Key Frameworks: Scrum, Kanban, XP

Flow (in Scrum):

Product Backlog \rightarrow Sprint Planning \rightarrow Sprint (2–4 weeks) \rightarrow Review \rightarrow Retrospective

Characteristics:

- Customer collaboration over contracts.
- Responding to change over following a rigid plan.
- Cross-functional teams and continuous delivery.

Use Case:

Best suited for dynamic environments where requirements may change frequently (e.g., ecommerce, customer-focused web apps).

Pros:

- Continuous delivery and frequent releases.
- High customer involvement.
- Rapid response to changes and bugs.

Cons:

- Requires experienced team and strong discipline.
- May lack documentation.
- Challenging in fixed-bid contracts.

Comparison Snapshot:

Criteria	Sequential	Iterative	Evolutionary	Agile
Flexibility	Low	Moderate	High	Very High
User	Low	Moderate	High	Very High
Involvement				
Cost of Change	High	Medium	Low	Low
Risk Handling	Poor	Better	Very Good	Excellent
Documentation	High	Medium	Medium	Low to Medium
Delivery Speed	Slow	Moderate	Moderate	Fast

Conclusion:

Each methodology has its own strengths and limitations. As a Business Analyst, you must assess:

- Complexity of the project
- Stability of requirements
- Timeline and budget constraints
- Stakeholder involvement
- Team experience and readiness

This helps in recommending the most suitable model for development.

Q9. They discussed models in SDLC like Waterfall, RUP, Spiral, and Scrum. You put forth your understanding on these models (Waterfall, RUP, Spiral, and Scrum models)

Answer:

Understanding the Software Development Life Cycle (SDLC) models is essential for any Business Analyst to guide the team in selecting the right development strategy based on the project needs, risk levels, and stakeholder expectations.

Here's a comprehensive explanation of the four SDLC models discussed: Waterfall, RUP, Spiral, and Scrum.

9.1. Waterfall Model

Definition:

The Waterfall Model is a linear and sequential development model where each phase must be completed before the next one begins. It is the earliest SDLC model and is based on a well-defined structure.

Phases:

- 1. Requirement Gathering
- 2. System Design
- 3. Implementation
- 4. Testing
- 5. Deployment
- 6. Maintenance

Characteristics:

- Each phase has distinct deliverables.
- No overlapping of phases.
- Documentation-heavy.

Pros:

- Easy to understand and manage.
- Suitable for small projects with clear requirements.
- Strong documentation.

Cons:

- Rigid; changes are hard to accommodate.
- Testing occurs late in the cycle.
- High risk if requirements are misunderstood.

Use Case Example:

A government tender project with fixed scope, deadlines, and budget.

9.2. RUP (Rational Unified Process)

Definition:

RUP is a customizable and iterative software development process framework created by Rational Software (IBM). It emphasizes object-oriented design and heavy documentation.

Phases:

- 1. Inception
- 2. Elaboration
- 3. Construction
- 4. Transition

Characteristics:

- Use-case and risk-driven development.
- Allows iterative development.
- Heavy on UML modeling and design practices.

Pros:

- Adaptable to different project sizes.
- Risk is identified early.
- · Continuous integration and testing.

Cons:

- Complex and resource-intensive.
- Steep learning curve for teams.
- Overhead in documentation and process control.

Use Case Example:

Large-scale enterprise solutions like ERP systems or insurance claim processing platforms.

9.3. Spiral Model

Definition:

The Spiral Model combines iterative development with the systematic aspects of the waterfall model, focusing heavily on risk assessment.

Phases (repeated in spirals):

- 1. Planning
- 2. Risk Analysis
- 3. Engineering (Development & Testing)
- 4. Evaluation

Each spiral results in a progressively more complete version of the software.

Characteristics:

- · Emphasizes risk analysis.
- Ideal for complex and high-risk projects.
- Incorporates customer feedback in each loop.

Pros:

- Excellent for risk-prone projects.
- Accommodates change well.
- Delivers prototypes early.

Cons:

- Requires expertise in risk analysis.
- Not suitable for small projects.
- May become expensive due to extended cycles.

Use Case Example:

Military, aerospace, or high-security government software.

9.4. Scrum (Agile Framework)

Definition:

Scrum is a lightweight, Agile framework that organizes development into small, time-boxed iterations called Sprints (usually 2–4 weeks).

Roles:

- Product Owner: Defines the product backlog and priorities.
- Scrum Master: Facilitates the process and removes blockers.
- Development Team: Builds and delivers the product increment.

Key Components:

- Product Backlog
- Sprint Backlog
- Daily Scrum
- Sprint Review & Retrospective

Characteristics:

- High customer collaboration.
- Incremental delivery.
- Change-friendly environment.

Pros:

- Early and frequent delivery of value.
- High stakeholder engagement.
- Quick detection of issues.

