Capstone Project1 – Part -1/3

Business Process Model

Q.N: 1) Business Process Model for Online Agriculture Store.

Answer

: Goal

To provide a convenient, reliable, and sustainable platform for farmers and consumers to buy agricultural products and tools online.

: Inputs

Customer orders, Supplier products (seeds, fertilizers, tools, etc.), Customer data (preferences, location, Market demand trends, Payment and delivery details.

:Resources

E-commerce platform, Inventory management system, Supplier and logistics networks, Customer support team, Payment gateway, Marketing tools

: Outputs

User-Friendly Online Agriculture Store, Delivered orders, Revenue from sales, Insights from customer data, Increased brand awareness

: Activities

Sourcing products from suppliers, Managing inventory, Processing orders and payments, Shipping products, Providing customer support, Marketing and promotions.

: Value to Customer

Convenience: Shop anytime, anywhere.

Time-saving: Fast delivery.

Cost-effective: Prices and discounts.

Quality: Certified and reliable products.

Support, assistance.

SWOT Aalysis

Q.N 2): Mr Karthik is doing SWOT analysis before he accepts this project. What Aspects he Should consider as Strengths, as Weaknesses, as Opportunity and as Threats.

Answer:

When Mr. Karthik conducts a SWOT analysis for accepting the Online Agriculture Store project, he should consider the following aspects:

1.Strengths (Internal Positive Factors)

Growing Market Demand: Increasing adoption of e-commerce in agriculture.

Scalability, Sustainability Focus, Technology Advantage

2. Weaknesses (Internal Negative Factors)

High Initial Investment, Dependence on Logistics, Limited Awareness, Inventory Challenges, Technical Issues: Potential website downtime.

3. Opportunities (External Positive Factors)

Export Potential, Rural Penetration, organic and sustainable farming.

Government Support: Subsidies or initiatives promoting digital agriculture.

Partnerships: Collaboration with farming cooperatives or NGOs.

4. Threats (External Negative Factors)

Competition, Logistics Challenges, Price Sensitivity, Weather Dependency, Cybersecurity Risks.

[<u>- Feasibility study-]</u>

Q.N 3) : Mr Karthik is trying to do feasibility study on doing this project in Technology (Java), Please help him with points (HW SW Trained Resources Budget Time frame) to consider in feasibility Study.

Answer:

"A feasibility study helps determine whether a Java-based project is technically, financially, and operationally viable before starting development." which is categorized into Hardware (HW), Software (SW), Trained Resources, Budget, and Time Frame.

1-Hardware (HW) Considerations:

Infrastructure Requirements: Assess the hardware needed for development, testing, and deployment.

Scalability: Determine if the hardware can scale to meet future demands.

Compatibility: Ensure the hardware is compatible with Java, based technologies and tools.

Performance: Evaluate the hardware's ability to handle the expected workload.

Cloud: Decide whether to use cloud-based infrastructure.

Maintenance: Consider the costs and effort required for hardware maintenance and upgrades.

2- Software (SW) Considerations:

Technology Stack: Identify the Java frameworks, libraries, and tools required.

Development Environment: Set up IDEs (e.g., IntelliJ IDEA, Eclipse) and version control systems (e.g., Git).

Database: Choose a suitable database and ensure compatibility with Java.

Third-Party Integrations: Identify any APIs, plugins, or third-party services needed.

Licensing: Check for any software licensing costs or restrictions.

Security: Ensure the software stack adheres to security best practices.

Deployment: Plan for deployment tools and environments.

3- Trained Resources:

Team Composition: Identify the roles required (e.g., Java developers, QA testers, DevOps engineers, project managers).

Skill Level: Assess the team's proficiency in Java and related technologies.

Training Needs: Determine if additional training is required for the team.

Availability: Ensure the team has the bandwidth to take on the project.

Hiring: Plan for hiring additional resources if needed.

Knowledge Transfer: Plan for knowledge sharing if external consultants or new hires are involved.

4. Budget:

Development Costs: Estimate costs for development, including salaries, tools, and licenses.