Cons:

- Requires experienced, cross-functional teams.
- Less documentation.
- Harder to scale for very large projects.

Use Case Example:

Customer-facing applications like e-commerce websites, mobile apps, and SaaS platforms.

Summary Comparison:

Criteria	Waterfall	RUP	Spiral	Scrum (Agile)
Approach	Sequential	Iterative	Risk-driven +	Iterative &
			Iterative	Incremental
Flexibility to	Low	Moderate	High	Very High
Changes				

Documentation	High	Very High	Medium	Low to Medium
Risk Management	Low	Medium	High	Medium
Customer	Low	Medium	High	Very High
Involvement				
Best For	Fixed-scope	Large enterprise	High-risk, R&D	Dynamic and
	projects	systems	projects	evolving projects

Business Analyst Viewpoint:

As a BA, understanding these models helps in:

- Choosing the right methodology based on project nature.
- Managing stakeholder expectations.
- Planning requirement elicitation and change management accordingly.
- Identifying where and how feedback loops, documentation, testing, and collaboration occur.

Q10.1 When the APT IT SOLUTIONS company got the project to make this online agriculture product store, there is a difference of opinion between a couple of SMEs and the project team regarding which methodology would be more suitable for this project. SMEs are stressing on using the V Model and the project team is leaning more onto the side of the Waterfall model. As a Business Analyst, which methodology do you think would be better for this project? Justify your choice.

Answer:

As a Business Analyst, after analysing the project requirements, constraints, and nature of stakeholders involved in the Online Agriculture Products Store, I strongly recommend using the V-Model (Validation & Verification Model) over the Waterfall model for the following reasons:

V-Model Overview:

The V-Model is an extension of the Waterfall model, but with a key distinction — each development stage has a corresponding testing phase. This approach allows early testing planning, improving the quality of the final product.

Reasons Why V-Model is Better for This Project:

10.1.1. Nature of the Project Requires High Reliability:

- The system connects farmers and agriculture companies and involves financial transactions and logistics coordination.
- Errors in the final application could cause real-time business losses or mistrust in the system.
- The V-Model ensures testing at every stage, reducing the risk of late discovery of defects.

10.1.2. Defined and Stable Requirements:

 Since Mr. Henry and his friends (Peter, Kevin, Ben) are actively involved in sharing detailed requirements upfront, and the project is part of a CSR initiative, the requirements are less likely to change frequently. • V-Model works best when the requirements are well understood and fixed.

10.1.3. Early Test Planning = Quality Output:

- In V-Model, test plans and test cases are prepared alongside each phase of development, which helps in:
 - Minimizing the defect rate
 - o Ensuring verification and validation from the beginning

10.1.4. Alignment with Committee Expectations:

- Stakeholders like Mr. Henry, Mr. Pandu, and Mr. Dooku may not be tech-savvy and would prefer predictable timelines and high quality over frequent changes and iterations.
- V-Model provides clear deliverables and phase-wise validation aligned with stakeholder checkpoints.

10.1.5. Easy Traceability:

- The V-Model provides one-to-one mapping between requirements and test cases.
- This traceability ensures that no requirement is left untested, which is very important for compliance and audit purposes in CSR projects.

•

10.1.6. Team Readiness & Skill Set:

- The project team includes defined roles (BA, PM, Java Developers, Testers, DB Admin, NW Admin), with no explicit mention of Agile coaches or Scrum Masters.
- V-Model fits this traditional resource structure better than Agile/Scrum.

Why Not Waterfall?

Although the Waterfall model is simple and structured, it has the following limitations in this case:

- Late Testing Phase: All testing happens only after development ends, which could lead to the discovery of critical bugs at a very late stage.
- No Early Bug Detection: There's no validation phase during requirement and design stages.
- High Risk of Rework: If issues are identified late, the rework cost and effort can be high

Summary: Waterfall vs V-Model for This Project

Criteria	Waterfall	V-Model	
Testing Involvement	Late phase only	At each development phase	
Requirement Stability	Yes	Yes	
Required			
Risk Mitigation	Less	High – early defect detection	
Best For	Simple, one-time delivery	CSR, compliance, quality-driven	
Feedback Mechanism Post development		Continuous validation	

Conclusion as a BA:

Considering the project scope, requirement clarity, stakeholder involvement, team composition, and the criticality of accuracy and reliability, the V-Model is the most appropriate methodology for this project. It will ensure early detection of defects, structured validation, and high-quality output – all essential for the success of the Online Agriculture Product Store under a CSR initiative.

Q10.2. Write down the differences between Waterfall model and V model.