Infrastructure Costs: Calculate hardware and cloud service costs.

Training Costs: Budget for any training programs or certifications.

Maintenance Costs: Include ongoing maintenance and support costs.

Contingency: Allocate a contingency budget for unforeseen expenses.

ROI Analysis: Evaluate the potential return on investment (ROI) for the project.

5. Time Frame:

Project Phases: Break the project into phases (e.g., requirements gathering, design, development, testing, deployment).

Milestones: Define key milestones and deliverables for each phase.

Dependencies: Identify dependencies that could impact the timeline.

Risk Assessment: Identify potential risks and their impact on the timeline.

Buffer Time: Include buffer time for unexpected delays.

Go-Live Date: Set a realistic target date for project completion and deployment.

-Gap Analysis--

Q.N 4) Mr Karthik must submit Gap Analysis to Mr Henry to convince to initiate this project. What points (compare AS-IS existing process with TO-BE future Process) to showcase in the GAP Analysis.

Answer:

A Gap Analysis is a powerful tool to compare the AS-IS (current state) with the TO-BE (future state) and identify the gaps that need to be addressed to achieve the desired outcome. For Mr. Karthik to convince Mr. Henry to initiate the project, he should clearly highlight the inefficiencies in the current process and how the proposed solution will address them. Below are the key points to include in the Gap Analysis:

1. Process Efficiency

AS-IS: Describe the current process, including manual steps, bottlenecks, and inefficiencies.

Example: "The current process involves manual data entry, which is time-consuming and prone to errors.

TO-BE: Explain how the future process will automate or streamline tasks.

Example: "The new system will automate data entry using Java-based APIs, reducing errors and saving time.

2. Technology Stack

AS-IS: Highlight the limitations of the current technology stack.

Example: "The existing system uses outdated software that lacks scalability and integration capabilities.

TO-BE: Showcase the advantages of the proposed Java-based solution.

Example: "The new system will use modern Java frameworks (e.g., Spring Boot) for scalability, flexibility, and seamless integration with other systems.

3. Resource Utilization

AS-IS: Identify inefficiencies in resource utilization.

Example: "The current process requires excessive manual intervention, leading to high labor costs and low productivity.

TO-BE: Demonstrate how the new process will optimize resource usage.

Example: "The proposed solution will reduce manual effort by 50%, allowing resources to focus on higher-value tasks.

4. Cost Analysis

AS-IS: Outline the current costs associated with the process.

Example: "The existing process incurs high operational costs due to manual errors and rework.

TO-BE: Provide a cost-benefit analysis of the proposed solution.

Example: "The new system will reduce operational costs by 30% through automation and improved accuracy.

5. Time Efficiency

AS-IS: Highlight delays and inefficiencies in the current process.

Example: "The current process takes 10 days to complete due to manual approvals and data validation.

TO-BE: Show how the future process will save time.

Example: "The new system will reduce the process time to 3 days by automating approvals and validation.

6. Scalability

AS-IS: Discuss the limitations of the current system in handling growth.

Example: "The existing system cannot handle more than 1,000 transactions per day, limiting business growth.

TO-BE: Explain how the proposed solution will support scalability.

Example: "The new Java-based system will support up to 10,000 transactions per day, enabling future growth.

7. User Experience

AS-IS: Describe the challenges faced by users in the current process.

Example: "Users find the current system difficult to navigate, leading to low adoption rates.

TO-BE: Highlight improvements in user experience.

Example: "The new system will feature an intuitive user interface, improving usability and adoption rates.

8. Data Accuracy and Reporting

AS-IS: Identify issues with data accuracy and reporting in the current process.

Example: "The current system generates inaccurate reports due to manual data entry errors.

TO-BE: Show how the future process will improve data accuracy and reporting.

Example: "The new system will automate data collection and validation, ensuring accurate and real-time reporting.

9. Compliance and Security:

AS-IS: Point out any compliance or security gaps in the current process.

Example: "The existing system does not meet industry security standards, posing a risk to sensitive data.

TO-BE: Explain how the proposed solution will address compliance and security.