Answer:

10.2.1. Differences Between Waterfall Model and V-Model

Aspect	Waterfall Model	V-Model (Verification &	
		Validation Model)	
Process Flow	Linear and sequential flow from	V-shaped flow with	
	requirements → design → development	corresponding testing phase for	
	→ testing → deployment	each development phase	
Testing Phase	Testing happens only after the	Testing is planned and executed	
	development phase is complete	in parallel with each	
		development phase	
Requirement	Requirements are validated after	Requirements are validated at	
Validation	implementation	early stages with corresponding	
		test cases	
Risk Handling	Higher risk due to late detection of	Lower risk due to early and	
	defects	continuous testing	
Flexibility to	Rigid; changes are difficult and costly	Less flexible but allows early	
Change	once development starts	detection of issues	
Traceability Limited traceability between		Strong traceability between	
requirements and tests		development stages and tests	
Feedback Loop	Feedback mostly at the end of the	Feedback and validation at every	
	project	stage of development	
Documentation	Heavy documentation for each phase	Emphasis on documentation with	
		corresponding test cases	
Suitability	Suitable for simple and well-understood	Suitable for projects where	
	projects	quality and reliability are critical	
Complexity	Simpler to understand and implement	More complex due to the	
		integration of testing phases	
Cost & Time	Can be costlier if defects found late	Can save cost and time by	
		catching defects early	

Q11. As a BA, state your reason for choosing one model for this project.

Answer:

Reason for Choosing V-Model for Online Agriculture Product Store Project

As a Business Analyst, I recommend the V-Model for this project because:

11.1. Emphasis on Early Testing & Validation

- This project involves critical agricultural products where errors could impact farmers' livelihoods.
- The V-Model's early test planning ensures defects are caught early, improving product reliability and trust.

11.2. Requirement Stability and Clear Scope

• The CSR initiative has well-defined requirements gathered from stakeholders like Peter, Kevin, and Ben.

• V-Model thrives when requirements are stable and well-documented, making it easier to link requirements to tests.

11.3. Quality Assurance is Crucial

- The online platform will be used by diverse stakeholders including farmers and companies.
- High quality, reliability, and compliance are non-negotiable V-Model's strong focus on validation ensures this.

11.4. Clear Traceability

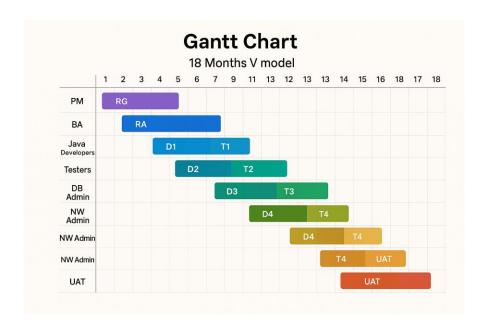
- Traceability matrices can be created easily between requirements, design, and test cases.
- This is beneficial for audit trails and verifying that all stakeholder needs are met.

11.5. Stakeholder Confidence

- Non-technical stakeholders prefer clear milestones and predictable deliverables.
- The V-Model's stage-wise validation aligns well with these expectations.

11.6. Risk Mitigation

• Since errors in agricultural products procurement could have serious consequences, early testing minimizes business risks.


Summary:

While the Waterfall model is simpler and sequential, it lacks early testing and feedback loops, which can lead to costly fixes later on. The V-Model improves upon Waterfall by integrating testing phases at every stage, which is essential for this CSR-driven, quality-sensitive project.

Q12. The Committee of Mr. Henry, Mr Pandu, and Mr Dooku discussed with Mr Karthik and finalised on the V Model approach (RG, RA, Design, D1, T1, D2, T2, D3, T3, D4, T4 and UAT).

Mr Vandanam is mapped as a PM to this project. He studies this Project and Prepares a Gantt chart with V Model (RG, RA, Design, D1, T1, D2, T2, D3, T3, D4, T4 and UAT) as development process and the Resources are PM, BA, Java Developers, testers, DB Admin, NW Admin. Explain the finalized V-Model phases and resource allocation as a Ghantt Chat in detail.

Answer:

12.1 V-Model Phases and Their Explanation

Phase Code	Phase Name	Explanation	
RG	Requirement	Collect detailed business and technical requirements	
	Gathering	from stakeholders (farmers, companies, committee).	
		BA leads this activity with PM support.	
RA	Requirement	Analyze, clarify, and document the gathered	
	Analysis	requirements into a formal Requirements Specification	
		Document. BA works closely with PM and technical	
		leads.	
Design	System and	Architects and developers design system architecture,	
	Technical Design	database schema, network setup, and UI design based	
		on requirements.	
D1	High-Level Design	Creating high-level design documents detailing system	
		modules, data flow, and interactions. Leads: Senior	
		Developers & BA.	
T1	High-Level Design	Review and validate high-level design documents.	
	Testing	Testers and BA ensure design meets requirements.	
D2	Detailed Design	Prepare detailed design including class diagrams,	
		interface details, database design, and API	
		specifications. Java Developers lead.	
T2	Detailed Design	Testing detailed design for completeness and	
	Testing	consistency. Testers and BA collaborate on test plans.	
D3	Coding/Development	Developers write actual code, implement features as	
		per design documents.	
T3	Unit Testing	Testers and developers perform unit testing on	
		individual modules for functionality and correctness.	
D4	Integration and	Combine modules and test the integrated system to	
	System Testing	validate end-to-end workflows and data flow. Testers	
		lead.	
T4	System Testing	Conduct comprehensive testing including functional,	
		non-functional, security, and performance testing.	
		Testers and BA involved.	
UAT	User Acceptance	End users (farmers, company representatives) validate	
	Testing	the system in a real-world scenario before final	
		deployment. BA coordinates UAT.	

12.2 Resource Allocation & Roles

Resource	Role and Responsibilities	Phases Involved
Project Manager	Oversees project planning, execution, resource	Entire lifecycle (RG
(PM) - Mr.	management, risk mitigation, and communication	to UAT)
Vandanam	with stakeholders. Coordinates all phases.	
Business Analyst (BA)	Leads requirement gathering and analysis,	RG, RA, T1, T2, T4,
- You	clarifies needs, creates BRD/FRD, liaises between	UAT
	stakeholders and technical teams, helps prepare	
	test cases, supports UAT.	

Senior Java	Leads design and development, guides junior	Design, D1, D2, D3
Developer - Ms. Juhi	developers, ensures coding standards and	
	architecture adherence.	
Java Developers -	Develop system modules, perform unit testing	D2, D3, T3
Mr. Teyson, Ms.	with developers and testers, fix defects.	
Lucie, Mr. Tucker,		
Mr. Bravo		
Tester - Mr. Jason	Prepare test plans and test cases, perform design	T1, T2, T3, T4, UAT
and Ms. Alekya	reviews, execute unit, integration, system, and	
	UAT testing, log defects, ensure quality.	
Database Admin -	Design and manage database schema, ensure	Design, D2, D3
John	data integrity and backup strategies, support	
	database related testing and deployment.	
Network Admin - Mr.	Manage network infrastructure, ensure secure	Design, D4,
Mike	connectivity, support deployment environment,	Deployment
	troubleshoot network issues.	

12.3. Phase-wise Timeline and Gantt Chart Insights

- The PM (Mr. Vandanam) creates a Gantt chart scheduling these phases sequentially but allowing some overlaps, for example:
 - While BA works on Requirement Analysis (RA), Developers can start preliminary System Design.
 - Testing phases (T1, T2, etc.) start immediately after corresponding development phases (D1, D2, etc.).
 - UAT is scheduled near the end, involving real users coordinated by BA.

12.4. Why This Allocation and Approach?

- Clear roles ensure accountability at every phase.
- BA's involvement throughout ensures business requirements are correctly translated into technical solutions.
- Parallel testing with development phases (V-Model strength) reduces late defect discovery.
- PM oversees to keep the project on schedule and manages resource dependencies.
- Specialist resources (DB & Network Admin) ensure technical infrastructure stability.
- This structure suits the project's fixed timeline (18 months CSR initiative) and quality expectations.

Q13. Explain the difference between Fixed Bid and Billing Projects.

Answer:

13.1. Fixed Bid Projects

Definition:

• A Fixed Bid Project (also called Fixed Price Project) is where the client and the service provider agree upon a predefined fixed price for the entire project before starting the work.

Key Characteristics:

- Scope: Clearly defined upfront; changes are limited or charged separately.
- Price: Fixed and agreed upon before the project begins.
- Timeline: Usually fixed or estimated based on the agreed scope.
- Risk: Most risk lies with the service provider if the project takes longer or costs more than expected.
- Payments: Often milestone-based or full payment on delivery.
- Suitability: Best for projects with well-defined requirements and low expected changes.

Pros:

- Predictable cost for the client.
- Clear expectations on deliverables.
- Encourages efficient work from the service provider.

Cons:

- Less flexibility to accommodate changes.
- Risk of compromised quality if the provider tries to cut corners to save cost.
- Requires thorough upfront planning and requirement gathering.

13.2. Billing Projects

Also known as Time and Material (T&M) or Hourly Billing Projects.

Definition:

 The client pays based on the actual time spent and materials used during project development.

Key Characteristics:

- Scope: Flexible and can evolve during development.
- Price: Variable, based on hourly or daily rates and material costs.
- Timeline: Flexible; can extend based on scope changes.
- Risk: Mostly lies with the client as costs can increase if project extends.
- Payments: Periodic billing based on hours worked or deliverables completed.
- Suitability: Best for projects where requirements are unclear, evolving, or exploratory.

Pros:

- Flexibility to change requirements anytime.
- Easier to add new features or make modifications.
- Encourages collaboration and iterative development.

Cons:

- Uncertainty in final cost.
- Requires active client involvement to control scope and budget.
- Risk of scope creep if not managed well.