Example: "The new system will implement robust security measures, including encryption and role-based access control, to ensure compliance.

10. Innovation and Competitive Advantage

AS-IS: Highlight the lack of innovation in the current process.

Example: "The current system does not leverage modern technologies, putting the organization at a competitive disadvantage.

TO-BE: Showcase how the proposed solution will drive innovation.

Example: "The new system will incorporate advanced analytics and AI capabilities, giving the organization a competitive edge.

11. Risk Mitigation

AS-IS: Identify risks associated with the current process.

Example: "The current system is prone to downtime, causing disruptions to business operations."

TO-BE: Explain how the proposed solution will mitigate risks.

Example: "The new system will include failover mechanisms and regular backups, minimizing downtime.

12. Implementation Plan

AS-IS: Summarize the challenges of maintaining the current process.

TO-BE: Provide a high-level implementation plan for the proposed solution, including timelines.

Risk Analysis

Q.N 5)- List down different risk factors that may be involved (BA Risks And process/Project Risks)

Answer:

Business Analysis (BA) Risks

These risks are related to requirements gathering, stakeholder alignment, and analysis activities:

Unclear Requirements:

Incomplete or ambiguous requirements from stakeholders.

Frequent changes in requirements during the project.

Stakeholder Misalignment:

Conflicting priorities among stakeholders.

Lack of stakeholder engagement or commitment.

Poor Communication:

Inadequate communication between business analysts and stakeholders.

Misunderstanding of business needs or expectations.

Scope Creep:

Uncontrolled expansion of project scope without proper approval.

Adding features or requirements that were not part of the original plan.

Inadequate Documentation:

Poorly documented requirements or processes.

Lack of traceability between requirements and deliverables.

Insufficient User Involvement:

End-users not involved in the requirements gathering process.

Lack of feedback from users during development.

Inaccurate Assumptions:

Incorrect assumptions about business processes or user needs.

Overlooking critical dependencies or constraints.

Regulatory or Compliance Risks:

Failure to meet industry regulations or standards.

Non-compliance with data protection or security requirements.

Process/Project Risks:

These risks are related to project execution, timelines, resources, and technology.

Resource Constraints:

Lack of skilled resources (e.g., Java developers, testers).

Overloaded team members or high turnover rates.

Budget Overruns:

Unexpected costs due to scope changes or technical challenges.

Poor estimation of project costs.

Timeline Delays:

Missed deadlines due to poor planning or unforeseen issues.

Dependencies on third-party vendors or external teams.

Technical Challenges:

Integration issues with existing systems.

Performance bottlenecks or scalability concerns.

Quality Issues:

Insufficient testing leading to defects or bugs.

Lack of focus on non-functional requirements (e.g., performance, security).

Change Management Risks:

Resistance to change from end-users or stakeholders.

Inadequate training or support for new systems.

Dependency Risks:

Delays caused by external vendors or third-party services.

Over-reliance on a single technology or tool.

Security Risks:

Vulnerabilities in the system leading to data breaches.

Insufficient security measures during development or deployment.

Technology Obsolescence:

Using outdated technologies that may not be supported in the future.

Rapid changes in technology making the solution obsolete.

Project Management Risks:

Poor project planning or lack of risk management.

Ineffective monitoring and control of project progress.

Environmental Risks:

External factors like economic changes, natural disasters, or pandemics impacting the project.

-Stakeholder Analysis (RACI Matrix)-

Q.N 6) Perform stakeholder analysis (RACI Matrix) to find out the key stakeholders who can take Decisions and Who are the influencers.

Answer:

A RACI Matrix is a tool used to identify and clarify the roles and responsibilities of stakeholders in a project or process. It stands for Responsible, Accountable, Consulted, and Informed. Here's how you can perform a stakeholder analysis using the RACI Matrix to identify key decision-makers and influencers:

Assign RACI Roles:

R (Responsible): The person/team who performs the task or completes the activity.

A (Accountable): The person ultimately answerable for the task or decision.

C (Consulted): The person/group whose input is sought before a decision or action.