13.3. Summary Table

Aspect	Fixed Bid Project	Billing (Time & Material) Project
Cost	Fixed upfront	Variable, based on actual effort
Scope	Defined and frozen at start	Flexible and can evolve during development
Risk	Provider bears risk of overruns	Client bears risk of increased costs
Flexibility	Low	High

Client Low after contract signing		High, with active involvement	
Control			
Best for	Well-defined, stable requirements	Unclear, evolving, or exploratory projects	

13.4. Why This Understanding is Important for This Project

- The Online Agriculture Product Store is a CSR initiative with a fixed timeline (18 months) and predefined scope gathered from stakeholders.
- A Fixed Bid Model would likely be preferred here due to:
 - o Clear initial requirements from farmers and companies.
 - Fixed budget and schedule constraints.
 - Need for predictable deliverables and cost control.
- However, if changes or additional features are anticipated due to user feedback during UAT,
 a Billing Model or a hybrid approach could be considered for post-deployment enhancements.

Q14. Preparer Timesheets of a BA in various stages of SDLC

Answer:

14.1 Design Timesheet of a BA (Business Analyst)

Focus: Design Phase Activities

Understanding the Role of a BA in the Design Phase

During the Design Phase, the BA plays a crucial bridging role between stakeholders and technical teams. The BA ensures that business requirements are accurately translated into solution designs, wireframes, and system architecture, working closely with the UI/UX designers and development leads.

Business Analyst Design Phase Timesheet - Sample (Weekly View)

Day	Task Description	Time	Stakeholders/Teams	Purpose
		Spent	Involved	
		(Hours)		
Monday	Review finalized	2 hrs	Dev Team, Tech Lead	Ensure clarity of
	Functional Requirements			features before UI
	Document (FRD) with			design begins
	development team			
	Conduct Design Kick-off	1.5 hrs	UI/UX Designers, PM	Align UI design
	meeting with UI/UX team			with business
				needs and
				priorities
	Identify Key User Stories	2 hrs	Internal	Define screens and
	and screen requirements			flows aligned to
				features
	Support Wireframe	2.5 hrs	UI Team, Devs	Provide business
	development			logic inputs to
				support visual
				layout

Tuesday	Collaborate with UI team	3 hrs	UI Designers	Ensure designs
	to validate user interface			match business
	mock-ups			flows and usability
	Create/Update Process	2 hrs	Internal	Represent AS-
	Flow Diagrams (BPMN or			IS/TO-BE process
	swimlanes)			visually
	Hold Review Meeting with	1.5 hrs	Business	Align with client
	Stakeholders to approve		Stakeholders	expectations and
	design concepts			validate alignment
Wednesday	Document Screen-Level	3 hrs	Internal	Support Dev and
	Requirements & Field			QA teams in future
	Validations			development &
				testing
	Define User Roles &	2 hrs	PM, QA, Tech Leads	Align role-based
	Permissions Matrix			access with
				functionality
Thursday	Support Logical Data	2 hrs	DB Admin, Dev Team	Enable data
	Design – identify key data			integrity and
	elements for			smooth UI-
	screen/database mapping			backend flow
	Validate UI	2 hrs	UI/UX Team	Ensure alignment
	Prototypes/Clickable			to business goals
	Mock-ups			and ease of use
	Internal Review &	1.5 hrs	Internal	Iterate on design
	Feedback Loop			changes
Friday	Consolidate BA	3 hrs	PM, QA	Formal
	Deliverables (Design Spec			documentation for
	doc, updated FRD, user			sign-off
	journey flows)			
	Attend PM Review	1 hr	PM, Dev, QA, UI/UX	Final checkpoint
	Meeting on Design			before Design Sign-
	Readiness			Off
	Provide Sign-Off	1 hr	Stakeholders	Final validation
	Support/Approvals			from client side
	11 7 11	l		

Total Hours per Week (Design Phase):

35-40 Hours depending on project complexity.

Deliverables from BA in Design Phase

Deliverable	Purpose
Updated Functional Requirement	Reflects refined scope after requirement validation
Document	
UI/UX Review Comments Sheet	Track all UI suggestions and client feedback
Design Specification Document	Maps each UI component to functional logic and
	data fields

User Roles and Permission Matrix	Defines access control and visibility rules
Business Process Models	Represents process flows for development reference
(BPMN/Flowcharts)	
Field-Level Validation Rules	Defines constraints for form fields or inputs
Traceability Matrix (Requirements ↔	Ensures all requirements are traceable in the design
Design)	

Why These Tasks Are Important

- Accuracy in Design → Better Development Output
 A BA ensures that technical designs are aligned with business logic and user needs.
- Reduces Rework in Later Phases
 Poorly validated designs can lead to scope creep or major rework during development/UAT.
- Improves Communication Across Teams
 The BA acts as a translator between business terms and technical concepts.
- Ensures Compliance & Usability
 Especially in projects like the Online Agriculture Store, good design means farmers (end users) can easily navigate and use the platform.