I (Informed): The person/group who needs to be kept informed of progress or decisions.

Analyze the Matrix:

Identify stakeholders who are Accountable these are the key decision-makers.

Identify stakeholders who are Consulted these are the influencers.

Ensure no role conflicts.

Validate and Communicate:

Share the RACI Matrix with stakeholders to ensure alignment and clarity.

Update the matrix as needed based on feedback or changes in the project.

Activity/Decision	Project	Senior			
Activity/ Decision	Manager	Management	Technical Team	Customers	Suppliers
Budget Approval	Informed	Accountable	Consulted	Informed	Informed
Design Approval	Responsible	Accountable	Consulted	Consulted	Informed
Implementation	Accountable	Informed	Responsible	Informed	Consulted
Testing	Informed	Informed	Responsible	Consulted	Informed

Key Insights from the RACI Matrix

Decision-Makers (Accountable):

Senior Management: They are accountable for budget and design approval.

Project Manager: Accountable for implementation.

Influencers (Consulted):

Technical Team: Consulted for design and implementation.

Customers: Consulted for design and testing.

Suppliers: Consulted for implementation.

Responsible:

Technical Team: Responsible for implementation and testing.

Project Manager: Responsible for design approval.

Informed:

Customers and Suppliers: Kept informed about budget, design, and testing.

This analysis helps ensure that the right stakeholders are involved in the right decisions and activities, reducing confusion and improving project outcomes.

-Business Case Document -

Q.N 7) Help Mr Karthik to prepare a business case document

Answer:

Executive Summary

This business case outlines the need for an Online Agriculture Product Store to address the challenges faced by farmers in remote areas in procuring essential agricultural products like fertilizers, seeds, and pesticides. The project is initiated by Mr. Henry under his company SOONY, with a budget of 2 Crores INR and a timeline of 18 months, and will be executed by **APT IT SOLUTIONS**. The platform will enable direct communication between farmers and manufacturers, ensuring accessibility, affordability, and convenience in purchasing agricultural products.

Here's a Business case for the case study

1. Why is this project initiated?

- The project is initiated to address the problem faced by the remote farmers in buying or getting access to agricultural product like pesticides, seeds etc.
- The project aims to build an online agricultural app that can connect the farmers to the manufacturer directly for buying the requirement.

2. What are the current problem

- Difficulties in sourcing fetilizers, seeds and pesticides
- Lack of technical knowledge of the farmers.
- Dependencies in intermediaries

3. With this project how many problems could be solved?

- Wider reach- manufactures can reach remote areas farmers
- User friendly app for easy transaction of products
- Farmers can directly order agricultural product from manufacturer.
- Faster delivery of agricultural products.

4. What are the resources required?

SENIOR JAVA DEVELOPER

JAVA DEVELOPER

TESTER

PROJECT MANAGER

NETWORK ADMIN

DB ADMIN

PROJECT COORDINATOR

FINANCIAL HEAD

- Infrastructure- computers, internet, testing device.
- Technology- development platform, database
- Budget- 2 crore

5. How much organizational change is required to adopt this technology?

- Customer support
- Operational changes
- Training team for educating the farmers in using the app

6. Time frame to recover ROI(return on investment)

- An estimated of 2-3 years

7. How to identify stakeholders?

- Primary stakeholders- Farmers, manufactures
- Secondary stakeholders- project team, customer support team
- Key stakeholders- Mr Henry, Mr Pandu and Mr Dooku, financial team
- SDLC Methodologie-

Q.N 8) The Committee of Mr. Henry, Mr Pandu, and Mr Dooku and Mr Karthik are having a discussion on Project Development Approach.

Mr Karthik explained to Mr. Henry about SDLC. And four methodologies like Sequential Iterative Evolutionary and Agile. Please share your thoughts and clarity on Methodologies.

Answer-

Mr. Karthik introduced SDLC (Software Development Life Cycle) and the four key methodologies: Sequential, Iterative, Evolutionary, and Agile during the discussion. Here's a clear breakdown of each approach:

SDLC & Methodologies Overview

The Software Development Life Cycle (SDLC) is a structured process used to develop high-quality software. It consists of phases like Planning, Analysis, Design, Development, Testing, Deployment, and Maintenance.