14.2 Development Timesheet of a BA (Business Analyst)

Focus: Development Phase Activities

Understanding the Role of a BA in the Development Phase

In the Development Phase, the Business Analyst acts as a *bridge between the developers and stakeholders*, ensuring the implementation strictly follows the approved requirements and design. BAs support developers by clarifying requirements, updating documentation when necessary, ensuring traceability, and proactively managing requirement deviations or change requests.

Business Analyst Development Phase Timesheet - Sample (Weekly View)

Day	Task Description	Time	Stakeholders/Teams	Purpose
		Spent	Involved	
		(Hours)		
Monday	Conduct Sprint Planning	1.5 hrs	PM, Dev Team, QA	Outline
	or Development Kickoff			development tasks
	Meeting			per module & user
				story
	Support developers with	2.5 hrs	Java Devs, DB Admin	Prevent blockers,
	requirement			ensure correct
	clarifications			feature
				implementation
	Update/Refine	1.5 hrs	Internal	Link requirements to
	Traceability Matrix			development tickets
	Review system	2 hrs	Dev Leads, Network	Validate technical
	architecture documents		Admin	feasibility with
	and identify alignment			business objectives
	with business goals			
Tuesday	Conduct Daily Standup	0.5 hrs	All Team Members	Track blockers,
	Meeting and track			progress, and BA
				involvement needed

	progress against			
	progress against			
	requirements	2 1	T l. 1 l.	Francisco I
	Review Technical Design	2 hrs	Tech Leads	Ensure logical
	Document (TDD) and			implementation of
	provide inputs		2.1.1.1.	business rules
	Manage Change	2 hrs	Stakeholders, Devs,	Handle evolving
	Requests (CRs), Update		QA	scope or
	FRD & Recommunicate			enhancements
	to Developers			smoothly
	Participate in Code	1.5 hrs	Dev Team	Ensure business
	Review Discussions			rules have been
	(High-Level View)			interpreted correctly
Wednesday	Prepare Data Mapping	2.5 hrs	DB Admin, Backend	Clarify data flow and
	Sheets (UI to Backend to		Dev	integrations
	DB)			
	Maintain	1 hr	Internal	Log repetitive
	Issue/Clarification Log			queries and
				resolutions
	Document Business Rule	1.5 hrs	PM, Dev Team	Track what logic has
	Implementation Status			been implemented,
				what's pending
Thursday	Validate API Contracts	2 hrs	Dev Team, API Team	Ensure API
	or Integration			input/output
	Requirements			matches expected
				business parameters
	Prepare for SIT (System	2 hrs	QA Team, PM	Ensure readiness for
	Integration Testing) by			integrated testing
	verifying development			
	completeness			
	Clarify functional logic in	1.5 hrs	Java Dev, API Team	Resolve integration
	integration components			mismatches early
Friday	Conduct Internal Review	2 hrs	Dev Team, QA	Validate module
-	of Completed Modules		·	flow with functional
	·			use cases
	Conduct Stakeholder	1.5 hrs	Mr. Henry	Confirm delivery is
	Demo on Developed		Committee, PM	aligned with
	Features		,	expectations
	Update BA Documents –	2 hrs	Internal	Keep all BA assets
	CR Log, Issue Tracker,			current and aligned
	Functional Notes			
		L		

Total Hours per Week (Development Phase):

35 to 40 Hours, adjusted based on sprint cycle or complexity of modules.

Key Deliverables by BA in Development Phase

Deliverable	Purpose
Deliverable	1 di posc

Updated Functional Requirement Document (FRD)	Reflects any approved changes or clarifications
Change Request Log (CR Log)	Track all modifications and approvals
Requirements Traceability Matrix (RTM)	Track each requirement's implementation
	status
Issue Clarification Sheet	Logs questions from developers with
	responses
Data Mapping/Field Mapping Sheet	Maps UI fields to database and APIs
Business Rule Implementation Tracker	Track rule coverage per module
Development Status Reports (Feature-wise)	For internal PM and stakeholder reporting

Why These Tasks Are Important

1. Maintains Requirement Fidelity

Without BA involvement, developers may misinterpret business requirements, especially in domain-specific platforms like the Online Agriculture Products Store.

2. Eliminates Rework

Proactive clarifications and traceability reduce defects, rework, and post-development change cycles.

3. Bridges the Communication Gap

BA translates technical questions into business-friendly terms and vice versa—crucial for progress tracking and expectation setting.

4. Ensures Accurate Development

With BA's support, all user stories, data flows, and business rules are properly coded and mapped—resulting in fewer defects during testing.

Example From Your Project: Online Agriculture Store

- For the "Add Fertilizer to Cart" feature, the BA ensures:
 - All UI fields (product, quantity, price) match FRD.
 - The backend handles inventory correctly.
 - API passes correct data.
 - Business rules like "limit per user" are implemented.