1. Sequential (Waterfall Model)

Concept: Follows a strict linear process, where each phase is completed before moving to the next.

Pros: Clear documentation, easy to manage, good for well-defined projects.

Cons: Inflexible, difficult to accommodate changes, costly if errors are found late.

Best for: Fixed-scope projects (e.g., Banking Systems, Government Projects).

2. Iterative Model

Concept: Develops the software in small cycles (iterations), where feedback is incorporated before moving to the next version.

Pros: Early detection of issues, improved adaptability.

Cons: Can be resource-intensive, requires strong planning.

Best for: Projects with changing requirements.

3. Evolutionary Model

Concept: Focuses on gradual improvements, refining the system over time based on user feedback.

Pros: Users see progress early, better risk management.

Cons: Requires continuous stakeholder involvement, may lead to scope creep.

Best for: Research-based or experimental projects.

4. Agile Methodology

Concept: Emphasizes flexibility, collaboration, and rapid delivery of small functional increments.

Pros: Quick adaptation to changes, continuous user involvement, high customer satisfaction.

Cons: Requires experienced teams, may struggle with fixed-cost projects.

Best for: Startups, dynamic projects, software product development.

-Waterfall RUP Spiral and Scrum Models-

Q.N - 9)They discussed models in SDLC like waterfall RUP Spiral and Scrum . You put forth your understanding on these models.

Answer-

Understanding the SDLC Models Discussed

The committee explored different SDLC models—Waterfall, RUP, Spiral, and Scrum—each having its strengths and weaknesses. Let's briefly understand these models:

Waterfall Model

Linear and sequential approach where each phase (Requirement \rightarrow Design \rightarrow Implementation \rightarrow Testing \rightarrow Deployment) must be completed before moving to the next.

Best for: Well-defined projects with stable requirements.

Limitations: No flexibility for mid-project changes.

RUP (Rational Unified Process)

Iterative and incremental approach focusing on four phases: Inception, Elaboration, Construction, and Transition.

Uses prototyping and risk assessment at every stage.

Best for: Medium to large-scale projects requiring continuous refinement.

Spiral Model

Risk-driven approach with multiple iterations, where requirements evolve as risks are identified and mitigated.

Best for: Complex, high-risk projects (e.g., aerospace, defense).

Limitations: Costly and time-consuming due to multiple iterations.

Scrum (Agile Framework)

Agile methodology with short development cycles (sprints) focused on continuous improvement, collaboration, and feedback.

Best for: Projects with frequent requirement changes, requiring quick delivery.

Limitations: Needs strong stakeholder involvement and disciplined team coordination.

Choosing Between V-Model vs. Waterfall for APT IT SOLUTIONS

APT IT Solutions is developing an online agriculture product store, and there's a debate between SMEs preferring the V-Model and the Project Team leaning toward Waterfall.

V-Model (Validation & Verification Model)

An extension of Waterfall, where each development phase has a corresponding testing phase.

Pros:

Defect detection happens early due to strong validation.

Ensures high reliability (important for critical applications).

Cons:

Rigid structure (changes late in the cycle are costly).

Requires clear, well-defined requirements from the beginning.

Waterfall Model

Simple, linear, and easy to manage for structured development.

Pros:

Best for well-defined and stable requirements.

Works well with small and medium-sized projects.

Cons:

No early testing (bugs are found late, increasing fixing costs).

Not ideal for projects with evolving requirements.

Which Model is Better for the Online Agriculture Store?

As a Business Analyst, my recommendation would be:

If the project has fixed and clear requirements \rightarrow The Waterfall Model can work, as it provides a structured approach with clear phases.

If the project requires early testing and validation \rightarrow The V-Model is better, ensuring quality and minimizing late-stage defects.

Final Decision:

Since an online agriculture product store involves product listings, payment integrations, security features, and user experience, early validation (testing) is critical. V-Model would be the better choice because:

It ensures early defect detection.

It improves quality and reliability.

It reduces late-stage failures in e-commerce functionalities.

-Waterfall Vs V-Mode-

Q.N.10) 20Write down the differences between waterfall model and V model.

Answer:

Differences Between Waterfall Model and V-Model

Feature	Waterfall Model	V-Model (Verification & Validation Model)
Approach	Linear and sequential	Linear but with early testing after each phase
Testing Phase	Happens after development is complete	Testing happens alongside development
Flexibility	Rigid, difficult to accommodate changes	Slightly more flexible due to early validation
Risk Management	Higher risk as errors are found late	Lower risk due to early defect detection
Cost of Fixing Errors	High, since defects are found late	Lower, as bugs are detected early
Best for	Small projects with fixed requirements	Projects needing high reliability and validation
Documentation	Heavy documentation required	Requires strong test documentation
Customer Involvement	Minimal after requirement phase	Involves customer feedback earlier through testing

-Justify your choice-

Q.N. 11) As a BA, state your reason for choosing one model for this project.

Answer-

Choosing the Right Model as a Business Analyst

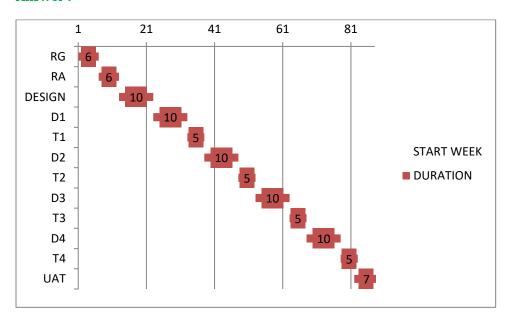
For the online agriculture product store project, I would choose the V-Model over the Waterfall Model.

Reasons for Choosing V-Model:

Early Defect Detection – Testing happens alongside development, ensuring issues are found early rather than at the end.

Better Quality Assurance – Since this is an e-commerce platform, it requires high reliability for payments, security, and user experience.

Reduces Cost of Fixing Bugs – Catching defects earlier prevents expensive rework later.


Validation at Every Stage – Ensures that customer and business needs are met before moving to the next phase.

The V-Model is ideal for this project because it prioritizes quality and risk management, which are critical for an online store handling transactions and customer data.

-Gantt Chart-

Q.N.12) The Committee of Mr. Henry, Mr Pandu, and Mr Dooku discussed with Mr Karthik and finalised on the V Model approach (RG, RA, Design, D1, T1, D2, T2, D3, T3, D4, T4 and UAT)

Answer:

	START		END	
TASK	WEEK		WEEK	DURATION
RG		1	6	6
RA		7	12	6
DESIGN		13	22	10
D1		23	32	10
T1		33	37	5
D2		38	47	10
T2		48	52	5
D3		53	62	10
T3		63	67	5
D4		68	77	10
T4		78	82	5
UAT		82	88	7

- Fixed Bid Vs Billing-

Q.N. 13) Explain the difference between Fixed Bid and Billing projects.

Answer:

Difference Between Fixed Bid and Billing (Time & Material) Projects

Aspect	Fixed Bid Project	Billing (Time & Material) Project
	Fixed price agreed upon before the	Billing based on actual hours
Pricing Model	project starts.	worked and resources used.
	Clearly defined and fixed at the	Flexible, can change based on
Scope	beginning.	requirements.
Risk	Higher risk for vendors if scope	Lower risk for vendors as clients
Management	increases, as price is fixed.	pay for additional efforts.
	Less flexible; any change requires	Highly flexible; changes can be
Flexibility	formal approval and cost adjustments.	accommodated easily.
	Projects with well-defined	Evolving projects where scope
Best Suited For	requirements and minimal changes.	may change over time.
Client Cost	Predictable cost, as the total budget is	Costs can vary based on hours
Control	set upfront.	worked and resources used.
	Product development, government	Software maintenance,
Examples	contracts.	research-based projects.