This work happens not by coding, but by the BA continuously validating logic, data flow, and business rules through communication, documentation, and demos.

14.3. Testing Timesheet of a BA (Business Analyst)

Focus: Testing Phase Activities (System Testing, Integration Testing, Functional Testing, Defect Support)

Understanding the Role of a BA in the Testing Phase

During the Testing Phase, the Business Analyst plays a *critical support and validation role*. While testers perform test case execution, the BA ensures the requirements are correctly implemented, validates test coverage, supports defect triaging, and provides clarifications to both testers and developers. This ensures that what's built truly meets business expectations.

Business Analyst Testing Phase Timesheet – Sample (Weekly View)

Day	Task Description	Time	Stakeholders/Teams	Purpose
		Spent	Involved	
		(Hours)		
Monday	Participate in Test Case	2 hrs	QA, PM, Dev Team	Ensure all business
	Review Meeting			scenarios are tested
	Validate Requirements	1.5 hrs	QA	Confirm all
	Traceability Matrix			requirements are
	(RTM) with Test			covered
	Scenarios			
	Provide Clarifications	2 hrs	QA, Developers	Help testers
	on Test Case Logic, UI			understand business
	Flows, and Expected			workflows
	Results			
	Attend Defect Triage	1.5 hrs	QA, Dev, PM	Prioritize defects
	Meeting (discuss			based on business
	severity, root cause,			impact
	business impact)			
Tuesday	Review System Test	1.5 hrs	QA	Track progress of test
	Execution Reports			execution
	Retest/Validate Fixed	2 hrs	QA, Dev	Ensure bug fixes align
	Defects (only			with business needs
	functional/business			
	validation)			
	Update Requirement	1.5 hrs	Internal	Keep FRD and CR Logs
	Documents based on			updated
	Valid Defects or			
	Changes			
	Help QA Team in	2 hrs	QA	Guide testers in cross-
	Preparing SIT (System			module and API
	Integration Testing)			testing
	Scenarios			
Wednesday	Conduct Requirement	2 hrs	PM, QA	Map requirement-to-
	Coverage Review			test case using RTM
	Review and Validate	2 hrs	QA, DB Admin	Ensure realistic test
	Test Data (Boundary			case input data
	values, invalid inputs,			
	real-case values)			
	Functional Demo	2 hrs	QA, Dev,	Business-side
	Review of Tested		Stakeholders	validation of tested
	Modules			functionality

Thursday	Conduct Regression	1.5 hrs	QA	Confirm existing
	Testing Support			functionality remains
				intact
	Update Issue Tracker	2 hrs	QA, PM	Maintain log of
	and Defect Analysis			functional/business-
	Sheet			impacting bugs
	Approve/Test	1.5 hrs	PM, Stakeholders	Ensure UAT entry
	Readiness for UAT (post			conditions met
	successful internal QA			
	phase)			
Friday	Coordinate Business	1.5 hrs	Mr. Henry's	Stakeholder validation
	Walkthrough/Demo of		Committee, QA, Dev	of real-world usability
	Tested Features			
	Document Business	1.5 hrs	Internal,	Ensure business
	Feedback and Testing		Stakeholders	feedback captured
	Observations			before UAT
	Conduct BA-QA Sync-up	1.5 hrs	QA, PM	Align on closure
	to Finalize Open Points			checklist and pending
	and Exit Criteria			clarifications

Total Hours per Week (Testing Phase):

Key Deliverables by BA in Testing Phase

Deliverable	Purpose
Updated Requirements Traceability	Ensure full testing coverage of all requirements
Matrix (RTM)	
Test Case Review Comments	Validate logical flow of test cases and scenarios
Defect Triage Sheet	Categorize bugs by severity and business impact
Business Rule Validation Log	Confirm each rule is implemented and tested
Updated CR Log / FRD	Reflect any approved changes from testing outcomes
Test Data Sheet (supporting realistic	Help testers validate edge cases, boundary conditions,
values)	and real data flows

Why These Tasks Are Important

1. Ensures Accurate Validation

BA involvement ensures that test cases reflect the true intention behind each business requirement, avoiding misaligned testing.

2. Supports Quick Defect Resolution

BAs help QA and Dev teams resolve issues faster by explaining the logic behind functionality and expected behaviour.

3. Strengthens UAT Readiness

By supporting the QA team during internal testing, BAs ensure a smoother transition to UAT by reducing business-facing bugs.

Example From Your Project: Online Agriculture Product Store

Let's say testers are validating the "View Product Inventory" feature:

^{~35} to 38 Hours, depending on defect volume and scope.

- Without BA: Testers might just check if inventory shows up.
- With BA: You guide them to validate:
 - Correct stock units display.
 - Stock visibility rules (e.g., disable "Add to Cart" if out of stock).
 - Segregation by product type (fertilizers, pesticides).
 - Filter & sorting logic per business rules.