- Preparer Timesheets of a BA in various stages of SDLC-

Q.N.14) > Design Timesheet of a BA

- ➤ Development Timesheet of a BA
- ➤ Testing Timesheet of a BA
- > UAT Timesheet of a BA
- ➤ Deployment n Implementation Timesheet of a BA

Answer:

Design Timesheet of a BA

Date	Task	Project	Start	End	Total	Status	Remark
	Description	Name	Time	Time	Hour		S

	Requirement	Online Agricult					
2025-01-1	Gathering	ure	09:00	10:30		Complet	•
0	Meeting	Store Online Agricult	AM	AM	1.5	ed	-
2025-01-1	Stakeholder	ure	11:00	12:00		Complet	•
0	Discussion	Store	AM	PM	1	ed	-
		Online Agricult				In	
2025-01-1	Documentation -	ure	01:00	03:00		Progres	
0	BRD	Store Online	PM	PM	2	s	Drafting
		Agricult					Schedul
2025-01-1	Review Meeting	ure	03:30	04:30			ed for
0	with Team	Store	PM	PM	1	Pending	review

Development Timesheet of a BA:

Date	Task Descrip tion	Project Name	Start Time	End Time	Total Hours	Status	Remark s
2025-02 -10	Require	ure Store	09:00 AM	10:30 AM	1.5	Complet ed	-
2025-02 -10	Functional Specific ations Use	Online Agricult	11:00 AM	01:00 PM	2	In Progres s	Drafting initial version
2025-02 -10	Case Docume ntation Coordin	Agricult	02:00 PM	04:00 PM	2	In Progres s	Review pending
2025-02 -10	ating with Develop ers	Online Agricult ure Store	04:30 PM	05:30 PM	1	Complet ed	-

Testing Timesheet of a BA:

Date	Task	Project	Start	End	Total	Status	Remark
	Descrip tion	Name	Time	Time	Hours		S
2025-02 -10	Test	Online Agricult ure Store	09:00 AM	10:30 AM	1.5	Complet ed	Review ed initial test cases
2025-02 -10	Accepta nce Testing (UAT) Coordin ation Defect	Agricult ure Store	11:00 AM	12:30 PM	1.5	In Progres s	Coordin ating with stakehol ders Identifie
2025-02 -10	Analysis & Reportin g Test Plan	Agricult	02:00 PM	04:00 PM	2	In Progres s	d and docume nted defects
2025-02 -10	Discussi on with		04:30 PM	05:30 PM	1	Complet ed	Aligned on test executio n plan

UAT Timesheet of a BA:

Date	Task Descrip tion	Project Name	Start Time	End Time	Total Hours	Status	Remark s
	UAT Test	Online					Prepare d
	Case	Agricult					detailed
2025-02	Prepara		09:00	10:30		Complet	test
-15	tion	Store	AM	AM	1.5	ed	cases
							Testing
	UAT	Online					in collabor
		Agricult				In	ation
2025-02		ure	11:00	01:00		Progres	
-15	Users	Store	AM	PM	2	s	users
	Defect	Online					Logged
	Logging	Agricult		03:30		Complet	issues
-15	&	ure	PM	PM	1.5	ed	and

	Trackin g	Store					assigne d to dev team
	Stakeho lder	Online Agricult					Schedul ed for
2025-02	Review	ure	04:00	05:30			discussi
-15	Meeting	Store	PM	PM	1.5	Pending	on

Deployment n Implementation Timesheet of a BA:

Date	Task Descrip tion	Project Name		End Time	Total Hours	Status	Remark s
-15	Deploy ment Plannin g Coordin ating with	Store Online Agricult	09:00 AM	10:30 AM	1.5	Complet ed In	strategy Ensurin g smooth
2025-02 -15	DevOps Team	ure Store	11:00 AM	12:30 PM	1.5	Progres s	deploym ent
2025-02 -15	Post-De ploymen t Testing	Agricult ure	02:00 PM	04:00 PM	2	Complet ed	Validate d system function ality
2025-02 -15	Stakeho Ider Training & Handov er	Agricult	04:30 PM	06:00 PM	1.5	Pending	Schedul ed training session

.....