Also, if testers raise a bug saying, "Product not displayed in Cart," the BA helps identify if it's a UI issue, business logic fault, or backend fault—thus assisting triage and proper assignment.

14.4. UAT Timesheet of a BA (Business Analyst)

Focus: Activities during the User Acceptance Testing (UAT) Phase

Understanding the Role of a BA in UAT

User Acceptance Testing (UAT) is the final testing phase before product go-live, where actual business users validate the system against their expectations. A Business Analyst (BA) plays a pivotal role by acting as the bridge between users and the technical team, facilitating the UAT process, preparing test scenarios, coordinating schedules, tracking feedback, and driving defect resolution.

Business Analyst UAT Phase Timesheet – Sample (Weekly View)

Day	Task Description	Time	Stakeholders/Teams	Purpose
		Spent	Involved	
		(Hours)		
Monday	Prepare and Review	2 hrs	PM, QA, Client	Define real-world
	UAT Test Plan &		Committee (Mr. Henry,	business test flows
	Scenarios		Peter, etc.)	
	Create and Share UAT	2 hrs	QA, DB Admin,	Provide realistic
	Test Data with		Stakeholders	input data for
	Stakeholders			testing
	Conduct UAT Kickoff	1.5 hrs	Stakeholders, PM, QA	Align business
	Meeting			users on process,
				timelines, and
				expectations
	Explain Business	2 hrs	Stakeholders	Help non-technical
	Flows, Navigation, and			users understand
	Expected Outcomes			system flow
	to UAT Users			
Tuesday	Support UAT Users	3 hrs	Stakeholders, QA, Dev	Assist users during
	During Execution			real-time test case
	(Functional			execution
	Clarifications)			
	Track UAT Issues/Bugs	1.5 hrs	QA, Dev	Maintain issue
	Raised			tracker
	Conduct Daily Status	1 hr	PM, QA, Stakeholders	Share progress,
	Update Call			risks, blockers
Wednesday	Analyze and Validate	2 hrs	QA, Dev	Classify bugs as
	UAT Defects for			critical/non-critical
	Business Impact			

				based on business rules
	Provide Resolution or Workaround Suggestions to Dev Team	2 hrs	Dev, PM	Speed up bug fixing using domain knowledge
	Prepare Traceability Report for UAT	1.5 hrs	Internal, PM	Ensure all critical flows were tested
Thursday	Help Business Users Retest After Fixes	2.5 hrs	QA, Stakeholders	Ensure bugs are fixed as per business expectations
	Gather Feedback from Stakeholders on Usability, Navigation, Business Logic	2 hrs	Mr. Henry's Committee	Capture end-user insights for final changes
	Document Sign-off Checklist	1 hr	PM, Stakeholders	List of criteria to be met for UAT closure
Friday	Final UAT Closure Meeting	1.5 hrs	PM, Stakeholders, QA	Formally sign off on UAT phase
	Collect UAT Sign-off from Stakeholders	1 hr	Mr. Henry, Peter, Kevin, Ben	Final approval of business validation
	Document UAT Summary Report	1.5 hrs	PM, QA	Provide insights, status, pending issues, and lessons learned

Total Hours per Week (UAT Phase):

35 to 38 Hours, based on defect volume and user engagement level.

Key Deliverables by BA in UAT Phase

Deliverable	Purpose
UAT Plan	Detailed schedule and scope of UAT
UAT Scenarios Document	Real-world business scenarios for testing
Test Data Sheet	Practical values that mimic real user behavior
Issue Tracker (with Severity &	Centralized list of business-level bugs/feedback
Status)	
UAT Sign-off Checklist	Conditions to declare successful UAT completion
UAT Feedback Document	Comments and concerns raised by users during testing
Final UAT Summary Report	Wrap-up report summarizing test coverage, issues, fixes, and
	approvals

Why These BA Tasks Are Critical in UAT

1. Bridging Communication Gaps

• BAs ensure that non-technical stakeholders can communicate effectively with developers and testers.

• They help translate feedback like "I don't see the Add to Cart button after filtering" into actionable bug reports.

2. Ensuring Business Value

- UAT validates that the application aligns with the actual business operations and not just functional specifications.
- BAs help map each feature back to its business objective.

3. Minimizing Go-Live Risks

- Ensures business users accept and are satisfied with the product before deployment.
- Any major issues discovered now are less expensive to fix than post-release.

Real-Time Example – From Your Case Study

Scenario: Farmer placing order for pesticide

- BA guides UAT users to test:
 - o Can the user search pesticide by type?
 - o Are regional language filters working?
 - Does stock availability and price display correctly?
 - o Can the farmer add to cart and complete payment?

If a UAT issue arises where payment confirmation isn't showing, the BA helps determine:

- Is it due to payment gateway config?
- Or does the UI not reflect confirmation status?
- Or was there an expectation mismatch on design?

BA resolves it by consulting backend/API or suggesting UI fix — streamlining UAT.